Способ и устройство контроля неравномерности толщины стенок недоступных трубопроводов

Изобретение относится к области контроля состояния стенок трубопроводов без их вскрытия. Сущность: через трубопровод пропускают в продольном направлении переменный электрический ток. Измеряют создаваемое переменным током магнитное поле на неизменном расстоянии от внутренней стенки трубы во внутренней ее полости, продвигаясь вдоль нее с остановками на время полного оборота вокруг оси трубы одновременно в нескольких точках, расположенных на продольных трубе отрезках при повороте вокруг ее оси. По данным измерения вычисляют среднее арифметическое значение индукции магнитного поля в каждом месте прерывания продольного движения. Изменение толщины стенки в точках цилиндрической поверхности трубы устанавливают как функцию прямой пропорциональности от отношения среднего значения индукции магнитного поля внутри трубопровода каждого места прерывания продольного движения к ее значению в точках измерения с коэффициентом пропорциональности, равным заранее определенной величине толщины бездефектного участка трубы. Технический результат: повышение точности, возможность контроля изнутри трубы без внесения возмущений в процесс измерения коррозионных и шламовых отложений и других дефектов. 2 н.п. ф-лы,. 2 ил.

 

Изобретение относится к области контроля состояния стенок трубопроводов и может использоваться при необходимости точной диагностики дефектов трубопроводов сложной геометрической формы и малого диаметра, например, от 200 мм до 400 мм без их вскрытия в сфере энергетики и ЖКХ.

Известно устройство определения изъянов трубопровода с неразрушающим контролем его состояния и использованием переменного магнитного поля (Патент KR № 1020120066892, опубл. 25. 06. 2012 г.), содержащее создающий магнитное поле узел, датчик-преобразователь изменения магнитного поля в электрическое напряжение, приводной механизм и узел управления и обработки. Предложенный метод использования этого устройства позволяет определять трещины, щели, ржавчину и несанкционированные врезки по специфике искажения поля.

Недостатком известного устройства является необходимость сложной процедуры загрузки устройства в трубопровод и подача теплоносителя для продвижения снаряда по маршруту, а также невозможность контроля участков сложной геометрической формы.

Наиболее близким к заявляемому техническому решению являются описанные в изобретении к евразийскому патенту 00268 (опубл. 29.08.2002) способ и устройство для определения неравномерности толщины стенок металлического трубопровода, с пропусканием в продольном направлении трубы переменного электрического тока, измерением создаваемого им магнитного поля на определенном расстоянии от стенки трубы, продвигаясь вдоль нее. При этом изменение толщины стенки трубопровода устанавливается по отличию измеренных величин индукции магнитного поля оценкой их отношения. Устройство включает в себя источник питания для подачи переменного тока через тело трубы, датчик для измерения на определенном расстоянии снаружи трубы магнитного поля, создаваемого переменным током, пронизывающим всю площадь поперечного сечения стенки трубы, и блок оценки, который определяет наличие неоднородности толщины стенки трубопровода по показаниям датчика магнитного поля.

Недостатком прототипа является малая точность определения дефекта в трубопроводе и необходимость вскрытия трубы, т.к. фиксация неоднородности магнитного поля производится датчиком снаружи трубы.

Задачей, на решение которой направлено предлагаемое изобретение, является обеспечение увеличения точности измерения изменения толщины трубопровода, а также возможность проведения толщинометрии труб малого диаметра без их вскрытия.

Поставленная задача решается за счет достижения технического результата, заключающегося в возможности контролировать изнутри трубы толщину ее стенки без внесения возмущений в процесс измерения коррозионных и шламовых отложений, а также других дефектов, связанных с их местоположением.

Данный технический результат достигается тем, что в способе контроля неравномерности толщины стенок недоступного металлического трубопровода, при котором через него пропускают в продольном направлении переменный электрический ток, измеряют создаваемое им магнитное поле на определенном расстоянии от стенки трубы, продвигаясь вдоль нее, при этом изменение толщины стенки трубопровода устанавливают по отличию измеренных величин индукции магнитного поля оценкой их отношения, новым является то, что создаваемое переменным током магнитное поле измеряют на неизменном расстоянии от внутренней стенки трубы во внутренней ее полости, продвигаясь вдоль нее с остановками на время полного оборота вокруг оси трубы, одновременно в нескольких точках, расположенных на продольных трубе отрезках при повороте вокруг ее оси. По данным измерения вычисляют среднее арифметическое значение индукции магнитного поля в каждом месте прерывания продольного движения, а изменение толщины стенки в точках цилиндрической поверхности этого места устанавливают как функцию прямой пропорциональности от отношения среднего значения индукции магнитного поля каждого места прерывания продольного движения к ее значению в точках измерения с коэффициентом пропорциональности, равным заранее определенной величине толщины бездефектного участка трубы.

