Способ количественного определения производных имидазола (группы имидазолина)

Изобретение относится к области аналитической химии и касается способа количественного определения производных имидазола (группы имидазолинов). Сущность способа заключается в том, что анализируемую пробу растворяют в воде очищенной или спирте, выдерживают на нагретой водяной бане (30-40°С) до полного растворения, охлаждают и разбавляют тем же растворителем до метки; аликвотную часть приготовленного раствора последовательно обрабатывают щелочным 1% раствором диазотированного п-анизидина и 2,5 мл 0,1 н. раствора гидроксида аммония, затем фотоэлектроколориметрируют полученные окрашенные растворы. Использование способа позволяет с высокой точностью определять производные имидазола. 11 табл., 1 ил.

 

Изобретение относится к фармацевтическому анализу и может быть использовано для количественного определения производных имидазола группы имидазолина (см. чертеж) - инданазолина (1), клофазолина (2), толазолина (3), ксилометазолина (4), моксонидина (5), нафазолина (6), фентоламина (7), оксиметазолина (8), тизанидина (9), тетризолина (10) в субстанциях.

Известны способы идентификаций производных имидазола группы имидазолина, а также методики их количественного определения.

К водному раствору нафазолина (6) прибавляют раствор щелочи и 5% раствор нитропруссида натрия. Через некоторое время вносят раствор гидрокарбоната натрия. Появляется фиолетовое окрашивание [1].

При обработке нафазолина (6) 1%-ным раствором ванадата аммония в концентрированной серной кислоте и нагревании наблюдается образование ярко-зеленого окрашивания [1].

К спиртовому раствору фентоламина гидрохлорида (7) прибавляют 0,1%-ный спиртовой раствор 1-нитрозо-2-нафтола и концентрированной азотной кислоты и нагревают на кипящей водяной бане. Появляется зеленое окрашивание.

Взаимодействие спирто-кислотного раствора фентоламина гидрохлорида (7) с 0,5%-ным раствором ванадата аммония приводит к образованию светло-зеленого осадка ванадата фентоламина [1].

Дня идентификации клофазолина (2) были использованы реактив Драгендорфа, ванадат аммония в концентрированной серной кислоте, натрия нитропруссид в щелочной среде [2].

Ксилометазолин (4), растворенный в безводной уксусной кислоте, титруют хлорной кислотой в присутствии индикатора кристаллического фиолетового до получения сине-зеленого окрашивания.

Идентификацию инданазолина (1), тетризолина (10), оксиметазолина (7), моксонидина (5) и толазолина (3) проводят реакцией спиртовых растворов солей кобальта (II) с этими препаратами. Получены окрашенные растворы комплексных соединений [2, 3, 4, 5].

Однако приведенные выше способы идентификации и количественного определения исследуемых препаратов являются малочувствительными и неспецифическими.

Предлагаемый способ анализа основан на взаимодействии производных группы имидазолина со свежеприготовленным химическим реактивом.

Сущность способа заключается в растворении анализируемой пробы в воде очищенной или спирте, выдерживании на нагретой водяной бане (30-40°С) полного растворения при перемешивании, охлаждении и прибавлении того же растворителя до метки; далее аликвотную часть приготовленного раствора обрабатывают щелочным раствором химического реактива и фотоэлектроколориметрируют окрашенные растворы.

В качестве химического реактива предлагается использовать п-анизидин, который методом диазотирования переводится в диазореактив, то есть диазотированный п-анизидин.

Количественное определение производных группы имидазолина проводят по двум стадиям.

Приготовление диазореактива, исходя из взаимодействия п-анизидина в растворе натрия гидроксида с натрия нитритом.

Взаимодействие диазореактива с исследуемыми препаратами (1-10) в водном или спиртовом растворе в присутствии раствора гидроксида аммония.

Замечено, что замещение атомов водороде в имидазолиновом цикле на остаток диазотированного п-анизидина проходит по пятому положению.

