Подземное хранилище сжиженного природного газа

Подземное хранилище сжиженного природного газа (ПХ СПГ) относится к подземной системе хранения и резервирования СПГ и может быть использовано для его накопления и выдачи потребителю. ПХ СПГ расположено ниже уровня земли (1), ограждено по периметру от массива грунта бетонной стеной типа «стена в грунте» (2), содержит расположенный на основании из уплотненного грунта (3) и теплоизоляционной прослойки (4) железобетонный резервуар (5), по наружной боковой поверхности окруженный податливой прослойкой (6), изнутри теплоизолированный (7) и гидроизолированный (8) от СПГ. Выходящая из железобетонного резервуара на поверхность земли технологическая шахта (9) снабжена трубопроводами (10), герметическими люками (11) и лестницей (12). Свод резервуара (5) засыпан слоем легкого теплоизоляционного материала (13). Армирование железобетонного резервуара (5) выполнено комбинированным, включающим сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, при этом использован мелкозернистый модифицированный сталефибробетон. Технический результат состоит в повышении прочности, водонепроницаемости и морозостойкости армированного бетона. При этом существенно повышена надежность конструкции ПХ СПГ. 1 ил.

 

Подземное хранилище сжиженного природного газа (ПХ СПГ) относится к подземной системе хранения и резервирования, а именно к экономичным, пожаро- и взрывобезопасным хранилищам, расположенным ниже уровня земли, и может быть использовано для накопления и выдачи СПГ потребителю особенно там, где недостаточно или вовсе отсутствует трубопроводный природный газ, а также для покрытия пикового потребления газа (в системе «пик-шейвинга»). Применение изобретения позволяет повысить надежность конструкции ПХ СПГ, существенно снизить ее охрупчиваемость при криогенной температуре хранения сжиженного природного газа.

Известно «ПХ СПГ» по патенту РФ №2232342 от 10.07.2004 г., МПК F17C 1/00, B65G 5/00 - [1]. ПХ СПГ расположено ниже уровня земли на отметке, предотвращающей промерзание поверхности земли при самом длительном расчетном хранении СПГ. Ограждено по периметру от массива грунта бетонной стеной типа «стена в грунте». Содержит расположенный на основании из уплотненного грунта и теплоизоляционной прослойки железобетонный резервуар, который по наружной боковой поверхности окружен податливой прослойкой и изнутри покрыт слоями теплоизоляции и гидроизоляции от СПГ. Снабжено выходящей из железобетонного резервуара на поверхность земли технологической шахтой с трубопроводами, герметическими люками и лестницей. Верх (свод) бетонного резервуара засыпан слоем легкого теплоизоляционного материала. ПХ СПГ [1] решает задачи повышения безопасности, надежности хранилища СПГ и снижения суточных потерь хранимого продукта (для подземных хранилищ больших и сверхбольших объемов). Однако имеет следующие недостатки.

Главным недостатком известного ПХ СПГ [1] является то, что обычно применяемая для армирования железобетона сталь при охлаждении до криогенных температур сильно охрупчивается, то есть сильно изменяет свои физико-механические свойства. При этом сильно падает прочность самого железобетона на растяжение, на изгиб, на скалывание и т.д., а также уменьшается его динамическая прочности и работа на разрушение. Ввиду этого необходимо при проектировании и сооружении железобетонного резервуара ПХ СПГ давать завышенные запасы прочности, что приводит к большому перерасходу материалов для строительства и, следовательно, к резкому увеличению стоимости строительства.

Для снижения охрупчиваемости бетона может быть применено его армирование. Из патентной литературы широко известно применение комбинированного армирования с использованием фибры.

Известный «Стеклофибробетон (варианты)» по патенту РФ №2301207 от 20.06.2007 г., МПК С04В 28/00, С04В 14/44, С04В 111/27 - [2] включает цемент, химическую добавку, песок мелкозернистый, ровинг рассыпающийся из щелочестойкого стекловолокна и воду; химическая добавка содержит, мас. %: SiO2 - 88, пластификатор С-3 - 9…10, вода - 2…3, а щелочестойкое стекловолокно имеет длину от 21 мм до 40 мм при следующем соотношении компонентов, мас. %: цемент - 48…53, указанная химическая добавка - 4…6, песок мелкозернистый - 20…28, указанный ровинг рассыпающийся - 3…7, вода - 13…17.

Также известно «Гидроизоляционное покрытие строительных конструкций и сооружений» по патенту на полезную модель РФ №50234 от 27.12.2005 г., МПК Е04В 1/64, E04D 7/00, E04G 21/02, Е04Н 4/08, E01D 22/00 [3], выполненное в виде расположенной на прогрунтованном основании монолитного покрытия, предпочтительно в виде плиты, из стеклофибробетона (СФБ), толщиной 9…15 мм, слои которой толщиной по 3…5 мм каждый нанесены пневмонабрызгом с укаткой каждого слоя СФБ, причем каждый слой содержит распределенную в объеме матрицы бетона фибровую арматуру из щелочестойкого стеклянного волокна в виде отрезков длиной 6,0…40,0 мм, предпочтительно - 6,0…21,0 мм.

