Способ дифференциальной защиты при преобразовании частоты для выходного трансформатора системы со статическим преобразователем частоты

Использование: в области электротехники. Технический результат - повышение надежности и чувствительности защиты. Согласно способу дифференциальной защиты при преобразовании частоты для выходного трансформатора системы со статическим преобразователем частоты (СПЧ) защитное устройство измеряет трехфазный ток на каждой стороне выходного трансформатора системы с СПЧ. В соответствии со схемой соединения обмоток выходного трансформатора сторона, обмотки которой соединены в треугольник, используется в качестве эталона для выполнения фазовой коррекции на стороне, обмотки которой соединены в звезду. С учетом того, что вторичные номинальные токи на каждой стороне трансформатора различны, коэффициент баланса с каждой стороны регулируется, чтобы вычислить дискретные значения корректирующего тока каждой стороны и тока небаланса. Алгоритм защиты пуска и отключения генератора, не зависящий от частоты, используется для расчета амплитудных значений корректирующего тока, тока небаланса и тормозного тока. Дифференциальная защита при преобразовании частоты для выходного трансформатора осуществляется с помощью тормозной дифференциальной характеристики в соответствии со значениями тока небаланса и тормозного тока. 3 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее изобретение относится к области релейной защиты для электроэнергетических систем, в частности к способу дифференциальной защиты при преобразовании частоты для выходного трансформатора системы со статическим преобразователем частоты (СПЧ) и к соответствующему устройству релейной защиты или устройству контроля.

ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

[0002] Система с СПЧ, как правило, применяется на гидроаккумулирующих электростанциях и газотурбинных генераторных установках большой мощности, для осуществления пуска установки с преобразованием частоты. В настоящее время используемые внутри страны системы с СПЧ являются устройствами, полностью ввозимыми из-за рубежа. Релейная защита системы с СПЧ, как правило, интегрирована в регулятор СПЧ. Частоты токов на сторонах высокого и низкого напряжения выходного трансформатора системы с СПЧ являются варьируемыми, а все алгоритмы дифференциальной защиты для традиционных трансформаторов берут за основу промышленную частоту тока; по этой причине применение функции релейной защиты для выходного трансформатора затруднено. Кроме того, ни одна из зарубежных систем с СПЧ не оснащена функцией дифференциальной защиты для выходного трансформатора, а максимальная токовая защита без выдержки времени служит в качестве первичной быстродействующей защиты; в результате чувствительность является низкой, что негативно сказывается на защищаемом устройстве.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая проблема

[0003] Целью настоящего изобретения является создание способа дифференциальной защиты при преобразовании частоты для выходного трансформатора системы с СПЧ, который использует алгоритм защиты пуска и останова генератора, не зависящий от частоты, для расчета амплитудных значений тока небаланса и тормозного тока выходного трансформатора, чтобы осуществить дифференциальную защиту с торможением, адаптацию к изменению частоты в широком диапазоне, а также улучшить чувствительность обнаружения внутреннего короткого замыкания выходного трансформатора.

Техническое решение

[0004] Техническое решение, используемое в настоящем изобретении, следующее: в способе дифференциальной защиты при преобразовании частоты для выходного трансформатора системы с СПЧ устройство защиты системы с СПЧ измеряет трехфазный ток на каждой стороне выходного трансформатора системы с СПЧ; фазовая коррекция и регулировка коэффициента баланса выполняются по току на каждой стороне выходного трансформатора в соответствии со схемой соединения обмоток выходного трансформатора для вычисления значений выборки корректирующего тока на каждой стороне и тока небаланса; алгоритм защиты пуска и останова генератора, не зависящий от частоты, используется для расчета амплитудных значений корректирующего тока, тока небаланса и тормозного тока; при этом дифференциальная защита при преобразовании частоты для выходного трансформатора осуществляется с помощью тормозной дифференциальной характеристики в соответствии с величинами тока небаланса и тормозного тока.

[0005] Выходной трансформатор может быть двухобмоточным трансформатором или трехобмоточным трансформатором; в соответствии со схемой соединения обмоток выходного трансформатора сторона, обмотки которой соединены в треугольник, используется в качестве эталона для выполнения фазовой коррекции на стороне, обмотки которой соединены в звезду; и в то же время, с учетом того, что вторичные номинальные токи на каждой стороне трансформатора различны, коэффициент баланса каждой стороны регулируется, чтобы вычислить дискретные значения корректирующего тока на каждой стороне выходного трансформатора и ток небаланса.