Продукты реакции окрашивают растворы в ярко-красный цвет, устойчивый на протяжении 2 часов. Оптическую плотность поглощения окрашенных растворов измеряют при длине волны 490 нм с помощью фотоэлектроколориметра.

Количественное определение исследуемых препаратов в субстанциях проводят методом наименьших квадратов после статистической обработки калибровочных графиков.

Пример конкретной реализации способа. Приготовление химического реактива (диазотированного п-анизидина) 2,5 г п-анизидина растворяют в 5,5 мл 10%-ного раствора натрия гидроксида и 30-40 мл воды очищенной. Прибавляют 1,5 г натрия нитрита и после его растворения разбавляют водой до 50 мл. Наблюдают образование оранжево-красного окрашивания раствора. Сохраняют в склянке из темного стекла в холодильнике. Срок годности 10 дней.

Приготовление исходных растворов исследуемых препаратов. Точные навески порошков инданазолина (около 0,50 г), клофазолина (около 0,75 г), толазолина (около 0,50 г), ксилометазолина (около 0,50 г), моксонидина (около 0,50 г), нафазолина (около 0,20 г), фентоламина (около 0,10 г), оксиметазолина (около 0,20 г), тизанидина (около 0,40 г), тетризолина (около 0,20 г) помещают в мерные колбы емкостью 100 мл, растворяют в 50 мл воды очищенной или спирта и выдерживают на нагретой водяной бане до полного растворения при перемешивании. Охлаждают, доводят объемы растворов тем же растворителем до метки и взбалтывают.

Взаимодействие диазотированного п-анизидина с исследуемыми препаратами. Отмеренные объемы от 1,0 до 5,0 мл приготовленных растворов исследуемых препаратов помещают в мерные колбы емкостью 50, 25, 20 мл, прибавляют каплями по 3,0 мл диазотированного п-анизидина и 2,5 мл 0,1 н. раствора гидроксида аамония. Через 3 минуты появляется красное окрашивание, устойчивое в течение 2 часов. К объемам прибавляют по 1,5 мл 0,1 н. раствора КОН для сохранения устойчивости окраски растворов.

Измеряют оптическую плотность полученных окрашенных растворов с помощью фотоэлектроколориметра КФК-2 при толщине окрашенного слоя 10,0 мм. Раствор сравнения - растворы диазотированного п-анизидина и калия гидроксида.

Подчинения интенсивности поглощения окрашенных растворов закону Бугера-Ламберта-Бера находятся в пределах концентраций для субстанций инданазолина 0,10-0,50 мг/мл, клофазолина 0,15-0,75 мг/мл, толазолина 0,10-0,50 мг/мл, ксилометазолина 0,10-0,50 мг/мл, моксонидина 0,20-1,00 мг/мл, нафазолина 0,04-0,20 мг/мл, фентоламина 0,02-0,10 мг/мл, оксиметазолина 0,10-0,50 мг/мл, тизанидина 0,08-0,40 мг/мл, тетризолина 0,10-0,50 мг/мл.

Коэффициенты а и b исследуемых субстанций вычисляют методом наименьших квадратов после обработки калибровочных графиков (Таблицы 1-10).

Относительная ошибка определения субстанций не превышает ±1,31%.

Разработанный способ количественного определения производных имидазола (группы имидазолина) в субстанциях прост в выполнении, не требует дорогостоящей аппаратуры и дефицитных реактивов и дает воспроизводимые результаты (Таблицы 1-10).

Результаты количественного определения инданазолина (1) в субстанции приведены в Таблице 1.

Результаты количественного определения клофазолина (2) в субстанции приведены в Таблице 2.

Результаты количественного определения толазолина (3) в субстанции приведены в Таблице 3.

Результаты количественного определения ксилометазолина (4) в субстанции приведены в Таблице 4.

Результаты количественного определения моксонидина (5) в субстанции приведены в Таблице 5.

Результаты количественного определения нафазолина (6) в субстанции приведены в Таблице 6.