Однако применение фибры из стекловолокна по [2 и 3] при криогенных температурах невозможно из-за очень сильного охрупчивания стекловолокна при низких температурах, что делает такую фибру только концентраторами микротрещин в бетоне.

Известная «Фибра базальтовая» по патенту РФ №2418752 от 20.05.2011 г., МПК С03С 13/06 - [4], на основе расплава базальтовых пород содержит компоненты в следующих количествах, мас. %: SiO2 - 48,4; Al2O3 - 12,6; Fe2O3 - 14,6; FeO - 11,9; CaO - 6,2; MgO - 4,8; Na2O - 1,0; K2O - 0,5. Волокна диаметром 20, 200 и 400 мкм и длиной отрезков 6, 12, 18, 24 мкм содержатся в фибре базальтовой равными массовыми долями в % (процентах).

Известная «Бетонная смесь для изготовления тонкостенных изделий» по патенту РФ №2351562 от 10.04.2009 г., МПК С04В 28/02, С04В 111/20, С04В 111/27 [5], содержит портландцемент, базальтовую фибру длиной 12 мм, суперпластификатор на основе нафталинсульфосоединений, воду и минеральный заполнитель в виде отсева гранитного щебня фракции 2…5 мм и песка с модулем крупности 1…2,5 в соотношении 7:3, при следующем соотношении компонентов, мас. %: портландцемент - 28,50…31,50, базальтовая фибра длиной 12 мм - 1,39…1,61, суперпластификатор на основе нафталинсульфосоединений - 0,29…0,31, вода - 5,40…6,00, минеральный заполнитель - отсев гранитного щебня фракции 2-5 мм и песок с модулем крупности 1…2,5 - остальное.

Применение фибры из базальтового волокна по [4 и 5] при криогенных температурах возможно, однако физико-механические свойства ее и бетона будут практически одинаковыми, то есть полезный эффект от применения базальтовой фибры будет нулевым.

Известная «Сухая смесь для производства ячеистого газофибробетона» по патенту РФ №2394007 от 10.07.2010 г., МПК С04В 38/10, В82В 3/00, G21F 1/04 [6], включает, мас. %: портландцемент - 20…75, минеральный наполнитель - 7…75, микрокремнезем - 0…6, суперпластификатор на основе натриевых солей продуктов конденсации нафталинсульфокислоты и формальдегида - 0,1…2,5, модифицирующая добавка, состоящая из комбинации алюмосиликатных микросфер и одно- или многослойных углеродных нанотрубок в соотношении 1:10 - 0,1…5, порообразователь - 0,002…0,45, полипропиленовая фибра - до 1,5 кг на 1 м3 сухой смеси.

Однако применение полипропиленовой фибры по [6] в заявляемом техническом решении невозможно из-за ее очень сильного охрупчивания при криогенных температурах.

Также известно много технических решений с использованием в строительных конструкциях металлической - стальной фибры, например:

- «Сырьевая смесь для изготовления строительных изделий и конструкций и способ изготовления строительных изделий и конструкций» по патенту РФ №2071456 от 10.01.1997 г., МПК С04В 28/00, В28В 11/00 [7]. Сырьевая смесь содержит в своем составе вяжущее низкой водопотребности, включающее минеральную добавку, состоящую из кислого топливного шлака и цеолита в соотношении от 1:1 до 1:5; твердый модификатор, состоящий из ускорителя твердения и суперпластификатора в соотношении от 1:5 до 2:5 и от 4:9 до 5:9; гипс и портландцемент клинкер; крупный и мелкий заполнители, минеральную и металлическую фибру, воздухововлекающую добавку, воду;

- «Способ приготовления модифицированной сталефибробетонной смеси и модифицированная сталефибробетонная смесь» по патенту РФ №2214986 от 27.10.2003 г., МПК С04В 40/00, С04В 28/02, С04В 28/02, С04В 14/48, С04В 111/20 [8]. В способе приготовления модифицированной сталефибробетонной смеси для дорожного и аэродромного строительства, изготовления и ремонта конструкций мостовых сооружений, включающем перемешивание в смесителе цемента, заполнителя, фибры стальной, добавки и воды затворения, предварительно осуществляют активацию в роторно-пульсационном аппарате воды затворения с полифункциональной добавкой и частью цемента и продукт указанной активации перемешивают с сухой смесью, полученной при последовательном введении в смеситель заполнителя, оставшегося цемента и фибры, а также тем, что в качестве заполнителя используют песок, либо щебень и песок, и тем, что применяют стальную фибру, фрезерованную из слябов. Модифицированная сталефибробетонная смесь, включающая цемент, заполнитель, фибру стальную, добавки и воду затворения, приготовлена вышеуказанным способом;

