Способ определения оптимальной длины волны для инспекции офтальмологических линз

Способ содержит измерение пропускания излучения нескольких различных длин волн через линзы различных предварительно известных толщин; расчет коэффициента k, который является константой в выражении для закона Бера %T=10(2-kt), где %Т - величина пропускания излучения, t - толщина офтальмологической линзы для каждой длины волны, получение первых значений контрастности при вычитании величины пропускания при указанной глубине дефекта, не проходящего через всю толщину линзы, из величины пропускания при отсутствии линзы для указанных нескольких длин волн; получение вторых значений контрастности при вычитании величины пропускания при максимальной толщине, являющейся толщиной готовой линзы, из величины пропускания при указанной глубине дефекта для указанных нескольких длин волн; сравнение первых и вторых значений контрастности и выбор их минимальных значений при каждой длине волны, и построение графика зависимости минимальных значений контрастности от длины волны; выбор длины волны для проверки на графике при самом максимальном пике. Технический результат - обеспечение оптимального выбора длины волны при сокращении времени выбора. 7 з.п. ф-лы, 3 ил.

 

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

Данное изобретение относится к проверке офтальмологических линз, в частности гидрогелевых контактных линз, с целью поиска дефектов, вызванных отсутствием или недостатком материала.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Офтальмологические линзы, такие как контактные линзы из гидрогеля, формируются, проверяются и упаковываются на производственных линиях с минимальным участием человека. В ходе этого процесса в линзах могут образовываться дефекты; наиболее распространенным является недостаток материала в сформованной линзе. Вне зависимости от того, отсутствует ли материал по всей толщине линзы или только частично затрагивает ее толщину, линзы с таким дефектом должны быть изъяты из продукции, отправляемой конечному пользователю.

Существуют специальные способы проверки, которые обнаруживают отверстия в офтальмологических линзах. Однако с учетом разнообразия типов материалов, используемых для изготовления контактных линз, изготовители часто вынуждены проверять такие линзы, прибегая к излучению с разной длиной волны. В особенности это касается случаев, когда целью поиска является не отверстие, а всего лишь углубление в толще линзы. Как правило, поиск подходящей длины волны излучения осуществляется методом проб и ошибок. Такой метод проб и ошибок отнимает очень много времени и требует больших материальных затрат, но оптимального выбора длины волны все же не обеспечивает. Поэтому весьма желательно было бы определять оптимальную длину волны проверочного излучения для поисков таких дефектов по материалу без использования подхода проб и ошибок. Данное изобретение удовлетворяет это пожелание.

Описание чертежей

Фиг. 1 - график светопропускания в % для нескольких длин волны излучения при различной толщине образца.

Фиг. 2 - график теоретической зависимости для экспериментальных данных, показанных на фиг.1 (расчет делался по формуле закона Бера).

Фиг. 3 - график изменения контрастности в зависимости от длины волны.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Данное изобретение представляет способ определения длины волны излучения, который может использоваться для автоматической проверки офтальмологических линз максимальной толщины для определения недостатка материала в них в количестве от нуля до определенной толщины, который содержит:

(a) измерение пропускания излучения различных длин волн в % через офтальмологические линзы различной, предварительно известной толщины;

(b) расчет коэффициента k для каждой из нескольких длин волн и подтверждение того, что светопропускание офтальмологических линз отвечает закону Бера;

(c) вычитание величины пропускания излучения в % при указанной определенной толщине из величины пропускания в % при отсутствии офтальмологической линзы для указанных нескольких длин волн излучения и получение первых значений контрастности;

(d) вычитание величины пропускания излучения в % при указанной максимальной толщине из величины пропускания излучения в % при указанной определенной толщине линзы для указанных нескольких длин волн излучения для получения вторых значений контрастности;

(e) сравнение первых и вторых значений контрастности при каждой длине волны и выбор минимального значения контрастности при каждой длине волны с построением графика зависимости такой минимальной контрастности от длины волны;

(f) выбор длины волны на графике, полученном на этапе (e), при котором наблюдается максимальный пик, для проверки линз на дефекты недостатка материала.