[0006] Алгоритм защиты пуска и останова генератора, не зависящий от частоты, используется для расчета амплитудных значений корректирующего тока, тока небаланса и тормозного тока, чтобы осуществить адаптацию к изменению частоты в широком диапазоне, при этом алгоритм защиты пуска и останова включает интегральный алгоритм определения точки перехода через нуль и метод определения максимального текущего значения.

[0007] Способ расчета коэффициента баланса для каждой стороны такой же, как и для дифференциальной защиты традиционного трансформатора, коэффициент баланса на стороне высокого напряжения обозначен KH, коэффициент баланса на стороне 1 низкого напряжения обозначен KL1 и коэффициент баланса на стороне 2 низкого напряжения обозначен KL2; i H a . j ( k ) , i H b . j ( k ) , i H c . j ( k ) , i L 1 a . j ( k ) , i L 1 b . j ( k ) , i L 1 c . j ( k ) , i L 2 a . j ( k ) , i L 2 b . j ( k ) и i L 2 c . j ( k ) рассчитываются и являются дискретными значениями выборки трехфазных корректирующих токов на стороне высокого напряжения, стороне 1 низкого напряжения и стороне 2 низкого напряжения соответственно; и

трехфазные токи небаланса рассчитываются с помощью корректирующего тока на стороне высокого и низкого напряжения:

{ i d a ( k ) = i H a . j ( k ) + i L 1 a . j ( k ) + i L 2 a . j ( k ) i d b ( k ) = i H b . j ( k ) + i L 1 b . j ( k ) + i L 2 b . j ( k ) i d c ( k ) = i H c . j ( k ) + i L 1 c . j ( k ) + i L 2 c . j ( k ) формула (1)

где i d a ( k ) , i d b ( k ) и i d c ( k ) - дискретные значения выборки токов небаланса трех фаз соответственно.

[0008] При использовании алгоритма защиты пуска и останова генератора, не зависящего от частоты, амплитудные значения ( I H a . j , I H b . j и I H c . j ) корректирующих токов на стороне высокого напряжения рассчитываются с использованием значений выборки корректирующих токов на стороне высокого напряжения; амплитудные значения ( I L 1 a . j , I L 1 b . j и I L 1 c . j ) корректирующих токов на стороне 1 низкого напряжения рассчитываются с использованием значений выборки корректирующих токов на стороне 1 низкого напряжения; амплитудные значения ( I L 2 a . j , I L 2 b . j и I L 2 c . j ) корректирующих токов на стороне 2 низкого напряжения рассчитываются с использованием значений выборки корректирующих токов на стороне 2 низкого напряжения; и амплитудные значения ( I d a , I d b и I d c ) токов небаланса рассчитываются с использованием значений выборки токов небаланса.

[0009] Тормозные токи рассчитываются с помощью корректирующих токов на сторонах высокого и низкого напряжения следующим образом:

{ I r a = I H a . j + I L 1 a . j + I L 2 a . j 2 I r b = I H b . j + I L 1 b . j + I L 2 b . j 2 I r c = I H c . j + I L 1 c . j + I L 2 c . j 2 формула (2)

где I r a , I r b и I r c - тормозные токи трех фаз соответственно.

[0010] Дифференциальная защита при преобразовании частоты для выходного трансформатора осуществляется с помощью тормозной дифференциальной характеристики в соответствии с величинами тока небаланса и тормозного тока, при этом тормозная дифференциальная характеристика может быть билинейной или полилинейной тормозной характеристикой, тормозной характеристикой с двумя коэффициентами торможения или тормозной характеристикой с переменным коэффициентом торможения.

[0011] Уравнение срабатывания дифференциальной защиты с билинейной тормозной характеристикой следующее:

{ I d > I s п р и I r < I t I d > I s + k ( I r I t ) п р и I r I t формула (3),

где Ir - тормозной ток, Id - ток небаланса, Is - начальный ток срабатывания дифференциальной защиты, It - начальный тормозной ток, k - коэффициент торможения; и

используется определение изменения состояния: если условия уравнения срабатывания по формуле (3) удовлетворяются, то происходит срабатывание дифференциальной защиты выходного трансформатора.

