Способ получения химического поглотителя диоксида углерода

Изобретение относится к способам получения поглотителей диоксида углерода. Осуществляют приготовление водной суспензии гидроксидов щелочных и/или щелочноземельных металлов, наносят суспензию на подложку из пористого материала, проводят формование и сушку. При приготовлении водной суспензии вводят водорастворимый полимер при массовом соотношении гидроксидов к полимеру, равном (80-95)/(20-5), и массовом содержании воды в суспензии от 40 до 70%. Нанесение суспензии на подложку и формование химического поглотителя осуществляют многократной пропиткой подложки суспензией. Сушку осуществляют после каждой пропитки подложки до полного удаления воды. После последней сушки осуществляют обработку полученного материала водой или водным раствором щелочных металлов до влажности 15-25 мас.%. Изобретение позволяет улучшить эксплуатационные характеристики химического поглотителя. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

 

Изобретение относится к способам получения химических поглотителей диоксида углерода, предназначенных для использования в системах жизнеобеспечения человека.

Известен способ получения химического поглотителя диоксида углерода на основе гидроксида лития для систем жизнеобеспечения человека в виде гибкого ребристого листа (патент США 7326280, МПК B01J 20/04, 2005 г.), в котором процесс получения химического поглотителя состоит из следующих основных стадий:

- смешение порошка гидроксида лития, полиэтилена, смазочного материала (минеральное масло) и плавление в экструдере при температуре 170°С;

- каландрование ребристого листового материала из полученной смеси при пропускании ее между вращающимися валками с канавками;

- охлаждение;

- экстрагирование гексаном для удаления смазочного материала;

- удаление гексана при температуре до 250°С;

- охлаждение;

- гидратация;

- намотка листа поглотителя в рулон для формирования поглотительного картриджа, обрезка по размерам патрона.

Гидратация химического поглотителя проводится либо во время намотки картриджа распылением воды ультразвуковыми головками, которые распределяют мелкодисперсный водный туман по всей ширине рулона, либо до намотки разбрызгиванием воды на ребристую поверхность листа химического поглотителя форсунками.

Однако известный способ получения является весьма энерго- и ресурсоемким. Смешение расплава полимера с порошком неорганического наполнителя требует больших затрат энергии на нагрев и плавление полиэтилена, а также на сдвиговые деформации. В технологии используется ряд вспомогательных веществ (минеральное масло, гексан), не являющихся целевым компонентом поглотителей, на удаление которых затрачивается дополнительная энергия. В результате технология получается достаточно сложной и многостадийной, а себестоимость химического поглотителя - высокой.

Частично эти недостатки устранены в способе изготовления химического поглотителя диоксида углерода (патент РФ 2484891, МПК B01J 20/02, 2013 г.), заключающемся в формовании химического поглотителя в виде волокон при воздействии на дисперсию, состоящую из гидроксидов щелочных и/или щелочноземельных металлов, фторполимера и органического легколетучего растворителя, электростатического поля. Однако в данном способе для растворения волокнообразующего полимера и формирования пористой структуры химического поглотителя используется органический растворитель, с чем связана взрыво-, пожароопасность производства. Кроме того, как следует из описания, органический растворитель не возвращается в производственный цикл, а выбрасывается в атмосферу, что не только экономически невыгодно, но и экологически небезопасно для окружающей среды. В данном способе следует также предусмотреть полное удаление примесей органического растворителя из сформованного химического поглотителя, присутствие которых недопустимо во вдыхаемом воздухе. Также фторполимер является достаточно дорогостоящим компонентом, в связи с чем себестоимость химического поглотителя на основе достаточно недорогих гидроксидов щелочных и/или щелочноземельных металлов значительно возрастает.

Вышеперечисленные недостатки отсутствуют в способе изготовления химического поглотителя диоксида углерода на основе гидроксидов щелочных и/или щелочноземельных металлов, предназначенного для использования в системах жизнеобеспечения человека (заявка WO 2009/139664, МПК B01J 20/04, 2013 г. ). Способ включает следующие основные стадии:

- приготовление водной суспензии гидроксидов щелочных и/или щелочноземельных металлов;

- нанесение суспензии на подложку из пористого материала путем ее размещения между двумя слоями пористого материала;

- формование поглотителя путем прокатки между валками;

- сушка до содержания остаточной влаги в поглотителе 15-22%.