В данном документе под «офтальмологической линзой» понимаются мягкие контактные линзы, такие как линзы из гидрогеля, при изготовлении которых используются мономеры, макромеры или преполимеры. Примерами таких офтальмологических линз в том числе могут быть линзы, выполненные из следующих фирменных соединений: акофилкон A, алофилкон A, альфафилкон A, амифилкон A, астифилкон A, аталафилкон A, балафилкон A, бисфилкон A, буфилкон A, комфилкон, крофилкон A, циклофилкон A, дарфилкон A, дельтафилкон A, дельтафилкон B, димефилкон A, дрооксифилкон A, эпсифилкон A, эстерифилкон A, этафилкон A, фокофилкон A, генфилкон A, говафилкон A, гефилкон A, гефилкон B, гефилкон D, гилафилкон A, гилафилкон B, гиоксифилкон B, гиоксифилкон C, гиксоифилкон A, гидрофилкон A, ленефилкон A, ликрифилкон A, ликрифилкон B, лидофилкон A, лидофилкон B, лотрафилкон A, лотрафилкон B, малфилкон A, мезифилкон A, метафилкон B, мипафилкон A, нарафилкон, нелфилкон A, нетрафилкон A, окуфилкон A, окуфилкон B, окуфилкон C, окуфилкон D, окуфилкон E, офилкон A, омафилкон A, оксифликон A, пентафилкон A, перфилкон A, певафилкон A, фемифилкон A, полимакон, силафилкон A, силоксифилкон A, тефилкон A, тетрафилкон A, трифилкон A и ксилофилкон A. В данном изобретении предпочтительно использовались линзы из таких материалов: генфилкон A, ленефилкон A, комфилкон, лотрафилкон A, лотрафилкон B и балафилкон A. К числу наиболее предпочтительных относятся линзы из таких материалов: этафилкон A, нелфилкон A, гилафликон, полимакон, комфилкон, галифилкон, сенофилкон и нарафилкон.

Под толщиной линзы понимается величина, измеренная от ее передней поверхности до противоположной задней поверхности. Для типичной гидрогелевой линзы толщина составляет от 60 мкм до 600 мкм. Для целей данного изобретения под «максимальной толщиной» понимается толщина готового изделия. В способах, описанных в данном изобретении, излучение пропускается через гидрогелевые контактные линзы, толщина которых составляет от 200 мкм до 600 мкм, предпочтительно от 85 мкм до 209 мкм.

Выражение «определенная толщина» относится к глубине дефекта недостающего материала, который не проходит через всю максимальную толщину офтальмологической линзы. Например, для офтальмологической линзы максимальной толщиной около 350 мкм «определенная толщина» может принимать любое значение в интервале приблизительно от 300 мкм до 50 мкм. Определенная толщина предпочтительно выбирается из группы, включающей 30, 40, 50 и 60 мкм.

При использовании в данном документе выражение «величина пропускания излучения в %» означает количество излучения, которое достигает спектрометра после прохождения либо через кювету, офтальмологическую линзу и раствор, либо через кювету и раствор. К числу растворов, среди прочего, могут относиться деионизированная вода и физиологический раствор; предпочтительным вариантом является физиологический раствор.

В данном способе пропускаемое излучение может иметь длину волны, соответствующую видимой, ультрафиолетовой или инфракрасной части спектра. Видимое излучение имеет длину волны примерно от 390 нм до 700 нм, длина волны ультрафиолетового излучения принимает значения примерно от 10 нм до 390 нм, а инфракрасное излучение расположено в диапазоне примерно от 700 нм до 3000 нм. Для проверки офтальмологических линз наиболее предпочтительным является излучение с длиной волны от 340 нм до 550 нм.

В данном документе под контрастностью понимают разность в пропускании излучения между материалом линзы, имеющим две различные толщины.