Полезный эффект изобретения

[0012] Полезные эффекты настоящего изобретения следующие: осуществлена дифференциальная защита при преобразовании частоты для выходного трансформатора системы с СПЧ, причем способ защиты в настоящем изобретении адаптирован к изменению частоты в широком диапазоне, по сравнению с максимальной токовой защитой без выдержки времени значительно улучшает чувствительность обнаружения внутреннего короткого замыкания в выходном трансформаторе и лучше обеспечивает безопасность устройства.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0013] На фиг. 1 представлена принципиальная схема системы с СПЧ и измерения тока на каждой стороне выходного трансформатора в соответствии с настоящим изобретением, где TR1 - входной трансформатор, TR2 - выходной трансформатор, Ld - дроссель постоянного тока, NB1 - мостовой выпрямитель 1 стороны сетевых мостов, NB2 - мостовой выпрямитель 2 стороны сетевых мостов, MB1 - инверторный мост 1 стороны машинных мостов, MB2 - инверторный мост 2 стороны машинных мостов, VCB1 - входной автоматический выключатель, VCB2 - выходной автоматический выключатель, S1 - рубильник на стороне низкого напряжения выходного трансформатора, S2 - рубильник байпаса, СТ1 и СТ2 - трансформаторы тока на стороне 1 и 2 низкого напряжения выходного трансформатора соответственно, CT3 - трансформатор тока на стороне высокого напряжения выходного трансформатора;

[0014] на фиг. 2 приведена билинейная тормозная характеристика, где Ir - тормозной ток, Id - ток небаланса, Is - начальный ток срабатывания дифференциальной защиты, It - начальный тормозной ток, k - коэффициент торможения;

[0015] на фиг. 3 приведена тормозная характеристика с двумя коэффициентами торможения, где Ir - тормозной ток, Id - ток небаланса, Is - начальный ток срабатывания дифференциальной защиты, k1 и k2 - коэффициент 1 торможения и коэффициент 2 торможения соответственно, It1 и It2 - начальный тормозной ток 1 и начальный тормозной ток 2, а также аппроксимирующая кривая между двумя этими токами; и

[0016] на фиг. 4 представлена тормозная характеристика с переменным коэффициентом торможения, где Ir - тормозной ток, Id - ток небаланса, Is - начальный ток срабатывания дифференциальной защиты, k1 и k2, - начальный коэффициент торможения и максимальный коэффициент торможения соответственно, It - начальный тормозной ток, и аппроксимирующая кривая между точками с начальным коэффициентом торможения и максимальным коэффициентом торможения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0017] Ниже детально описаны технические решения настоящего изобретения со ссылками на прилагаемый графический материал.

[0018] Как показано на фиг. 1, трехфазные токи измеряются с помощью трансформаторов тока CT на сторонах высокого и низкого напряжения выходного трансформатора, значения выборки корректирующего тока и тока небаланса на каждой стороне выходного трансформатора получают после фазовой коррекции, а регулировку коэффициента баланса выполняют по току на каждой стороне выходного трансформатора в соответствии со схемой соединения обмоток выходного трансформатора.

[0019] В соответствии со схемой соединения обмоток выходного трансформатора сторона, обмотки которой соединены в треугольник, используется в качестве эталона для выполнения фазовой коррекции на стороне, обмотки которой соединенных в звезду; в то же время с учетом того, что вторичные номинальные токи на каждой стороне трансформатора различны, коэффициент баланса на каждой стороне регулируется, чтобы вычислить значения выборки корректирующего тока на каждой стороне и тока небаланса. В качестве примера использована схема соединения обмоток Y, d, d-11, в качестве положительного направления тока выбрано направление тока, втекающего в трансформатор на каждой стороне, значения выборки трехфазных токов на стороне высокого напряжения выходного трансформатора обозначены iHa(k), iHb(k) и iHc(k), значения выборки трехфазных токов на стороне 1 низкого напряжения обозначены iL1a(k), iL1b(k) и iL1c(k), значения выборки трехфазных токов на стороне 2 низкого напряжения обозначены как iL2a(k), iL2b(k) и iL2c(k), таким образом фазовая коррекция трехфазных токов на стороне высокого напряжения выполняется по следующей формуле:

{ i H a ( k ) = i H a ( k ) i H b ( k ) 3 i H b ( k ) = i H b ( k ) i H c ( k ) 3 i H c ( k ) = i H c ( k ) i H a ( k ) 3 формула (1),

где i H a ( k ) , i H b ( k ) и i H c ( k ) - значения выборки трехфазных токов после выполнения фазовой коррекции на стороне высокого напряжения.