Указанный технический результат достигается также тем, что устройство для осуществления этого способа, содержащее источник переменного тока, выходы которого подключены к концам проверяемого участка трубы, соединенное с блоком обработки данных средство измерения магнитного поля на определенном расстоянии от стенки трубы с возможностью его перемещения вдоль трубы, отличается тем, что средство измерения магнитного поля размещено внутри трубы и оснащено соединенными с блоком управления механизмами обеспечения неизменного расстояния от него до внутренней стенки трубы, продольного продвижения вдоль нее с остановками, а также вращения вокруг оси трубы. Средство измерения выполнено из нескольких датчиков, расположенных по линии, параллельной продольному направлению трубы.

Сущность изобретения поясняется чертежами, из которых на фиг. 1 схематически изображено устройство контроля неравномерности толщины стенок трубопровода (пересечение электрическими проводами стенок трубы показано условно), а на фиг. 2 - пример массива значений магнитной индукции в местах прерывания движения вдоль трубы.

Устройство (фиг. 1) состоит из источника переменного тока 1, выходы которого подсоединены к концам проверяемого участка трубы 2. Блок питания 3 и блок обработки данных 4 соединены с размещенным внутри трубы средством измерения магнитного поля в виде катушек 5. С блоком питания 3, а также с блоком управления 6 соединены механизм продольного продвижения 7 катушек 5 вдоль трубы 2 и механизм вращения 8 этих катушек вокруг оси трубы 2. Средство измерения магнитного поля в виде катушек 5 оснащено соединенным с блоком управления 6 механизмом 9 обеспечения определенного зазора между катушками 5 и внутренней поверхностью трубы 2. Механизм 9 содержит связанный с блоками 4 и 6 датчик измерения 10 этого зазора, а механизм продольного перемещения 7 связан со средством измерения магнитного поля в виде катушек 5 шарнирно-карданным соединением.

В процессе проведения внутритрубной диагностики с помощью датчика измерения 10 зазора происходит измерение расстояния между рабочей поверхностью катушек 5 средства измерения магнитного поля и внутренней поверхностью проверяемого участка трубы 2. С помощью механизма 9, при необходимости, это расстояние уменьшается или увеличивается, и, тем самым, в соответствии с хранящимися в блоке управления 6 данными о рабочей величине зазора в дальнейшем во всех местах прерывания продольного продвижения вдоль трубы 2 поддерживается неизменным. При пропускании переменного тока от источника 1 по трубе 2 в соответствии с сигналом с блока управления 6 происходит вращение катушек 5 вокруг оси трубы 2 с одновременным измерением магнитного поля и поступлением данных в блок 4. После этого включается механизм продольного передвижения 7, с помощью которого расположенные вдоль линии, параллельной трубе 2, катушки 5 вместе с механизмом 9 перемещаются вдоль трубы на расстояние, равное общей длине всех (например, восьми) катушек 5. Их вращение вокруг оси трубы 2 и измерение магнитного поля повторяются.

В результате полного оборота вокруг оси трубы катушек 5 от каждого места прерывания продольного движения накапливается массив значений индукции магнитного поля (магнитограмма) вблизи точек внутренней поверхности трубы, отраженный в спроецированной на внутреннюю поверхность трубы матрице, показанной на фиг. 2. По этим данным вычисляется среднее арифметическое значение индукции магнитного поля внутри трубы Вср как отношение суммы всех значений индукции Bij (i=0…M, j=0…N) в месте, соответствующем одному обороту, к произведению числа строк М на число столбцов N матрицы. На фиг. 2 показан пример, в котором М=8, что соответствует расположенным на линии вдоль трубы восьми катушкам 5, а N=9, что соответствует числу измерений значений магнитной индукции в процессе полного оборота, производимых каждые 40°. После вычисления отношения Вср /Bij и определения исходной толщины металла бездефектной области трубы - D0, например, с помощью ультразвукового толщиномера находят значение остаточной толщины стенки трубы в каждой ее точке - Dij как функцию прямой пропорциональности от отношения Вср /Bij с коэффициентом пропорциональности D0.