В данном документе постоянная k - это константа, входящая в теоретическое выражение, известное как закон Бера. Закон Бера связывает величину пропускания излучения («%T»), толщину материала («t») и константу («k») (%T=10 (2-kt)). Для каждой длины волны имеется своя константа k, которую можно вычислить известными способами, например с помощью регрессионной подгонки.

Найденная с помощью данного способа длина волны может использоваться в различных методиках проверки. В том числе такие способы приводятся в патентах США 6882411; 6577387; 6246062; 6154274; 5995213; 5943436; 5828446; 5812254; 5805276; 5748300; 5745230; 5687541; 5675962; 5649410; 5640464; 5578331; 5568715; 5443152; 5528357 и 5500732, которые считаются включенными в данный документ во всей их полноте посредством упоминания.

Пример

Были подготовлены десять линз из материала этафилкон А с толщиной центральной части от 93 мкм до 252 мкм. Каждый образец был помещен в кювету с внутренними размерами 18,5 мм в длину, 5,1 мм в ширину и 21,2 мм в высоту (не считая колпачка), в которой помещалось примерно 1650 мл жидкости с учетом колпачка. Свет с длиной волны от 340 нм до 420 нм пропускался через линзу/кювету/физиологический раствор, а для измерения процента светопропускания использовался спектрометр УФ и видимого света производства компании Perkin Elmer, модели Lambda 18. Зависимость величины светопропускания в процентах от толщины линзы приведена на фиг. 1. На фиг. 2 поверх экспериментальных данных с фиг. 1 наложен теоретический расчет светопропускания, который показывает, что материал ведет себя в соответствии с законом Бера.

Для каждой длины волны для получения первой величины контрастности величина светопропускания в % для комбинации кюветы/физиологического раствора/линзы толщиной 50 мкм вычиталась из величины светопропускания в % для комбинации кюветы/физиологического раствора. Для каждой длины волны для получения второй величины контрастности величина светопропускания в % для комбинации кюветы/физиологического раствора/линзы толщиной 350 мкм вычиталась из величины светопропускания в % для комбинации кюветы/физиологического раствора/линзы толщиной 300 мкм. Затем первая и вторая величины контрастности сравнивались при каждой длине волны, и меньшая из них откладывалась на графике зависимости от длины волны, приведенном на фиг. 3. Из этого чертежа видно, что наибольший пик появляется примерно при 375 нм, т.е. для определения дефекта в виде недостающего материала глубиной примерно 50 мкм оптимальной является длина волны 375 нм.

1. Способ определения длины волны излучения, который может использоваться для автоматической проверки офтальмологической линзы максимальной толщины, являющейся толщиной готовой линзы, для определения дефекта в виде недостающего материала, который имеет глубину дефекта и не проходит через всю максимальную толщину офтальмологической линзы, содержащий
(a) измерение пропускания излучения нескольких различных длин волн в % через офтальмологические линзы нескольких различных предварительно известных толщин;
(b) расчет коэффициента k, который является константой в выражении для закона Бера %T=10(2-kt), где %Т - величина пропускания излучения, t - толщина офтальмологической линзы, для каждой длины волны из нескольких различных длин волн и подтверждение того, что светопропускание офтальмологических линз отвечает закону Бера;
(c) вычитание величины пропускания в % при указанной глубине дефекта из величины пропускания в % при отсутствии офтальмологической линзы для указанных нескольких различных длин волн для получения первых значений контрастности;
(d) вычитание величины пропускания в % при указанной максимальной толщине из величины пропускания в % при указанной глубине дефекта для указанных нескольких различных длин волн для получения вторых значений контрастности;
(e) сравнение первых и вторых значений контрастности при каждой длине волны и выбор минимальных значений контрастности при каждой длине волны, а затем построение графика зависимости таких минимальных значений контрастности от длины волны;
(f) выбор длины волны на графике, полученном на этапе (е), при самом максимальном пике для проверки на наличие дефектов в виде недостающего материала.