Способ имеет существенный недостаток, заключающийся в том, что не обеспечивает прочного скрепления пористого материала и гидроксидов щелочных и/или щелочноземельных металлов, из-за чего при эксплуатации данных химических поглотителей под воздействием различных механических нагрузок (например, транспортировка) образуются трещины и пыль, материал склонен к разрушению. Это не только ухудшает основные эксплуатационные характеристики химического поглотителя (сорбционная емкость, кинетика процесса хемосорбции и др.), но и представляет серьезную опасность для пользователя - наличие большого количества щелочных аэрозолей во вдыхаемом воздухе может привести к химическим ожогам дыхательных путей человека.

Задачей настоящего изобретения является улучшение эксплуатационных характеристик химического поглотителя диоксида углерода.

Указанная задача решается тем, что в способе получения химического поглотителя диоксида углерода, включающем приготовление водной суспензии гидроксидов щелочных и/или щелочноземельных металлов, нанесение суспензии на подложку из пористого материала, формование химического поглотителя и сушку, водная суспензия дополнительно содержит водорастворимый полимер, нанесение водной суспензии на подложку из пористого материала и формование химического поглотителя осуществляют многократной пропиткой подложки суспензией, сушка осуществляется после каждой пропитки подложки из пористого материала суспензией до полного удаления воды, после последней сушки осуществляется обработка полученного материала водой или водными растворами щелочных металлов до влажности 15-25% массовых.

В качестве водорастворимого полимера могут быть использованы карбоксиметилцеллюлоза, поливиниловый спирт, при этом массовое соотношение гидроксиды щелочных и/или щелочноземельных металлов/водорастворимый полимер в суспензии целесообразно поддерживать равным (80-95)/(20-5), а массовое содержание воды в суспензии - от 40 до 70%.

В качестве пористого материала могут быть использованы щелочестойкие материалы с поверхностной плотностью не более 50 г/м2.

В качестве водных растворов щелочных металлов используют 10-20% растворы гидроксидов натрия, калия.

Введение водорастворимого полимера в состав химического поглотителя, нанесение водной суспензии на пористый материал и формование химического поглотителя пропиткой подложки из пористого материала суспензией с последующим полным удалением воды путем сушки способствует увеличению адгезии частиц гидроксидов щелочных и/или щелочноземельных металлов между собой и подложкой из пористого материала. Сушка до полного удаления воды обеспечивает завершение процесса выделения водорастворимого полимера из суспензии и образование полимерного газопроницаемого каркаса по всей толщине химического поглотителя. Это увеличивает прочность материала на изгиб, препятствует разрушению поглотителя при формировании картриджей и образованию пыли при эксплуатации химического поглотителя.

Последовательные операции пропитки и сушки осуществляют многократно для достижения необходимой поверхностной плотности и толщины химического поглотителя.

Дополнительная обработка химического поглотителя водой или водными растворами щелочных металлов до влажности 15-20% необходима, так как процесс хемосорбции СО2 протекает только в водной среде.

При содержании водорастворимого полимера более 20% наблюдается блокировка частиц гидроксидов щелочных и/или щелочноземельных металлов и снижение эксплуатационных характеристик химического поглотителя. При содержании водорастворимого полимера менее 5% образцы имеют недостаточную механическую прочность (трескаются, осыпаются).

При содержании воды в суспензии менее 40% текучесть суспензии значительно снижается, а вязкость увеличивается до 4 Па·с и более, что затрудняет пропитку пористого материала суспензией. При содержании воды в суспензии более 70% суспензия становится маловязкой и при пропитке поверхностная плотность и толщина химического поглотителя оказывается незначительной, что приводит к необходимости увеличения числа последовательных операций пропитки и сушки, то есть увеличивает энергоемкость и трудоемкость процесса получения химического поглотителя.

При поверхностной плотности подложки из пористого материала более 50 г/м2 увеличивается массовая доля неактивного к диоксиду углерода инертного материала, что приводит к снижению сорбционной емкости на единицу массы химического поглотителя и увеличению массогабаритных характеристик изделий, в которых планируется применение поглотителя.