1. Способ контроля неравномерности толщины стенок недоступного металлического трубопровода, при котором через него пропускают в продольном направлении переменный электрический ток, измеряют создаваемое им магнитное поле на определенном расстоянии от стенки трубы, продвигаясь вдоль нее, при этом изменение толщины стенки трубопровода устанавливают по отличию измеренных величин индукции магнитного поля оценкой их отношения, отличающийся тем, что создаваемое переменным током магнитное поле измеряют на неизменном расстоянии от внутренней стенки трубы во внутренней ее полости, продвигаясь вдоль нее с остановками на время полного оборота вокруг оси трубы, одновременно в нескольких точках, расположенных на продольных трубе отрезках при повороте вокруг ее оси, по данным измерения вычисляют среднее арифметическое значение индукции магнитного поля в каждом месте прерывания продольного движения, а изменение толщины стенки в точках цилиндрической поверхности трубы устанавливают как функцию прямой пропорциональности от отношения среднего значения индукции магнитного поля внутри трубопровода каждого места прерывания продольного движения к ее значению в точках измерения с коэффициентом пропорциональности, равным заранее определенной величине толщины бездефектного участка трубы.

2. Устройство для осуществления способа по п. 1, содержащее источник переменного тока, соединенное с блоком обработки данных средство измерения магнитного поля на определенном расстоянии от стенки трубы с возможностью его перемещения вдоль трубы, отличающееся тем, что средство измерения размещено внутри трубы и оснащено соединенными с блоком управления механизмами обеспечения неизменного расстояния от него до внутренней стенки трубы и продольного продвижения вдоль нее с остановками, а также вращения вокруг оси трубы, при этом средство измерения выполнено из нескольких датчиков, расположенных по линии, параллельной продольному направлению трубы.



 

Похожие патенты:

Использование: для оценки геометрических размеров дефектов стенки трубной секции и сварных швов по данным магнитного внутритрубного дефектоскопа. Сущность изобретения заключается в том, что оценку геометрических размеров дефектов стенки трубной секции и сварных швов по данным магнитного внутритрубного дефектоскопа выполняют с помощью универсальной нейросетевой модели, реализующей способ, заключающийся в распространении сигналов ошибки от выходов нейронной сети к ее входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы.

Изобретение относится к области исследования материалов с помощью магнитных средств, в частности фиксации изменений величины магнитного потока при изменении номинального сечения или структуры металла с ферромагнитными свойствами.

Изобретение относится к измерительной технике и представляет собой способ мониторинга технического состояния стальных подземных газонефтепроводов. При реализации способа обследуемый трубопровод намагничивают с помощью источника постоянного магнитного поля, размещенного внутри трубопровода, до величины остаточной намагниченности 0,1-0,8 поля насыщения.

Изобретение относится к измерительной технике и представляет собой устройство для обнаружения дефектов малых линейных размеров. Устройство представляет собой программно-аппаратный комплекс, включающий в себя вихретоковый преобразователь, персональный компьютер со звуковой картой и программным обеспечением: виртуальным генератором, блоками обработки сигнала и управления, управления перемещением датчика, - а также USB/LPT-интерфейс, шаговый двигатель.

Изобретение относится к измерительной технике и представляет собой способ и устройство для обнаружения дефектов на поверхности ферромагнитных материалов и изделий.

Изобретение относится к измерительной технике и представляет собой прибор контроля трубопровода и способ контроля с применением данного прибора. Прибор содержит узел намагничивания, включающий по меньшей мере два спиральных полюсных магнита, разнесенных на равные расстояния по всей длине прибора, каждый из которых закручен по спирали вокруг корпуса прибора менее чем на пол-оборота для создания наклонного относительно продольной оси прибора и трубы магнитного поля, которое покрывает внутреннюю поверхность стенки трубы на 360°.

Использование: для неразрушающего контроля изделий. Сущность изобретения заключается в том, что осуществляют сканирование поверхности контролируемого изделия в идентичных условиях в течение его жизненного цикла, считывание, преобразование и обработку информации, полученной при сканировании, визуализацию образа поверхности изделия с последующим сравнением результатов текущего и предыдущего сканирования, при этом предварительно размагниченное изделие намагничивают монотонно возрастающим магнитным полем до величины магнитной индукции, соответствующей максимальному значению магнитной проницаемости материала, затем начинают сканирование, получают в результате визуализации магнитный образ поверхности контролируемого изделия в текущий момент и после сравнения его с ранее полученным магнитным образом поверхности этого же изделия в исходном состоянии судят о наличии в нем зон локализации пластических деформаций, количестве этих зон и их расположении в изделии.