- «Бетонная смесь для гидроизоляции (варианты)» по патенту РФ №2338713 от 20.11.2008 г., МПК С04В 28/00, С04В 24/24, С04В 111/20, С04В 111/27 [9], полученная смешением вяжущего, заполнителей, полимерной добавки в виде водорастворимых эпоксидных смол диэтиленгликолевых или триэтиленгликолевых, отвердителя полиэтиленполиамина, пластификатора и воды затворения, в качестве пластификатора содержит сульфированную нафталиноформальдегидную смолу или модифицированный полиэфиркарбоксилат, и дополнительно пористый материал - влагоноситель в количестве 5…35 кг/м3 сухой смеси, который предварительно насыщен двумя третями от требуемого количества воды затворения и введен в приготовленную смесь вяжущего, заполнителей и указанного пластификатора, а оставшаяся одна треть воды затворения введена в заранее смешанные указанные смолу и отвердитель, затем обе смеси, содержащие воду затворения, перемешивают при следующем содержании ингредиентов, в % от веса вяжущего: диэтиленгликолевая или триэтиленгликолевая смолы - 1,0…2,0, полиэтиленполиамин - 0,14…0,225, сульфированная нафталиноформальдегидная смола - 0,8-1,2, или модифицированный полиэфиркарбоксилат - 0,2…1,0. В другом варианте бетонная смесь дополнительно содержит стальную фибру в количестве 80…110 кг/м3 сухой смеси.

Недостатком строительных конструкций, изготовленных по [7, 8 и 9], является применение для армирования стальной фибры, которая при криогенных температурах сильно охрупчивается и не выполняет возложенных на нее функций, как при обычных температурах (в нормальных климатических условиях).

Задача снижения охрупчиваемости железобетона резервуара ПХ СПГ, повышения его надежности, а также снижения материалоемкости железобетонного резервуара и его стоимости решается в прототипе - техническом решении по заявке на изобретение РФ №2011151905 А от 19.12.2011 г., МПК B65G 5/00, «ПХ СПГ» [10].

«ПХ СПГ» [10] расположено ниже уровня земли на отметке, предотвращающей промерзание поверхности земли, при самом длительном расчетном хранении СПГ, огражденное по периметру от массива грунта бетонной стеной типа «стена в грунте», содержащее расположенный на основании из уплотненного грунта и теплоизоляционной прослойки железобетонный резервуар, по наружной боковой поверхности окруженный податливой прослойкой, изнутри теплоизолированный и гидроизолированный от СПГ, снабженный расположенными в технологической шахте трубопроводами для наполнения-выдачи СПГ и его паров, выходящая из железобетонного резервуара на поверхность земли технологическая шахта снабжена герметическими люками и лестницей, верх бетонного резервуара засыпан слоем легкого теплоизоляционного материала, при этом армирование железобетонного резервуара выполнено комбинированным, включающим сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, при этом использован мелкозернистый модифицированный сталефибробетон при следующем соотношении компонентов смеси, мас. %:

портландцемент 30…45
суперпластификатор С-3 0,5…1
аморфный микрокремнезем 6…9
фибра из нержавеющей стали 1…5
песок природный кварцевополевошпатный 40…70
вода затворения 7…10

В ПХ СПГ может иметь комбинированное армирование, выполненное нержавеющей сталью 12Х18Н10Т, а для дисперсного, фибрового армирования нержавеющей сталью может быть применена короткая фибра.

Недостатком прототипа [10] является недостаточная прочность и водонепроницаемость армированного бетона.

Недостаток прототипа устраняется тем, что в состав бетона в качестве наполнителя добавлен микромрамор в виде пылеватых частиц, размеры которых больше размеров частиц цемента и меньше размеров частиц песка природного кварцевополевошпатного.

Сущность изобретения заключается в том, что ПХ СПГ, расположенное ниже уровня земли на отметке, предотвращающей промерзание поверхности земли, при самом длительном расчетном хранении СПГ, огражденное по периметру от массива грунта бетонной стеной типа «стена в грунте», содержащее расположенный на основании из уплотненного грунта и теплоизоляционной прослойки железобетонный резервуар, по наружной боковой поверхности окруженный податливой прослойкой, изнутри теплоизолированный и гидроизолированный от СПГ, снабженный расположенными в технологической шахте трубопроводами для наполнения-выдачи СПГ и его паров, выходящая из железобетонного резервуара на поверхность земли технологическая шахта снабжена герметическими люками и лестницей, верх бетонного резервуара засыпан слоем легкого теплоизоляционного материала, армирование железобетонного резервуара выполнено комбинированным, включающим сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, при этом использован мелкозернистый модифицированный сталефибробетон при следующем соотношении компонентов смеси, мас. %:

портландцемент 30…45
суперпластификатор С-3 0,5…1
аморфный микрокремнезем 6…9
микромрамор 6…9
фибра из нержавеющей стали 1…5
песок природный кварцевополевошпатный 35…62
вода затворения 6…9

Технический результат заявляемого изобретения состоит в повышении прочности и водонепроницаемость армированного бетона.