Способ позволяет получать химический поглотитель в виде лент произвольной длины толщиной 0,8-1,5 мм и менее, что способствует увеличению сорбционной емкости и кинетики процесса хемосорбции СO2 за счет увеличения площади активной поверхности химического поглотителя.

Схема способа получения химического поглотителя диоксида углерода показана на фиг. 1, где:

1 - смеситель для приготовления водной суспензии гидроксидов щелочных и/или щелочноземельных металлов, содержащей водорастворимый полимер;

2 - установка для нанесения суспензии на подложку из пористого материала и формования химического поглотителя;

3 - сушилка;

4 - установка для обработки химического поглотителя водой или водными растворами щелочных металлов.

Способ получения химического поглотителя осуществляют следующим образом. Порошок водорастворимого полимера добавляют в воду и тщательно перемешивают до образования однородного полимерного раствора в смесителе 1. Для интенсификации процесса растворения приготовление полимерного раствора предпочтительно проводить при нагревании.

В полимерный раствор добавляют в необходимом количестве гидроксиды щелочных и/или щелочноземельных металлов и перемешивают до образования однородной суспензии в смесителе 1 любым известным способом, например с использованием ультразвукового диспергатора.

Нанесение суспензии на пористый материал и формование химического поглотителя осуществляется пропиткой подложки из пористого материала суспензией в установке 2. Форма и размеры подложки определяются конкретными конструктивными параметрами поглотительных и регенеративных патронов, камер систем жизнеобеспечения и др. Подложка может быть в виде ленты, листа и др.

Пропитка может осуществляться следующими способами: нанесением суспензии на поверхность пористого материала вальцовым методом, кистью, шпателем; погружением пористого материала в резервуар с суспензией; распылением суспензии на поверхность подложки.

Сушка пропитанной суспензией подложки из пористого материала осуществляется в сушилке 3. Сушка может осуществляться инфракрасным, конвективным способом при атмосферном давлении или под вакуумом. Целесообразно применение сушилок туннельного типа.

Высушенный химический поглотитель дополнительно обрабатывается водой или водными растворами щелочных металлов на установке 4, которая может представлять собой распылительную камеру.

Полученный химический поглотитель может быть свернут в рулон для формирования поглотительных картриджей или раскроен на листы необходимого размера, что определяется конкретными конструктивными параметрами поглотительных и регенеративных патронов, камер систем жизнеобеспечения и др.

Пример 1

Готовят полимерный раствор, для чего 0,4 кг поливинилового спирта тщательно перемешивают с 4,7 дм3 воды, после чего выдерживают на водяной бане в течение 2 ч при температуре полимерного раствора от 90 до 100°С. Готовый полимерный раствор смешивают с порошком гидроксида лития массой 1,6 кг в ультразвуковом диспергаторе, при этом массовое соотношение гидроксид лития/поливиниловый спирт составляет 80/20. Содержание воды в полученной суспензии составляет 70%. Полученную суспензию наносят из форсунок на пористый материал спанбонд поверхностной плотностью 30 г/м2 в виде ленты размерами 250×17000 мм. Участок пористого материала с нанесенным слоем суспензии непрерывно подают в вертикальную туннельную сушилку, где расположены два ряда инфракрасных (ИК) излучателей, предварительно разогретых до температуры (120±5)°С со скоростью (180±20) мм/мин. После нанесения и сушки одного слоя суспензии поверхностная плотность материала составляет (145±10) г/м, толщина материала - 0,2 мм. Последовательные операции пропитки и сушки осуществляют четыре раза для достижения поверхностной плотности (490±10) г/м2 и толщины химического поглотителя 0,8 мм. Высушенную ленту химического поглотителя обрабатывают водой объемом 0,4 дм3 в распылительной камере. Влажность химического поглотителя после обработки составляет 15%.