[0020] Способ расчета коэффициента баланса для каждой стороны является таким же, как и в дифференциальной защите традиционного трансформатора, коэффициент баланса на стороне высокого напряжения обозначен KH, коэффициент баланса на стороне 1 низкого напряжения обозначен KL1, а коэффициент баланса на стороне 2 низкого напряжения обозначен KL2, следовательно, формула вычисления значений выборки корректирующих токов на сторонах высокого и низкого напряжения следующая:

{ i H a . j ( k ) = i H a ( k ) K H i H b . j ( k ) = i H b ( k ) K H i H c . j ( k ) = i H c ( k ) K H i L 1 a . j ( k ) = i L 1 a ( k ) K L 1 i L 1 b . j ( k ) = i L 1 b ( k ) K L 1 i L 1 c . j ( k ) = i L 1 c ( k ) K L 1 i L 2 a . j ( k ) = i L 2 a ( k ) K L 2 i L 2 b . j ( k ) = i L 2 b ( k ) K L 2 i L 2 c . j ( k ) = i L 2 c ( k ) K L 2 формула (2),

где i H a . j ( k ) , i H b . j ( k ) и i H c . j ( k ) - дискретные значения выборки корректирующих токов трех фаз на стороне высокого напряжения соответственно, i L 1 a . j ( k ) , i L 1 b . j ( k ) и i L 1 c . j ( k ) - дискретные значения выборки корректирующих токов трех фаз на стороне 1 низкого напряжения соответственно; и i L 2 a . j ( k ) , i L 2 b . j ( k ) и i L 2 c . j ( k ) - дискретные значения выборки трехфазных корректирующих токов на стороне 2 низкого напряжения соответственно.

[0021] Трехфазные токи небаланса рассчитываются с помощью корректирующего тока на сторонах высокого и низкого напряжения:

{ i d a ( k ) = i H a . j ( k ) + i L 1 a . j ( k ) + i L 2 a . j ( k ) i d b ( k ) = i H b . j ( k ) + i L 1 b . j ( k ) + i L 2 b . j ( k ) i d c ( k ) = i H c . j ( k ) + i L 1 c . j ( k ) + i L 2 c . j ( k ) формула (3)

где i d a ( k ) , i d b ( k ) и i d c ( k ) - дискретные значения выборки трехфазных токов небаланса соответственно.

[0022] При использовании алгоритма защиты пуска и останова (интегральный алгоритм определения точки перехода через нуль и метод определения текущего максимального значения см. в документе Chen Deshu. Principle and Technology for Computer Relay Protection [M]. Beijing: China Electric Power Press, 1992.), не зависящий от частоты и обдуманно применяемый при защите генератора, амплитудные значения ( I H a . j , I H b . j и I H c . j ) корректирующих токов на стороне высокого напряжения рассчитываются с использованием дискретных значений выборки корректирующих токов на стороне высокого напряжения; амплитудные значения ( I L 1 a . j , I L 1 b . j и I L 1 c . j ) корректирующих токов на стороне 1 низкого напряжения рассчитываются с использованием значений выборки корректирующих токов на стороне 1 низкого напряжения; амплитудные значения ( I L 2 a . j , I L 2 b . j и I L 2 c . j ) корректирующих токов на стороне 2 низкого напряжения рассчитываются с использованием значений выборки корректирующих токов на стороне 2 низкого напряжения; и амплитудные значения ( I d a , I d b и I d c ) токов небаланса рассчитываются с использованием значений выборки токов небаланса.

[0023] Тормозные токи рассчитываются с помощью корректирующих токов на сторонах высокого и низкого напряжения следующим образом:

{ I r a = I H a . j + I L 1 a . j + I L 2 a . j 2 I r b = I H b . j + I L 1 b . j + I L 2 b . j 2 I r c = I H c . j + I L 1 c . j + I L 2 c . j 2 формула (4),

где I r a , I r b и I r c - тормозные токи трех фаз соответственно.