Результаты количественного определения фентоламина (7) в субстанции приведены в Таблице 7.

Результаты количественного определения оксиметазолина (8) в субстанции приведены в Таблице 8.

Результаты количественного определения тизанидина (9) в субстанции приведены в Таблице 9.

Результаты количественного определения тетризолина (10) в субстанции приведены в Таблице 10.

В Таблице 11 представлены сравнительные данные, подтверждающие преимущества предлагаемого способа количественного определения производных имидазола над прототипом.

ЛИТЕРАТУРА

1. Методы идентификации фармацевтических препаратов / Максютина Н.П. и др. - К.: Здоровья. - 1978. - 240 с.

2. Беликов, В.Г. Фармацевтическая химия: В 2 ч. Ч.1: Общая фармацевтическая химия. Ч.2: Специальная фармацевтическая химия: Учебник по фармацевт, химии для студ. фармацевт, вузов и фак. / В.Г. Беликов. - 3-е изд., перераб. и доп. - Пятигорск: Пятигорская гос. фармацевт. акад., 2003. - 713 с.

3. British pharmacopoeia. - http://en.wikipedia.org/wiki/British Pharmacopoeia

4. European pharmacopoeia. VI edition. - 2008. - 3641 p.

5. United State Pharmacopeia. - http://www.usp.org

Способ количественного определения производных имидазола (группы имидазолинов) в субстанциях путем растворения анализируемой пробы, обработки раствора химическим реактивом с последующим фотоэлектроколориметрированием окрашенных растворов, отличающийся тем, что растворение проводят в воде очищенной или спирте, выдерживают на нагретой водяной бане (30-40°С) до полного растворения, охлаждают и разбавляют тем же растворителем до метки; аликвотную часть приготовленного раствора последовательно обрабатывают щелочным 1% раствором диазотированного п-анизидина и 2,5 мл 0,1 н раствора гидроксида аммония, затем фотоэлектроколориметрируют полученные окрашенные растворы.



 

Похожие патенты:

Изобретение относится к экспериментальному оборудованию, а именно к исследованию процессов тепломассопереноса, фазовых превращений и химического реагирования при зажигании одиночных капель различных по компонентному составу органоводоугольных топлив в газовой среде окислителя.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Способ определения характеристик фугасности боеприпаса включает генерацию воздушной ударной волны (ВУВ) посредством взрыва боеприпаса, фиксацию изменения геометрических характеристик объекта-свидетеля, подвергаемого воздействию ВУВ, и последующее определение по ним характеристик фугасности.

Изобретение относится к области контроля качества топлив для реактивных двигателей с помощью оптических средств, в частности к определению количества присадок «Хайтек-580» и «Агидол-1», и может найти применение в аналитических лабораториях, лабораториях предприятий нефтепродуктообеспечения.

Группа изобретений относится к исследованию изменения свойств взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а также закономерностей процессов термического разложения ВВ в присутствии конструкционных материалов.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к исследованию жидких углеводородных топлив и может быть использовано при разработке новых и оценке существующих топлив. Способ включает определение цетанового индекса (ЦИ) по номограмме жидких углеводородных топлив с использованием шкал плотности при 20°С, температуры выкипания 50% об.

Изобретение относится к области определения октановых чисел н-алканов исследовательским методом. Согласно способу проводят измерение такого информационного параметра, как удельная магнитная восприимчивость и последующий расчет соответствующего значения октанового числа по эмпирической зависимости вида где Z - октановое число по исследовательскому методу, ед.; χ - удельная магнитная восприимчивость, 106, г-1.

Изобретение относится к способам оценки склонности автомобильных бензинов к образованию отложений на инжекторах двигателей внутреннего сгорания. Согласно предложенному способу осуществляют прокачку испытываемого бензина через нагретый до температуры 180±3°С инжектор в течение не более четырех суток, в каждые сутки из которых в течение 18 часов осуществляют впрыск топлива через нагретый инжектор в течение 0,2 с, с интервалом между впрысками 300 с, а в течение последующих 6 часов этих суток, при выключенном нагреве, инжектор выдерживают в нерабочем состоянии.