Пример 2

Готовят полимерный раствор, для чего 0,1 кг карбоксиметилцеллюлозы тщательно перемешивают с 1,3 дм3 воды, после чего выдерживают на водяной бане в течение 1 ч при температуре полимерного раствора от 50 до 60°С. Готовый полимерный раствор смешивают с порошком гидроксида лития массой 0,8 кг и гидроксида кальция массой 1,1 кг в смесителе лопастного типа, при этом массовое соотношение гидроксид лития и гидроксид кальция/карбоксиметилцеллюлоза составляет 95/5. Содержание воды в полученной суспензии составляет 40%. Полученную суспензию загружают в емкость, куда погружают нижний валец для нанесения суспензии. Между верхним и нижним вальцами протягивают пористый материал «Airlaid» поверхностной плотностью 50 г/м2 в виде ленты размерами 250×14500 мм. При вращении вальцев пористый материал непрерывно двигается и на него наносится слой суспензии. Участок пористого материала с нанесенным слоем суспензии непрерывно перемещается в горизонтальную туннельную сушилку, куда подается горячий воздух со скоростью 5 м/с температурой (95±5)°С. После нанесения и сушки слоя суспензии поверхностная плотность материала составляет (600±10) г/м2, толщина материала - 1,5 мм. Высушенную ленту химического поглотителя обрабатывают 10% раствором гидроксида натрия объемом 0,7 дм3 в распылительной камере. Влажность химического поглотителя после обработки составляет 18%, содержание гидроксида натрия - 2%.

Пример 3

Готовят полимерный раствор, для чего 0,24 кг поливинилового спирта тщательно перемешивают с 3 дм3 воды, после чего выдерживают на водяной бане в течение 2 ч при температуре полимерного раствора от 90 до 100°С. Готовый полимерный раствор смешивают с порошком гидроксида кальция массой 1,76 кг в ультразвуковом диспергаторе, при этом массовое соотношение гидроксид кальция/поливиниловый спирт составляет 88/12. Содержание воды в полученной суспензии составляет 60%. Полученную суспензию загружают в емкость, через которую непрерывно протягивают пористый материал спанбонд поверхностной плотностью 15 г/м2 в виде ленты размерами 250×16700 мм. Участок пористого материала с нанесенным слоем суспензии непрерывно подают в горизонтальную туннельную сушилку, где расположены два ряда инфракрасных (ИК) излучателя, предварительно разогретых до температуры (100±5)°С со скоростью (150±20) мм/мин. После нанесения и сушки одного слоя суспензии поверхностная плотность материала составляет (255±10) г/м2, толщина материала - 0,5 мм. Последовательные операции пропитки и сушки осуществляют два раза для достижения поверхностной плотности (495±10) г/м2 и толщины химического поглотителя 1 мм. Высушенную ленту химического поглотителя обрабатывают 20% раствором гидроксида калия объемом 0,95 дм3 в распылительной камере. Влажность химического поглотителя после обработки составляет 25%, содержание гидроксида калия - 5%.

Сорбционную емкость химического поглотителя по диоксиду углерода исследовали в герметичной камере. Исследования проводили при следующих условиях:

- объем герметичной камеры - (24±2,5) м3;

- масса химического поглотителя в герметичной камере - (1,4±0,1) кг;

- подача диоксида углерода - (29,5±1,5) дм3 /ч;

- начальное содержание СO2 - (0,80±0,09) %;

- температура в камере - (20±2)°С;

- влажность в камере - (85±5) %;

- время эксперимента - 8 ч.

Прочность химического поглотителя оценивали по устойчивости к воздействию механических нагрузок, имитирующих транспортные. Исследовались образцы, свернутые в рулон. После испытаний взвешивали массу пыли, оставшейся в упаковке с химическим поглотителем.

В аналогичных условиях проведены сравнительные испытания химического поглотителя, специально изготовленного по примеру №1 WO 2009/139664.

Результаты исследований представлены в таблице. На фиг. 2 представлены кинетические кривые поглощения диоксида углерода в герметичной камере.

Как видно из представленных данных, изобретение позволяет улучшить такие важные эксплуатационные характеристики химического поглотителя, как механическую прочность, сорбционную емкость на единицу массы, повысить кинетику поглощения СО2. Кроме того, использование полученного по изобретению поглотителя диоксида углероды позволяет создать более комфортные условия для человека при эксплуатации поглотителя в системах жизнеобеспечения.