[0024] Дифференциальная защита при преобразовании частоты для выходного трансформатора осуществляется с помощью тормозной дифференциальной характеристики в соответствии с величинами тока небаланса и тормозного тока. Как показано на фиг. 2, фиг. 3 и фиг. 4, тормозная дифференциальная характеристика может быть билинейной или полилинейной тормозной характеристикой, тормозной характеристикой с двумя коэффициентами торможения или тормозной характеристикой с переменным коэффициентом торможения (см. документ Gao Chunru. Setting Calculation and Operation Technology of Relay Protection for Large Generator Unit (second edition) [M]. Beijing: China Electric Power Press, 2010.)

[0025] При использовании в качестве примера билинейной тормозной характеристики, приведенной на фиг. 2, уравнение срабатывания дифференциальной защиты следующее:

{ I d > I s п р и I r < I t I d > I s + k ( I r I t ) п р и I r I t формула (5)

где Ir - тормозной ток, Id - ток небаланса, Is - начальный ток срабатывания дифференциальной защиты, It - начальный тормозной ток, k - коэффициент торможения.

[0026] Используется определение изменения состояния: если условия уравнения срабатывания формулы (5) удовлетворяются, то происходит срабатывание дифференциальной защиты выходного трансформатора.

[0027] Вышеприведенные варианты осуществления изобретения используются только для описания технических идей настоящего изобретения и не ограничивают объем патентной защиты настоящего изобретения, а любое видоизменение, выполненное на основании технических решений в соответствии с техническими идеями, предложенными в настоящем изобретении, будет находиться в пределах объема патентной защиты настоящего изобретения.

1. Способ дифференциальной защиты при преобразовании частоты для выходного трансформатора системы со статическим преобразователем частоты (СПЧ), отличающийся тем, что устройство защиты измеряет трехфазные токи на каждой стороне выходного трансформатора системы с СПЧ; в соответствии со схемой соединения обмоток выходного трансформатора сторону, обмотки которой соединены в треугольник, используют в качестве эталона для выполнения фазовой коррекции на стороне, обмотки которой соединены в звезду; в то же время с учетом того, что вторичные номинальные токи на каждой стороне трансформатора различны, коэффициент баланса на каждой стороне регулируют, чтобы вычислить значения выборки корректирующего тока на каждой стороне и тока небаланса; для расчета амплитудных значений корректирующего тока, тока небаланса и тормозного тока используют алгоритм защиты пуска и останова генератора, не зависящий от частоты; причем дифференциальную защиту при преобразовании частоты для выходного трансформатора осуществляют с помощью тормозной дифференциальной характеристики в соответствии с величинами тока небаланса и тормозного тока.

2. Способ дифференциальной защиты при преобразовании частоты для выходного трансформатора системы с СПЧ по п. 1, отличающийся тем, что используют алгоритм защиты пуска и останова генератора, не зависящий от частоты, который включает интегральный алгоритм определения точки перехода через нуль или способ определения текущего максимального значения.