Микромрамор в армированном бетоне дополнительно выполняет роль пластификатора. Применение микромрамора в виде пылеватых частиц уменьшает количество требуемой воды затворения, существенно улучшает «упаковку» объема армированного бетона, а также повышает его морозостойкость.

Применение нержавеющее стали не допустит охрупчивания при криогенных температурах комбинированного армирования и, как следствие, охрупчивания и растрескивания железобетонного резервуара, что приведет к улучшению его деформативных свойств и повышению надежности и долговечности.

Выполнение фибры короткой из нержавеющей стали позволит не допустить комкуемости самой фибры при размешивании бетона, так как такая фибра приобретает свойство сыпучести. Это приведет к возможности приготовления бетонной смеси по упрощенной технологии, что дополнительно удешевляет строительство. Кроме того, при применении более прочной матрицы мелкозернистого модифицированного сталефибробетона возможно применение более короткой фибры из нержавеющей стали, которая обладает большей адгезией с бетоном.

Нержавеющие стали, как правило, не магнитны, что дополнительно снижает риск комкования фибры по сравнению с обычной стальной фиброй. Удорожания конструкции за счет применения фибры из нержавеющей стали практически не будет, так как ее процентное содержание невелико.

Применение для комбинированного армирования стали, а не другого метала вызвано необходимостью обеспечить близкие по значению объемные коэффициенты температурного расширения армирующего металла и бетона, что позволит обеспечить длительную адгезию металла и бетона и не допустить растрескивания последнего.

На чертеже представлен вид ПХ СПГ в разрезе.

ПХ СПГ расположено ниже уровня земли (1) на отметке, предотвращающей промерзание поверхности земли при самом длительном расчетном хранении СПГ. ПХ СПГ ограждено по периметру от массива грунта бетонной стеной типа «стена в грунте» (2) и содержит расположенный на основании из уплотненного грунта (3) и теплоизоляционной прослойки (4) железобетонный резервуар (5), который по наружной цилиндрической (боковой) поверхности окружен податливой прослойкой 6 и изнутри покрыт слоями теплоизоляции (7) и гидроизоляции (8) от СПГ. ПХ СПГ снабжено выходящей из железобетонного резервуара на поверхность земли (1) технологической шахтой (9) с трубопроводами (10) для наполнения-выдачи СПГ и его паров, а также герметическими люками (11) и лестницей (12). Свод (верх) бетонного резервуара (5) засыпан слоем легкого и дешевого теплоизоляционного материала (13), в качестве которого могут быть применены отходы от сгорания угля - доменный шлак. Армирование железобетонного резервуара (5) выполнено комбинированным, включающим сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, при этом использован мелкозернистый модифицированный сталефибробетон. Соотношение компонентов смеси железобетонного резервуара (5) многовариантно и подбирается на основе эмпирических и экспериментальных данных.

Один из вариантов выполнения мелкозернистого модифицированного сталефибробетона железобетонного резервуара (5) приведен при следующем соотношении компонентов смеси, мас. %:

портландцемент 33
суперпластификатор С-3 0,8
аморфный микрокремнезем 7
микромрамор 7
фибра из нержавеющей стали 2,5
песок природный кварцевополевошпатный 41,7
вода затворения 8

Технология строительства предложенного ПХ СПГ следующая.

Первоначально с поверхности грунта (1) возводится цилиндрическая «стена в грунте» (2), из которой в последующем выбирается грунт почти до нижней ее отметки, где грунт (3) дополнительно уплотняют. Поверх уплотненного грунта (3) - основания «стены в грунте» (2) засыпают слой (4) теплоизоляционного материала, поверх которого сооружают основание железобетонного резервуара (5), далее - его цилиндрическую стену и свод известными способами. В сооружении железобетонного резервуара (5) применяется его комбинированное армирование, включающее сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, например, в приведенном выше количественном соотношении. При этом используется мелкозернистый модифицированный сталефибробетон из портландцемента, суперпластификатора С-3, аморфного микрокремнезема, фибры из нержавеющей (и немагнитной) стали, песка природного кварцевополевошпатного и воды затворения. После сооружения железобетонного резервуара 5 из мелкозернистого модифицированного сталефибробетона засыпают зазор между резервуаром (5) и «стеной в грунте» (2) податливой прослойкой, покрывают изнутри резервуар (5) слоями теплоизоляции (7) и гидроизоляции (8) от СПГ. Долее сооружают выходящую из железобетонного резервуара (5) на поверхность земли (1) технологическую шахту (9), монтируют в ней трубопроводы (10) для наполнения-выдачи СПГ и его паров, а также герметические люки (11) и лестницу (12). Свод (верх) бетонного резервуара (5) засыпают слоем легкого и дешевого теплоизоляционного материала (13) и слоем грунта с гидроизоляционным покрытием ( не показано).