1. Способ получения химического поглотителя диоксида углерода, включающий приготовление водной суспензии гидроксидов щелочных и/или щелочноземельных металлов, нанесение суспензии на подложку из пористого материала, формование химического поглотителя и сушку, отличающийся тем, что водная суспензия дополнительно содержит водорастворимый полимер, в качестве которого используют карбоксиметилцеллюлозу, поливиниловый спирт, при массовом соотношении гидроксиды щелочных и/или щелочноземельных металлов/водорастворимый полимер, равном (80-95)/(20-5), и массовом содержании воды в суспензии от 40 до 70%, нанесение водной суспензии на подложку из пористого материала, в качестве которого используют щелочестойкие материалы с поверхностной плотностью не более 50 г/м2, и формование химического поглотителя осуществляют многократной пропиткой подложки из пористого материала суспензией, сушку осуществляют после каждой пропитки подложки из пористого материала суспензией до полного удаления воды, после последней сушки осуществляют обработку полученного материала водой или водными растворами щелочных металлов до влажности 15-25 мас.% .

2. Способ по п. 1, отличающийся тем, что в качестве водных растворов щелочных металлов используют 10-20% растворы гидроксидов натрия, калия.



 

Похожие патенты:
Изобретение относится к области получения композиционных пористых углеродсодержащих сорбентов. В качестве исходных компонентов используют увлажнённую монтмориллонитсодержащую глину и растительную углеродсодержащую основу в виде продуктов шелушения зерновых и технических сельскохозяйственных культур.

Изобретение относится к очистке воды от сульфидов и углеродсодержащему сорбенту на основе растительного сырья. Углеродсодержащий сорбент для очистки вод от сульфидов имеет микропористую структуру со средним диаметром пор около 2 нм, рентгеноаморфное состояние и выполнен в виде пучков волокон с диаметром 50-100 мкм при диаметре отдельного волокна около 1,5 мкм.

Изобретение относится к способам получения сорбентов из растительного сырья. Способ получения сорбента включает обработку предварительно высушенного и измельченного листового опада низкотемпературной плазмой высокочастотного разряда при давлении в разрядной камере 26,6 МПа, при силе тока на аноде 0,5 A и напряжении 7,5 кВ в течение 60 секунд.

Изобретение относится к биотехнологии, пищевой и фармацевтической промышленности, а именно к производству продуктов функционального питания для нормализации состояния организма и биологически активных добавок (БАД) к пище и лекарственных препаратов, предназначенных для нормализации состояния желудочно-кишечного тракта (удаления из организма токсичных веществ).

Изобретение относится к сорбентам для очистки вод от нефтепродуктов. Сорбент получают растворением отходов полиэтилентерефталата в органическом растворителе.

Изобретение относится к получению сорбентов. Проводят химическую обработку размолотого сырья, выбранного из персиковой, и/или абрикосовой, и/или сливовой косточек, следующего гранулометрического состава (в %): до 0,35 мм 10 от 0,36 до 0,55 мм 55 от 0,56 до 0,75 мм 25 от 0,76 до 1, 25 мм 10 Вначале сырье обрабатывают смесью следующих растворов: 0,5% NH4OH, 0,5% NaOH, 0,5% ЭДТА - натрия, взятых в соотношении 1:1:1, обработку проводят в автоклаве при гидромодуле 1:8, температуре 140-150°C и времени обработки 4-5 часов.

Настоящее изобретение относится к способу синтеза адсорбционного материала, состоящего из однофазного четырехвалентного марганцевого фероксигита (δ-Fe(1-x)MnxOOH), в котором 0,05-25% железа изоморфно замещено атомами марганца.

Изобретение относится к сорбентам на основе гранулированных активированных углей, модифицированных полипирролом, используемых в медицине. Предложено два электорохимических варианта способа изготовления сорбента.

Изобретение относится к области получения сорбционных материалов и может быть использовано для извлечения и разделения благородных и тяжелых металлов. Способ синтеза комплексообразующего сорбента заключается в следующем.
Изобретение относится к области охраны окружающей среды, а именно к получению сорбента нефти и нефтепродуктов. Способ получения мелкодисперсного сорбента нефти и нефтепродуктов включает приготовление раствора отходов полиэтилена при нагревании и перемешивании в толуоле.