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа тетранитротолуола.

Изобретение относится к контролю качества топлив. Способ заключается в том, что осуществляют ускоренное окисление пробы топлива, пропуская кислород при заданных режимах. После ускоренного окисления топливо подвергают вакуумной перегонке под давлением 1-5 мм рт.ст. до достижения температуры топлива 210°C, фиксируют массу М кубового остатка, которую растворяют в дихлорметане, беря в соотношении 1:50, после чего 0,001 см3 полученного раствора наносят на модифицированную слоем силикагеля наружную поверхность кварцевого стержня, который вводят в контакт со смесью н-гептана и толуола, взятых в соотношении 20:80. Заданы условия погружения кварцевого стержня. После сушки стержня подвергают его термической обработке в пламени горелки на смеси водорода и воздуха. Продукты горения детектируют. На хроматограмме замеряют площади пиков, рассчитывают долю А площади, соответствующей области стержня со смолистыми соединениями. Показатель химической стабильности топлива оценивают по величине Q, равной произведению М и А. Достигается повышение достоверности определения без снижения требований по точности. 1 пр., 2 табл., 2 ил.

Изобретение относится к устройству для обнаружения твердых веществ, в частности взрывчатых веществ или наркотиков. Устройство содержит несущий диск (20), на котором осесимметрично расположено несколько сеток. Сетки в первом угловом положении (21) снабжены всасывающим патрубком (42) для всасывания окружающего воздуха сквозь соответствующую сетку. Сетки во втором угловом положении (22) снабжены первым нагревательным элементом (40) для испарения задерживаемых соответствующей сеткой во время всасывания частиц. При этом с анализирующим устройством (45) соединен первый вытяжной патрубок (43) для вытяжки испаренных частиц. Угловое расстояние между двумя соседними сетками несущего диска (20) составляет четное кратное угла α, который покрывает несущий диск (20) при переходе от одного углового положения диска к соседнему угловому положению. Несущий диск (20) выполнен осесимметричным таким образом, что при повороте диска (20) на угол α от одного углового положения к следующему в одном угловом положении сетка сменяется на глухой участок (31) или наоборот, так что всасывающий и вытяжной патрубки (42, 43) в каждом втором угловом положении оказываются закрыты участком (31), не содержащим отверстия. Причем на глухих участках (31) несущего диска (20) между двумя сетками предусмотрена заглушка, которая повторяет форму сетки, и эти заглушки выполнены из немагнитного, предпочтительно аустенитного, материала. Обеспечивается повышение эффективности работы устройства, увеличение степени загрузки и эффективности эксплуатации используемых компонентов. 12 з.п. ф-лы, 5 ил.