ПХ СПГ должно быть использовано после полного завершения строительства его подземной и наземной частей, когда смонтирован весь объем трубопроводной и запорно-регулирующей арматуры, а также после полного комплекса проверочно-испытательных работ и сдачи его государственным органам надзора. Подача СПГ осуществляется по трубопроводу наполнения (системы трубопроводов (10)) хранилища (предпочтительно с одновременным заполнением сверху и снизу для равномерного охлаждения). В начальный период охлаждения железобетонного резервуара (5) и промораживания грунта существуют большие теплопритоки извне. С течением времени в процессе дальнейшего заполнения железобетонного резервуара (5) теплопритоки уменьшаются за счет постоянного понижения температуры вокруг подземной части ПХ СПГ. Впоследствии замораживание грунта идет постоянно со снижением теплопритоков к СПГ. Резервуар (5) заполняется на 85-90% его полезного объема. Через определенное время в зависимости от объема резервуара (5) в нем устанавливается стационарный процесс теплопроводности, при котором вся конструкция резервуара достигает постоянных отрицательных (криогенных) температур. Внутри резервуара (5) поддерживается давление немного больше атмосферного. Забор СПГ из резервуара (5) к потребителю производится по трубопроводу (по системе криогенных трубопроводов (10)). Через герметические люки (11) и лестницу (12), расположенные в технологической шахте (9), может осуществляться доступ в железобетонный резервуар (5) (при его отогреве и вентиляции воздухом) при проведении осмотров, обслуживаний и ремонтов.

Технико-экономическое преимущество предложенного технического решения заключается в повышении прочности, водонепроницаемости и морозостойкости армированного бетона за счет применение микромрамора в виде поливатых частиц. Кроме того, выполнение армирования железобетонного резервуара комбинированным нержавеющей сталью и применение бетона с вышеприведенной совокупностью признаков позволит существенно повысить прочность на сжатие, на растяжение, на растяжение при изгибе. То есть улучшить физико-механические характеристики железобетонного резервуара ПХ СПГ, а это даст возможность уменьшить толщину его стенок и, следовательно, количество бетона и сократить стоимость железобетонного резервуара. При этом снижен риск комкования немагнитной и короткой фибры из нержавеющей стали при изготовлении бетонной смеси, что дополнительно повышает надежность ПХ СПГ в целом.

Выполнение ПХ СПГ с вышеизложенной совокупностью ограничительных и отличительных признаков формулы изобретения является новым для хранилищ СПГ и, следовательно, соответствует критерию «новизна».

Вышеприведенная совокупность признаков неизвестна на данном уровне развития техники и не следует из общеизвестных правил конструирования хранилищ СПГ, что доказывает соответствие критерию «изобретательский уровень».

Конструктивная реализация хранилищ СПГ с указанной выше совокупностью признаков не представляет никаких конструктивно-технических и технологических трудностей, откуда следует соответствие критерию «промышленная применимость».

Источники информации

1. Патент РФ №2232342 от 10.07.2004 г., МПК F17C 1/00, B65G 5/00, ПХ СПГ.

2. Патент РФ №2301207 от 20.06.2007 г., МПК С04В 28/00, С04В 14/44, С04В 111/27. - Стеклофибробетон (варианты).

3. Патент на полезную модель РФ №50234 от 27.12.2005 г., МПК Е04В 1/64, E04D 7/00, E04G 21/02, Е04Н 4/08, E01D 22/00. - Гидроизоляционное покрытие строительных конструкций и сооружений.

4. Патент РФ №2418752 от 20.05.2011 г., МПК С03С 13/06. - Фибра базальтовая.

5. Патент РФ №2351562 от 10.04.2009 г., МПК С04В 28/02, С04В 111/20, С04В 111/27. - Бетонная смесь для изготовления тонкостенных изделий.

6. Патент РФ №2394007 от 10.07.2010 г., МПК С04В 38/10, В82В 3/00, G21F 1/04. - Сухая смесь для производства ячеистого газофибробетона.

7. Патент РФ №2071456 от 10.01.1997 г., МПК С04В 28/00, В28В 11/00. - Сырьевая смесь для изготовления строительных изделий и конструкций и способ изготовления строительных изделий и конструкций.

8. Патент РФ №2214986 от 27.10.2003 г., МПК С04В 40/00, С04В 28/02, С04В 28/02, С04В 14/48, С04В 111/20. - Способ приготовления модифицированной сталефибробетонной смеси и модифицированная сталефибробетонная смесь.