Изобретение относится к информационно-измерительной технике, представляет собой устройство для измерения магнитных полей и может быть использовано для неразрушающего контроля внутренней структуры ферромагнитных объектов.

Использование: для обнаружения дефектов. Сущность изобретения заключается в том, что наружный сканирующий дефектоскоп содержит сегментированную стальную раму, опорные колеса, ходовые колеса, ходовой привод, дизель-электрический генератор, магнитную поисковую систему продольного намагничивания, магнитную поисковую систему поперечного намагничивания, колесный одометр, устройство сбора датчиковой информации, бортовую электронную аппаратуру, переносный компьютер, радиоканал обмена информацией между бортовой электронной аппаратурой и переносным компьютером, при этом в него введены первая и вторая группы ходовых электродвигателей, группа вихретоковых преобразователей неразрушающего контроля, узел изменения намагниченности стенки трубы, корзина на маятниковом подвесе в соответствующем звене сегментированной рамы, вращающаяся электрическая контактная система, первая и вторая упругие сцепки, а также другие конструкционные элементы.

Изобретение относится к измерительной технике, представляет собой способ определения поврежденности участков подземного трубопровода и может быть использовано в нефтегазодобывающей промышленности, коммунальном хозяйстве и других областях промышленности, эксплуатирующих трубопроводы.

Изобретение относится к измерительной технике. Сущность: система содержит первый электрод, имеющий первую поверхность контакта с образцом, выполненную с возможностью размещения в контакте с первой поверхностью многослойной структуры, второй электрод, имеющий вторую поверхность контакта с образцом, выполненную с возможностью размещения в контакте со второй поверхностью многослойной структуры.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев.

Изобретение относится к области измерительной техники и может быть использовано в системах контроля технологических процессов. Устройство для измерения малых величин толщины льда содержит микроволновый генератор и полую цилиндрическую герметичную эластичную оболочку.

Изобретение относится к способам и устройствам для бесконтактного диагностического контроля качества медной катанки в процессе ее производства и может быть использовано в других отраслях промышленности.

Использование: для определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения UП, при этом определяют длительность τ спада напряжения до порогового значения U1=(0,2…0,8)·UП, а толщину покрытия рассчитывают по формуле: h=k1+k2·τ, где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым; τ - длительность спада поляризационного напряжения UП до порогового значения U1.

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Изобретение относится к области измерительной техники и может найти применение при измерениях толщины тонкопленочных структур. Целью изобретения является упрощение процессов калибровки кулонометрического нанотолщиномера и получения результата измерения толщины покрытия.

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним.

Изобретение относится к электронной технике. Сущность изобретения: устройство для контроля толщины проводящей пленки изделий электронной техники непосредственно в технологическом процессе ее формирования в вакууме путем измерения электрического сопротивления содержит подложку из диэлектрического или полупроводникового материала, металлические контактные площадки, выполненные на противоположных концах упомянутой подложки с лицевой ее стороны, для обеспечения соединения с измерительным прибором, заданную проводящую пленку.

Предлагаемое техническое решение относится к измерительной технике и льдотехнике. Техническим результатом является расширение функциональной возможности устройства.

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении внутреннего диаметра и толщины стенок труб. Предлагаемое устройство для измерения внутреннего диаметра металлической трубы, содержащее размещаемый внутри трубы коаксиально с ней металлический стержень, выполненный из трех участков, первый и второй из которых имеют одинаковый диаметр, а третий участок, расположенный между ними на измерительном участке трубы, имеет отличный от них диаметр, при этом на этом участке трубы возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, электрически соединенный посредством линии связи и элемента связи с объемным резонатором, при этом частота возбуждаемых электромагнитных колебаний выбрана меньшей, чем критическая частота возбуждения электромагнитных волн на участках трубы с участками металлического стержня с одинаковым диаметром. На третьем участке металлический стержень имеет диаметр, уменьшенный по сравнению с диаметром металлического стержня на первом и втором участках. Техническим результатом является расширение области использования. 1 з.п. ф-лы, 2 ил.
Наверх