Изобретение относится к способу и устройству определении давления распирания угля или угольной смеси путем лабораторного исследования. Осуществляют нагревание образца в виде угля или угольной смеси в перфорированной гильзе, находящейся внутри тигля. Между наружной поверхностью гильзы и внутренней поверхностью тигля размещают гранулированный инертный материал в виде гранул коксового шлака или антрацита с размером гранул, превышающим диаметр отверстий в гильзе. Тигель располагают в электрической печи и нагревают по окружности со скоростью 3 К/мин от температуры окружающей среды до конечной температуры пластичности угля. Температуру измеряют с помощью устройства для измерения температуры, расположенного на стенке гильзы, а поршень, расположенный на образце сверху, передает силу давления распирания образца системе измерения силы, и на основе измеренной силы определяется давление распирания. Устройство состоит из электрической печи 1, внутри которой расположен тигель 2. Внутри тигля находится перфорированная гильза 3 с защищенным устройством для измерения температуры 5, располагающимся на ее поверхности. Угольный образец 4 помещен в гильзу и прижат поршнем 6, расположенным на поверхности образца и связанным с системой измерения силы 7, а система управления 8 выполнена с возможностью осуществления управления нагреванием и измерения давления. Технический результат – надежное определение значения давления распирания угля или угольной смеси путем моделирования такого поведения угля, которое наблюдается в промышленном процессе в коксовальной камере. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике, а именно к способам определения характеристик новых композиций твердого ракетного топлива, в частности для прямоточных воздушно-реактивных двигателей. При определении единичного импульса твердого топлива сжигают бронированный образец исследуемого топлива в объеме газа и измеряют реактивную силу истекающих продуктов сгорания. Образец топлива размещают в модели камеры дожигания, газодинамически подобной камере дожигания натурного двигателя, и обдувают потоком газа с параметрами, соответствующими обдуву заряда твердого топлива натурного двигателя. Часть поверхности образца покрывают бронировкой, обеспечивающей задержку воспламенения бронированной поверхности в течение времени, составляющего 10-50% от длительности сгорания образца исследуемого топлива без бронировки. Изобретение позволяет повысить достоверность измерения единичного импульса твердого топлива, а также сократить длительность и количество натурных испытаний двигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к химическому способу маркировки и идентификации взрывчатых веществ (ВВ), а также криминалистических идентификационных препаратов, который может быть использован в оперативно-розыскной, следственной, экспертно-криминалистической и судебной практике. Способ скрытой маркировки взрывчатых веществ заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых пропорционально количеству технических показателей, подлежащих маркировке. В качестве каждого идентификатора, соответствующего отдельному техническому показателю, используют комбинацию веществ (по крайней мере, два вещества), обладающих доступной детектированию флуоресценцией. Вещества могут быть сформированы в отдельные наборы (блоки), а информацию (в блоке) записывают в системе двоичного кода с расположением веществ при выявлении на спектрограмме последовательно выстроенными в цепь в соответствии со шкалой разрядности единиц двоичного кода. Маркирующую композицию составляют из отдельных наборов (блоков), каждый из которых отдельным потоком подают во взрывчатое вещество при смешивании последнего из отдельных компонентов. Способ обеспечивает возможность кодирования данных о взрывчатом веществе, повышение скрытности маркировки ВВ и достоверности идентификации ВВ по его маркировке при прочтении графической записи последней. 4 н. и 2 з.п. ф-лы, 3 ил., 4 табл., 1 пр.