9. Патент РФ №2338713 от 20.11.2008 г., МПК С04В 28/00, С04В 24/24, С04В 111/20, С04В 111/27. - Бетонная смесь для гидроизоляции (варианты).

10. Заявка на изобретение РФ по №2011151905 А от 19.12.2011 г., МПК B65G 5/00, ПХ СПГ [10] - прототип.

Подземное хранилище сжиженного природного газа (ПХ СПГ), расположенное ниже уровня земли на отметке, предотвращающей промерзание поверхности земли, при самом длительном расчетном хранении СПГ, огражденное по периметру от массива грунта бетонной стеной типа «стена в грунте», содержащее расположенный на основании из уплотненного грунта и теплоизоляционной прослойки железобетонный резервуар, по наружной боковой поверхности окруженный податливой прослойкой, изнутри теплоизолированный и гидроизолированный от СПГ, снабженный расположенными в технологической шахте трубопроводами для наполнения-выдачи СПГ и его паров, выходящая из железобетонного резервуара на поверхность земли технологическая шахта снабжена герметическими люками и лестницей, верх бетонного резервуара засыпан слоем легкого теплоизоляционного материала, армирование железобетонного резервуара выполнено комбинированным, включающим сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, отличающееся тем, что использован мелкозернистый модифицированный сталефибробетон при следующем соотношении компонентов смеси, мас. %:

портландцемент 30-45
суперпластификатор С-3 0,5-1
аморфный микрокремнезем 6-9
микромрамор 6-9
фибра из нержавеющей стали 1-5
песок природный кварцевополевошпатный 35-62
вода затворения 6-9



 

Похожие патенты:
Изобретение относится к области подземного хранения газа и может быть использовано в газодобывающей и нефтяной промышленности. Способ обеспечения экологической безопасности подземного хранилища газа включает его закачку через скважину, хранение и отбор газа из хранилища, при этом в зонах подземного размещения природного газа осуществляют дистанционный экологический мониторинг содержания метана в приземной атмосфере, а также непрерывный контроль концентрации метана в зонах технологических узлов.

Изобретение относится к емкостям-хранилищам техногенного назначения и может быть использовано для сбора жидких углеводородов при их аварийных разливах. Устройство содержит трубные секции в виде жесткого цилиндрического корпуса с крышкой.

Изобретение относится к подземному хранению природного газа в водоносных геологических структурах и, в частности, к физико-химическим методам регулирования формирования и последующего газодинамического состояния подземного хранилища газа в таких структурах.

Группа изобретений относится к системам для локализации и регулирования жидкостей, получаемых на рабочей площадке, например площадке для бурения нефтяных или газовых скважин.

Группа изобретений предназначена для использования в области подземного хранения CO2 и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание.

Изобретение относится к области геологии и может быть использовано для оценки полезной емкости природных криогенных резервуаров при использовании их в качестве резервуара для складирования дренажных рассолов.

Изобретение относится к использованию подземных водных ресурсов, в частности к способу распределенного хранения и использования шахтных грунтовых вод. Согласно способу, выполняют следующие шаги: А.

Изобретение относится к подземной системе хранения и резервирования сжиженного природного газа (СПГ) для его накопления и выдачи потребителю. Подземное хранилище (ПХ) расположено ниже уровня земли 1 на отметке, предотвращающей промерзание поверхности земли, и ограждено по периметру от массива грунта бетонной стеной 2 типа «стена в грунте».

Изобретение относится к подземной системе хранения и резервирования СПГ для его накопления и выдачи потребителю, особенно при покрытии пикового потребления газа.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации ПХГ, созданных в водоносных пластах.