3. Способ дифференциальной защиты при преобразовании частоты для выходного трансформатора системы с СПЧ по п. 1, отличающийся тем, что в соответствии со схемой соединения обмоток выходного трансформатора сторону, обмотки которой соединены в треугольник, используют в качестве эталона для выполнения фазовой коррекции на стороне, обмотки которой соединены в звезду; в то же время с учетом того, что вторичные номинальные токи на каждой стороне трансформатора отличаются, коэффициент баланса на каждой стороне регулируют; в случае соединения обмоток трансформатора по схеме Y, d, d-11 способ расчета коэффициента баланса для каждой стороны такой же, как и для дифференциальной защиты традиционного трансформатора; причем коэффициент баланса на стороне высокого напряжения обозначен KH, коэффициент баланса на стороне 1 низкого напряжения обозначен KL1 и коэффициент баланса на стороне 2 низкого напряжения обозначен KL2, для получения iHa.j(k), iHb.j(k) и iHc.j(k), которые представляют собой значения выборки корректирующих токов трех фаз соответственно на стороне высокого напряжения, причем iL1a.j(k), iL1b.j(k) и iL1c.j(k) представляют собой значения выборки корректирующих токов трех фаз соответственно на стороне 1 низкого напряжения, и iL2a.j(k), iL2b.j(k) и iL2c.j(k) представляют собой значения выборки корректирующих токов трех фаз соответственно на стороне 2 низкого напряжения;
трехфазные токи небаланса рассчитывают с помощью корректирующего тока на сторонах высокого и низкого напряжения:
{ i d a ( k ) = i H a . j ( k ) + i L 1 a . j ( k ) + i L 2 a . j ( k ) i d b ( k ) = i H b . j ( k ) + i L 1 b . j ( k ) + i L 2 b . j ( k ) i d c ( k ) = i H c . j ( k ) + i L 1 c . j ( k ) + i L 2 c . j ( k ) формула (1),
где i d a ( k ) , i d b ( k ) и i d c ( k ) - дискретные значения выборки токов небаланса трех фаз соответственно;
с помощью алгоритма защиты пуска и останова генератора, не зависящего от частоты, рассчитывают амплитудные значения I H a . j , I H b . j и I H c . j корректирующих токов на стороне высокого напряжения с использованием значений выборки корректирующих токов на стороне высокого напряжения; амплитудные значения I L 1 a . j , I L 1 b . j и I L 1 c . j корректирующих токов на стороне 1 низкого напряжения рассчитывают с использованием значений выборки корректирующих токов на стороне 1 низкого напряжения; амплитудные значения I L 2 a . j , I L 2 b . j и I L 2 c . j корректирующих токов на стороне 2 низкого напряжения рассчитывают с использованием значений выборки корректирующих токов на стороне 2 низкого напряжения; и амплитудные значения I d a , I d b и I d c токов небаланса рассчитывают с использованием значений выборки токов небаланса;
тормозные токи вычисляют с помощью корректирующих токов на сторонах высокого и низкого напряжения:
{ I r a = I H a . j + I L 1 a . j + I L 2 a . j 2 I r b = I H b . j + I L 1 b . j + I L 2 b . j 2 I r c = I H c . j + I L 1 c . j + I L 2 c . j 2 формула (2),
где I r a , I r b и I r c - тормозные токи трех фаз соответственно;
дифференциальную защиту при преобразовании частоты для выходного трансформатора осуществляют с помощью тормозной дифференциальной характеристики в соответствии с величинами тока небаланса и тормозного тока, при этом тормозная дифференциальная характеристика может быть билинейной или полилинейной тормозной характеристикой, тормозной характеристикой с двумя коэффициентами торможения или тормозной характеристикой с переменным коэффициентом торможения;
при этом уравнение срабатывания дифференциальной защиты с билинейной тормозной характеристикой выглядит следующим образом:
{ I d > I s п р и I r < I t I d > I s + k ( I r I t ) п р и I r I t формула (3)
где Ir - тормозной ток, Id - ток небаланса, Is - начальный ток срабатывания дифференциальной защиты, It - начальный тормозной ток, k - коэффициент торможения; и
применяют определение изменения состояния, если условия уравнения срабатывания по формуле (3) удовлетворяются, то происходит срабатывание дифференциальной защиты выходного трансформатора.

4. Способ дифференциальной защиты при преобразовании частоты для выходного трансформатора системы с СПЧ по п. 1, отличающийся тем, что тормозная дифференциальная характеристика содержит билинейную или полилинейную характеристику, тормозную характеристику с двумя коэффициентами торможения или тормозную характеристику с переменным коэффициентом торможения.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к дифференциальной защите, и может быть использовано для дифференциальной защиты трансформаторов. Техническим эффектом предлагаемого устройства является отстройка от бросков тока намагничивания при включении под напряжение для дифференциальной защиты трансформаторов, которая не вызывает замедления действия при насыщении трансформаторов тока в приделах до пятидесяти процентов токовой погрешности ТТ, повышение чувствительности дифференциальной защиты по току срабатывания ниже 0,3Iном.

Изобретение относится к области электротехники, а именно к дифференциальной защите, и может быть использовано для дифференциальной защиты трансформаторов. Техническим результатом предлагаемого способа является отстройка от бросков тока намагничивания при включении под напряжение для дифференциальной защиты трансформаторов, которая в переходном процессе не вызывает замедления действия при насыщении трансформаторов тока в приделах до пятидесяти процентов токовой погрешности ТТ, а также значительное повышение чувствительности дифференциальной защиты силового трансформатора.