2. Способ по п. 1, в котором максимальная толщина составляет приблизительно от 60 мкм до приблизительно 400 мкм.

3. Способ по п. 1, в котором максимальная толщина составляет приблизительно от 85 мкм до приблизительно 209 мкм.

4. Способ по п. 1, в котором указанная глубина дефекта составляет приблизительно от 20 мкм до приблизительно 100 мкм.

5. Способ по п. 1, в котором указанная глубина дефекта равна числу, выбранному из группы, включающей в себя 30 мкм, 40 мкм, 50 мкм и 60 мкм.

6. Способ по п. 1, в котором указанные несколько различных длин волн излучения составляют приблизительно от 340 нм до приблизительно 430 нм.

7. Способ по п. 1, в котором указанные несколько различных длин волн излучения составляют приблизительно от 340 нм до приблизительно 550 нм.

8. Способ по п. 1, в котором указанные офтальмологические линзы выбираются из группы материалов, включающей в себя этафилкон А, нелфилкон А, гилафилкон, полимакон, комфилкон, галифилкон, сенофилкон и нарафилкон.



 

Похожие патенты:

Изобретение относится к способам маркировки лесоматериалов, позволяющим идентифицировать промаркированные единицы лесоматериалов. При маркировке каждой единицы лесоматериалов по случайному закону выбирается участок ее поверхности, на котором наносится специальный оптический маркер, за счет чего определяется область поверхности, для которой на основании количества и/или перечня относительных координат пересечений заранее определенного количества воображаемых линий, имеющих заранее определенное относительно оптического маркера местоположение, и элементов уникальной природной структуры выделенного участка поверхности древесины формируется и сохраняется для дальнейшего использования набор данных, уникальным образом идентифицирующий промаркированную единицу лесоматериалов.

Изобретение относится к автоматизированным средствам идентификации узлов или элементов, преимущественно используемых для хранения и транспортировки отработанных тепловыделяющих сборок, в частности ампулы, в которую осуществляется загрузка пучка тепловыделяющих элементов (твэлов) отработавшей тепловыделяющей сборки (ОТВС) реактора РБМК-1000.

Группа изобретений относится к способу оптического обследования ветроэнергетической установки или части от нее, в частности лопасти винта, и обследующему устройству для осуществления данного способа.

Изобретение относится к способу и устройству контроля многослойного стекла с подогревом, имеющего, по меньшей мере, один нагревательный проводник. Способ включает в себя освещение многослойного стекла с подогревом источником света для получения теневого изображения и пропускание достаточно высокого электрического тока через нагревательную сеть таким образом, чтобы нагревательный проводник можно было исследовать по теневому изображению многослойного стекла с подогревом.

(57) Способ осуществляют при помощи устройства (10), содержащего датчик изображений, световой источник (26) освещения и средства (18, 22) относительного перемещения датчика (24) изображений, светового источника (26) и механической детали (14).

Способ визуально-оптического контроля поверхности глазом или с помощью микроскопа заключается в том, что между эталонной и контролируемой поверхностями помещают слой жидкости толщиной не более 10 мкм с показателем преломления больше, чем у контактирующих с ней оптических деталей, вводят в этот слой лазерное излучение, идущее по слою с полным внутренним отражением, и наблюдают свет, сконцентрированный и рассеянный на аномалиях и дефектах поверхности.

Изобретение может быть использовано при измерении малых разностей хода (менее 0,1λ длины волны) слабых оптических неоднородностей в прозрачных средах, например, при обтекании тел в потоках малой плотности, распыливании топлива из форсунок в разреженное пространство, изучении процессов смешения, воспламенения и горения топлив, обнаружении диффузных пограничных слоев.

Изобретение может быть использовано для определения геометрических несовершенств стенки магистральных трубопроводов (вмятин, трещин, овальностей и т.д.) и напряженно-деформированного состояния трубопроводов.

Изобретение относится к устройству охарактеризованного в ограничительной части пункта 1 формулы изобретения рода для отображения внутренней поверхности полости в детали.