Подземный водосборный резервуар угольного разреза содержит непроницаемый слой и расположенные снизу от этого слоя пространство для хранения воды и очистной слой. Пространство для хранения воды содержит первое пространство для хранения воды и второе пространство для хранения воды. Очистной слой содержит первый и второй очистные слои. Первый очистной слой расположен горизонтально в пространстве для хранения воды и разделяет его на первое пространство для хранения воды и второе пространство для хранения воды. Первое пространство для хранения воды расположено ниже непроницаемого слоя и между этим слоем и первым очистным слоем. Второе пространство для хранения воды расположено ниже первого пространства для хранения воды, и донная часть второго пространства для хранения воды расположена в нижней части подземного водосборного резервуара угольного разреза. Второй очистной слой расположен вертикально внутри второго пространства для хранения воды. Настоящее изобретение благодаря сооружению подземного водосборного резервуара угольного разреза предотвращает бесполезный расход водных ресурсов в процессе угледобычи и благодаря наличию очистного слоя в этом подземном водосборном резервуаре угольного разреза обеспечивает многократную очистку воды, предотвращает загрязнение окружающей среды и реализует политику рационального водопользования при горных работах в процессе угледобычи. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области газовой промышленности и предназначено для эксплуатации подземных хранилищ газа (ПХГ). В ПХГ, на которых в купольной части пласта-коллектора сооружены эксплуатационные скважины, нагнетательные скважины на периферии пласта-коллектора и контрольные скважины в промежуточной зоне между эксплуатационными и нагнетательными скважинами, производят циклическую закачку природного газа в хранилище с созданием буферного и активного его объемов и отбор активного объема газа. В процессе эксплуатации ПХГ в нижнюю его часть закачивают диоксид углерода в сверхкритическом агрегатном состоянии и замещают им буферный объем природного газа. Изобретение обеспечивает повышение качества хранимого природного газа за счет снижения риска образования обширных зон смешения природного газа и диоксида углерода. Кроме того, предлагаемый способ позволяет более эффективно использовать ПХГ за счет замещения части буферного объема хранимого природного газа на диоксид углерода на базе обоснованного выбора агрегатного состояния диоксида углерода. 12 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к утилизации отходов бурения в ликвидируемой скважине, в частности в условиях наличия многолетнемерзлых пород (ММП). Технический результат заключается в повышении надежности утилизации отходов бурения без снижения экологической безопасности. Способ утилизации отходов бурения включает приготовление пульпы, состоящей из бурового шлама (БШ) и буровых сточных вод (БСВ). Затем ликвидируемую скважину глушат приготовленной пульпой путем закачки во внутреннюю полость эксплуатационной колонны в интервал перфорации по спущенной в скважину колонны насосно-компрессорных труб (НКТ). Затем закачивают цементный раствор, затворенный на водометанольном растворе (BMP) или БСВ, оставляют скважину на период ожидания затвердевания цемента (ОЗЦ). После затвердевания нижнего цементного моста закачивают новую порцию пульпы расчетного объема, после заполнения внутренней полости эксплуатационной колонны до подошвы ММП, сверху столба закаченной порции пульпы устанавливают верхний цементный мост, а на устье скважины размещают либо устьевую арматуру с задвижкой и глухим фланцем, либо бетонную тумбу. 4 з.п. ф-лы, 4 ил.

Изобретение относится к газовой отрасли промышленности, а именно к созданию подземного газохранилища - ПХГ в водоносном пласте. Технический результат - совершенствование способа создания ПХГ в водоносном пласте с использованием вододобывающих и водонагнетательных скважин за счет повышения эффективности активного воздействия на фильтрационные процессы в пласте. Способ предусматривает создание подземного газохранилища в слоисто-неоднородном терригенном водоносном пласте. По способу осуществляют бурение вертикальных и/или горизонтальных газовых скважин, которые эксплуатируют в цикле закачки газа в качестве нагнетательных, а в цикле отбора газа - в качестве добывающих. Осуществляют также бурение вододобывающих и водонагнетательных скважин. Вододобывающие и водонагнетательные скважины располагают вокруг зоны размещения газовых скважин. С учетом изменчивости пористости и проницаемости коллектора водонагнетательные скважины бурят с нисходящими псевдогоризонтальными стволами и с возможностью обеспечения барьера давления по всему разрезу пласта. Вододобывающие скважины бурят с восходящими псевдогоризонтальными стволами и с возможностью минимизации негативного проявления процесса загазования добываемой воды. 1 ил.

Способ захоронения шламовых отходов с плотностью, превышающей плотность образуемого рассола, в эксплуатируемой соляной камере включает оборудование скважины концентрически расположенными водоподающей, рассолоподъемной и шламоподающей колоннами труб, подачу в камеру растворителя и отходов, извлечение рассола. В подземной выработке создают три технологические зоны: зону формирования насыщенных рассолов (hp), буферную зону (hб), зону размещения шламовых отходов (hш) с соотношением между ними hp:hб:hш=1:0,5:0,25 и с подачей шламовых отходов в зону размещения со скоростью не ниже 0,2 м/сек. Изобретение обеспечивает одновременную отработку полезного ископаемого и размещение шламовых отходов. 2 ил.