Изобретение относится к адсорбентам для средств защиты органов дыхания. Химический поглотитель диоксида углерода содержит следующие компоненты (% масс.): гидроксид кальция и/или гидроксиды щелочных металлов - 64÷72, поливиниловый спирт - 8,5÷13, пористая листовая подложка - 2,5÷5, вода - 10÷25.

Изобретение относится к получению сорбента, применяемого для тонкой очистки технологических и отходящих газов. Способ получения включает смешение в ультразвуковом устройстве гидроксида алюминия, негашеной извести и основного карбоната цинка в молярном соотношении Al2O3:CaO:ZnO=1:(0,5÷2):(0,5÷2), пластификацию смеси водой, формование гранул и сушку при температуре 110÷120°С.

Изобретение относится к способам получения хемосорбционных элементов. Готовят исходную композицию путём смешивания порошкообразных гидроксидов щелочных и/или щелочноземельных металлов с органическим полимером и растворителем.

Изобретение относится к способам получения адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Способ включает образование дисперсии оксидов щелочноземельных и/или гидроксидов щелочных и/или щелочноземельных металлов и нанесение дисперсии на листовую основу.

Изобретение относится к водоочистке. Предложен способ очистки воды и/или осушения ила и/или осадков, который включает обеспечение очищаемого объекта, содержащего примеси; и обеспечение поверхностно-обработанного карбоната кальция, в котором, по меньшей мере, 1% доступной площади его поверхности содержит покрытие, содержащее, по меньшей мере, один катионный полимер.

Изобретение относится к сорбентам для очистки вод от ионов аммония и фосфатов. Сорбент содержит осадки, полученные в процессе реагентной обработки природных вод алюминиевыми коагулянтами, 20-40 мас.% и глину монтмориллонитовую 60-80 мас.%.

Изобретение относится к охране окружающей среды и может быть использовано для очистки и обезвреживания нефтезагрязненных отходов. Предложен сорбент, содержащий негашеную известь в количестве 81,1-83,3%, диатомит в количестве 7,4-12,5% и гидрофобизатор.

Изобретение относится к переработке отходов борсодержащего минерального сырья и может быть использовано для производства высокоэффективных сорбентов. Способ включает обработку отходов борного производства (борогипса), содержащих дигидрат сульфата кальция и аморфный кремнезем.

Изобретение относится к оборудованию для получения адсорбента диоксида углерода. Устройство для изготовления адсорбента диоксида углерода включает узел дозированной подачи исходного продукта, узел подачи подложки, узел пропитки, узел перемещения и узел сушки.

Изобретение относится к получению сорбента для средств защиты органов дыхания. Способ изготовления сорбента включает смешение порошкообразного гидроксида или оксида кальция с водой при массовом соотношении Са2+/H2O, равном (0,7÷0,3)/1.

Изобретение относится к способам получения структурированных продуктов для регенерации воздуха, используемых в индивидуальных дыхательных аппаратах (ИДА). Способ получения регенеративного продукта включает смешение стабилизированного сульфатом магния раствора пероксида водорода с гидроксидами калия и натрия, нанесение полученного щелочного раствора пероксида водорода на индифферентную пористую матрицу и последующую дегидратацию жидкой фазы на матрице. В раствор пероксида водорода после добавления сульфата магния вводят тетрабораты щелочных металлов, в качестве которых используют тетрабораты лития, натрия, калия или их смесь, при определенном мольном соотношении исходных компонентов. Регенеративный продукт имеет высокую механическую прочность, обеспечивает высокую скорость процесса хемосорбции диоксида углерода, большее время защитного действия при его эксплуатации в индивидуальных дыхательных аппаратах. Присутствие в щелочном растворе пероксида водорода тетраборатов щелочных металлов и последовательность введения в жидкую фазу исходных компонентов позволяют сократить время приготовления щелочного раствора пероксида водорода и снизить в течение производственного цикла выделение атомарного кислорода, т.е. повысить безопасность и экономичность процесса. 2 з.п. ф-лы, 1 табл., 1 ил.
Наверх