Способ центрирования подвижных оптических элементов панкратической оптической системы методом проточки диаметра и подрезки посадочной плоскости каретки для оптических элементов проводят в два этапа.

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом (КД), с возможностью регулирования величины задаваемого эффекта в широком диапазоне значений на выбранной длине волны, служащее для калибровки дихрографов кругового дихроизма.

Способ основан на формировании действительного изображения калиброванных источников излучения с помощью мир. Миру каждого из каналов комбинированной оптико-электронной системы (КОЭС) выполняют в виде последовательности штрихов, создающих высокую пространственную частоту (ВПЧ) в направлении строки МФПУ и вытянутых в направлении кадровой развертки.

Изобретение относится к области проверки офтальмологических линз с использованием излучения различной длины волны. Согласно способу офтальмологические линзы, находящиеся в контейнере с упаковочным раствором, при проходе по производственной линии последовательно облучают излучением с различной длиной волны.
Изобретение относится к способу калибровки элементов внутреннего ориентирования съемочной аппаратуры космического базирования, которая включает в себя мультиспектральный и монохроматический каналы.

Устройство для базирования линз в цилиндрических оправах предназначено для вращения оправ и измерения децентрировок оптических поверхностей линз. Устройство содержит втулку, в которой проточена базовая плоскость в виде кольца для базирования торца цилиндрической оправы линзы.

Изобретение относится к области фотометрии и касается способа учета влияния нестабильности лазера при воспроизведении и передаче единицы мощности. При проведении измерений используют два измерительных преобразователя, постоянные времени которых отличаются не менее чем на два порядка.

Изобретение может быть использовано в оптических системах наблюдения, фоторегистрации, а также в голографических системах. Способ включает использование корректирующего голограммного оптического элемента, выполненного в виде цифровой голограммы.

Комплекс предназначен для контроля и измерения параметров тепловизионных приборов. Комплекс содержит объектив, сменную миру, расположенную в фокальной плоскости объектива, фоновый излучатель, расположенный за мирой и снабженный исполнительным элементом, устройство управления, выход которого подключен к исполнительному элементу фонового излучателя, процессор температурный, выход которого подключен к входу устройства управления, устройство измерения температуры миры, выход которого подключен к первому входу процессора температурного.

Устройство может быть использовано для контроля лазерного дальномера с концентричным расположением передающего и приемного каналов. Устройство содержит входную собирающую и выходную коллимирующую оптические системы, связанные между собой волоконно-оптической линией задержки, выполненной в виде световода.

Изобретение относится к области оптического приборостроения и может быть использовано для центрировки линз в оправах при их сборке для случаев, когда линзы базируются в оправах по плоским фаскам. Способ позволяет осуществлять центрировку линзы относительно базовой оси оправы при ее вращении по обеим рабочим поверхностям линзы, повышая при этом точность центрировки. Для этого оправа снабжается промежуточной частью, в которую линза устанавливается с радиальным зазором своей плоской фаской на плоский опорный фланец промежуточной части, который может наклоняться относительно основной оправы вокруг центра кривизны сферической поверхности, расположенный в одной плоскости с центром кривизны первой рабочей поверхности линзы. Для совмещения с базовой осью оправы первого центра кривизны рабочей поверхности линзу сдвигают в радиальном направлении в промежуточной оправе, после чего линзу фиксируют в промежуточной оправе. Второй центр кривизны линзы совмещается с базовой осью оправы наклоном промежуточной части оправы вокруг центра кривизны сферической поверхности, после чего промежуточная часть фиксируется в основной оправе. Сопряжение наружного опорного фланца промежуточной части оправы с опорным фланцем основной оправы осуществляется по контакту сферической и плоской поверхностей. Технический результат - осуществление центрировки линзы относительно базовой оси оправы при ее вращении по обеим рабочим поверхностям линзы, повышая при этом точность центрировки. 2 н. и 1 з.п. ф-лы, 1 ил.
Наверх