Изобретение относится к горнодобывающей промышленности и может быть использовано для длительного хранения отходов переработки руд, содержащих в своем составе сульфидные минералы, которые при хранении в окислительных условиях разлагаются с образованием токсичных веществ. Хвостохранилище содержит отделенные друг от друга секции. Дно секций экранировано прочной пленкой из полимерного материала, на котором помещен слой известняка толщиной 300-400 мм с размерностью зерна 3-10 мм, при этом на слой известняка установлены дренажные трубы диаметром 200-300 мм из материала, устойчивого к кислотному воздействию. Изобретение позволяет повысить экологическую безопасность хранения хвостов путем удаления растворенных токсичных веществ из толщи песков через дренажные колодцы в слой известняка, расположенный на дне хвостохранилища и в пруд-отстойник. Заполнение хвостохранилища производится методом мокрого складирования, а хранение песков в сухом состоянии. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области газовой промышленности и предназначено для создания и эксплуатации подземных хранилищ природного газа, обогащенного гелием (ПХПГОГ). В ПХПГОГ, на которых в купольной части пласта-коллектора сооружены эксплуатационные скважины, нагнетательные скважины на заранее рассчитанном расстоянии от границы влияния эксплуатационных скважин и контрольные скважины, производят циклическую закачку природного газа, обогащенного гелием (ПГОГ), в хранилище с созданием активного его объема и сохранением буферного объема углеводородного или неуглеводородного газа и отбор активного объема ПГОГ. В процессе создания ПХПГОГ в купольной его части закачивают ПГОГ таким образом, чтобы обеспечить повышение качества хранимого ПГОГ за счет снижения риска образования обширных зон смешения ПГОГ и углеводородного или неуглеводородного газа. Кроме того, предлагаемый способ позволяет более эффективно использовать ПХПГОГ за счет возможности регулирования состава ПГОГ на устьях скважин посредством площадного регулирования закачки и отбора ПГОГ и углеводородного или неуглеводородного газов. 12 ил.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением в призабойной зоне пласта и стволах скважин с целью сохранения дебита скважин в условиях высокой минерализации попутно добываемых вод. Способ предупреждения отложения исключает их образование путем поддержания концентрации хлорида натрия, растворенного в пластовой воде, на уровне, исключающем его кристаллизацию. Поддержание заданной величины концентрации обеспечивают закачкой в подземное хранилище увлажненного газа, исключающего процесс абсорбции газом влаги из пластовой воды. Требуемое количество пресной воды для увлажнения закачиваемого газа определятся как разность абсолютного максимального влагосодержания газа в пластовых условиях и абсолютного влагосодержания газа, поступающего с магистрального газопровода для закачки в подземное хранилище. Увеличивается продолжительность работы скважин и хранилищ и суммарный объем отбираемого газа, увеличивается межремонтный период, исключаются работы по ликвидации соляных пробок. 4 ил., 1 табл.

Изобретение относится к области хранения и транспортировки нефти, нефтепродуктов (НП) и сжиженного природного газа (СПГ) и может быть использовано при производстве резервуаров для хранения и транспортировки СПГ. Cпособ изготовления резервуара для хранения и транспортировки нефти, НП и СПГ заключается в нанесении на внешнюю поверхность резервуара отражающей пленки, включающей три слоя: эпоксидный слой (грунтовка), термоплавкий (клеевой) полимерный подслой и светоотражающий слой. Изобретение позволяет существенно снизить негативное влияние солнечной энергии на охраняемые объекты, в том числе, резервуары для хранения СПГ. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области мониторинга и обеспечения безопасности технологических процессов подземного хранения газа, может быть использовано в атомной, газовой, нефтяной, химической промышленности. Технический результат: повышение точности обнаружения места разгерметизации скважины. Сущность: выполняют закачку или отбор товарного газа через скважину и его хранение, одновременный наблюдательный контроль параметров технологического процесса, акустических эффектов, а затем диагностическое прогнозирование образования трещин и разрушения в конструкции скважины, степени опасности возможной утечки газа при разгерметизации в зонах конструктивных элементов и технологических узлов по явной деформации кривых изменения регистрируемых параметров при прохождении спаренной группой клапанов-отсекателей через зону разгерметизации внутрикорпусных конструкций скважины подземного хранения газа. По результатам прогнозирования оценивают опасности и возможные риски, допустимость продолжения технологического процесса подземного хранения газа при функционировании скважины с диагностируемой зоной ее разгерметизации. 3 ил.

Подземное хранилище сжиженного природного газа относится к подземной системе хранения и резервирования СПГ и может быть использовано для его накопления и выдачи потребителю. ПХ СПГ расположено ниже уровня земли, ограждено по периметру от массива грунта бетонной стеной типа «стена в грунте», содержит расположенный на основании из уплотненного грунта и теплоизоляционной прослойки железобетонный резервуар, по наружной боковой поверхности окруженный податливой прослойкой, изнутри теплоизолированный и гидроизолированный от СПГ. Выходящая из железобетонного резервуара на поверхность земли технологическая шахта снабжена трубопроводами, герметическими люками и лестницей. Свод резервуара засыпан слоем легкого теплоизоляционного материала. Армирование железобетонного резервуара выполнено комбинированным, включающим сочетание стержневого и дисперсного, фибрового армирования нержавеющей сталью, при этом использован мелкозернистый модифицированный сталефибробетон. Технический результат состоит в повышении прочности, водонепроницаемости и морозостойкости армированного бетона. При этом существенно повышена надежность конструкции ПХ СПГ. 1 ил.

Наверх