Изобретение относится к методам испытаний нефтепродуктов, в частности моторных топлив. Способ включает подачу топлива в капельножидком состоянии при атмосферном давлении в воздух, нагретый до температуры рабочего заряда двигателя, с интервалом, равным времени свободного падения капли, в течение которого происходит нагрев, испарение, воспламенение, горение и термоокислительное превращение капли топлива, последующее измерение массы отложений на выполненной из каталитически активного материала нагреваемой пластине, установленной под углом 15-45° к горизонтальной поверхности, при этом задают факторы условий процесса образования отложений, формируют из 17 этапов цикл испытаний как необходимую и минимально достаточную совокупность режимов испытаний в виде матрицы, после каждого этапа цикла испытания топлива (топливной композиции) фиксируют массу отложений на пластине, по завершении цикла испытаний определяют обобщенный показатель Мисп склонности испытуемого топлива (топливной композиции) к образованию высокотемпературных отложений, сравнивают полученное значение со значением этого показателя для топлива (топливной композиции), принятого за эталон Мэт, прошедшего идентичный цикл испытаний, и при значении Мисп<Мэт рекомендуют топливо (топливную композицию) к применению в конкретном двигателе, при этом обобщенный показатель Мисп (эт) склонности испытуемого топлива (топливной композиции) к образованию высокотемпературных отложений вычисляют по заданной формуле. Достигается повышение информативности результатов оценки. 3 табл., 1 пр.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив и может быть использовано при прогнозировании склонности моторных топлив к изменению количественных потерь от естественной убыли на предприятиях, потребляющих и производящих моторные топлива. Способ включает заполнение топливом емкости до задаваемого уровня, хранение топлива в заданных условиях в течение определенного времени и оценивание физической стабильности по массе испарившегося топлива, причем испытуемое топливо помещают в термостатируемую емкость, задают факторы условий процесса испарения, формируют из 15 этапов цикл испытаний как необходимую и минимально достаточную совокупность режимов испытаний в виде матрицы, после каждого этапа, длительность которого составляет 240±5 минут, фиксируют массу испарившегося топлива, по завершении цикла испытаний определяют обобщенный показатель mисп склонности испытуемого топлива к потерям от испарения, и при значении mисп меньше значения mэт, полученного для топлива, принятого за эталон, считают испытуемое топливо физически стабильным, и что оно может быть рекомендовано к длительному хранению в резервуарах (цистернах), при этом обобщенный показатель mисп(эт) склонности топлива к потерям от испарения вычисляют по заданной формуле. Достигается повышение достоверности результатов за счет приближения условий испытаний к реальным условиям хранения в резервуарах с одновременным сокращением времени на проведение испытаний. 3 табл.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке. В качестве идентификаторов используют смесь полиорганосилоксанов с различными длинами молекулярных цепочек, в которой каждому одному техническому показателю соответствует идентификатор в виде полиорганосилоксана с соответствующей длиной молекулярной цепочки и соответствующим «временем выхода» («удерживания») на хроматограмме. Таким образом, в составе взрывчатого вещества формируется «химический штрих-код», считывание которого осуществляют на хроматограмме по принципу наличия или отсутствия компонента при определенном значении времени его «выхода» («удерживания»). 4 ил., 1 табл.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив, в частности к определению термоокислительной стабильности (ТОС) топлив в динамических условиях, и может быть использовано в нефтехимической, авиационной, автомобильной и других отраслях промышленности. Установка включает емкость 26 с анализируемым топливом, соединенную трубопроводом последовательно с насосом 27, предварительным фильтром 28 и патрубком 2 в нижней части вертикально установленного трубчатого корпуса 1, в верхней части которого имеются два выходных патрубка 3, 4, в одном из которых установлен контрольный фильтр 5 и измеритель температуры топлива 7. Верхние патрубки соединены между собой через запорный клапан 34. Концентрично в корпусе закреплена оценочная трубка 8. В установку введен специальный узел, состоящий из защитного цилиндрического металлического кожуха 19, внутри которого установлен съемный чехол, переходящий в жесткий цилиндрический держатель, в каналах которых помещены стальные оболочки 17 и переходные втулки термодатчиков 23, чувствительные элементы 18 которых распределены по всей длине трубчатой части съемного чехла. Имеется программный блок 33 управления, соединенный с датчиками и исполнительными механизмами. Изобретение обеспечивает повышение надежности проведения испытаний и точности оценки ТОС топлив. 5 ил., 1 табл.

Изобретение относится к способам контроля качества углеводородных топлив и касается способа определения монометиланилина в углеводородных топливах. Сущность способа заключается в том, что наносят пробы испытуемого топлива на пластину для тонкослойной хроматографии с сорбентом силикагель с флуоресцентным индикатором. Проводят хроматографирование восходящим потоком элюента, в качестве которого используют смесь гептана и ацетона, взятых в соотношении 10:1. Пластину высушивают на воздухе, проявляют хроматограмму в ультрафиолетовом свете с длиной волны 254 нм без или с предварительной обработкой пластины парами иода или в видимом свете после обработки только парами иода и о присутствии ММА в топливе судят по наличию на хроматограмме имеющего окраску фиолетового цвета при наблюдении в ультрафиолетовом свете или коричневого цвета при наблюдении в видимом свете пятна, значение величины Rf которого составляет 0,38±0,05, после чего определяют размеры пятна с указанным значением Rf и по предварительно построенному градуировочному графику определяют концентрацию монометиланилина в анализируемом топливе. Использование способа позволяет с высокой точностью определить ММА в углеводородных топливах. 3 ил., 2 табл., 1 пр.
Наверх