Изобретение относится к устройствам релейной защиты силовых трансформаторов. Технический результат - возможность установки тока срабатывания защиты в четыре и более раз меньше, чем у электромагнитных реле, при регулировании напряжения трансформатора под нагрузкой до ±12,5%.

Изобретение относится к электротехнике, а именно к устройствам для релейной защиты трансформаторов от коротких замыканий (КЗ), и может быть использовано для защиты двухобмоточных и трехобмоточных силовых трансформаторов.

Изобретение относится к электротехнике, к релейной защите силовых трансформаторов распределительных сетей. .

Изобретение относится к электротехнике, а именно к устройствам защиты силовых трансформаторов. .

Изобретение относится к электротехнике, к релейной защите силового трансформатора и может быть использовано для быстрой блокировки дифференциальной защиты при бросках тока включения, когда имеется доступ к замеру напряжения, создающего ток короткого замыкания и ток броска.

Изобретение относится к области электроэнергетики и направлено на построение универсальной защиты трансформатора, использующей имеющуюся информацию в максимально полном объекте. Поставленная задача решается путем использования моделей обмоток трансформатора, а также моделей его магнитопровода. Задействуется информация о наблюдаемых токах и напряжениях всех обмоток, а также априорная информация о параметрах обмоток и магнитопровода. Аварийное состояние трансформатора распознается по критерию адекватности моделей реальному объекту. Способ защиты включает наблюдение отсчетов токов и напряжений, их интерполяционное преобразование в непрерывные входные величины, используемые в моделях, формирование двумерных выходных сигналов, на плоскостях отображения которых задают области срабатывания релейной защиты. Новыми являются операции преобразования входных величин вплоть до формирования выходных сигналов. Первые обмотки - те, модели которых должны быть задействованы в начале преобразований. Входные токи и напряжения этих моделей преобразуются в производную потоков стержней, на которых располагаются первые обмотки. Модели других обмоток используются иначе. Для них входными величинами становятся производные магнитных потоков и собственные токи, а выходными - напряжения на зажимах. Формируют разностные напряжения, указывающие несоответствие между напряжениями, полученными в результате наблюдения объекта и путем его моделирования. Аналогично используют модели независимых контуров магнитопровода, в которых определяются падения магнитных напряжений. Один путь их определения - через потоки стержней. О неадекватности модели и объекта судят как по электрическим, так и магнитным разностным напряжениям. Двумерные электрические и магнитные сигналы образуются из разностных и базовых напряжений. Характеристики срабатывания защиты задают на плоскостях отображения двумерных сигналов. 10 ил.

Использование: в области электротехники. Технический результат - предотвращение ущерба от невосстанавливаемого повреждения автотрансформатора вследствие длительного протекания через автотрансформатор тока короткого замыкания, возникшего на стороне низшего напряжения и в условиях отказа в срабатывании основной или резервной релейной защиты автотрансформатора. Устройство релейной защиты для ближнего резервирования защит автотрансформатора содержит измерительный орган - реле тока, вход которого подключен к трансформатору тока, трансформатор тока включен в общие части обмоток высокого и среднего напряжения фаз автотрансформатора, а выходами измерительный орган - реле тока последовательно соединен с органом выдержки времени и исполнительным органом, выходы которого соединены со схемами управления выключателей автотрансформатора на сторонах высокого, среднего и низшего напряжения. В случае, когда требуется повышенная селективность, в устройство релейной защиты для ближнего резервирования защит автотрансформатора введены второй измерительный орган, который выполнен в виде реле минимального напряжения, и логический элемент «И» с двумя входами, причем вход второго измерительного органа подключен к трансформатору напряжения на стороне низшего напряжения автотрансформатора, а выход соединен с одним из входов введенного логического элемента защиты «И», другой вход которого соединен с выходом первого измерительного органа - реле тока, при этом выход логического элемента «И» соединен с входом органа выдержки времени. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, а именно к конструкции дифференцирующих индукционных преобразователей тока (ДИПТ), и предназначено для измерения тока в проводниках высоковольтных электроэнергетических систем. Катушка охватывает изолятор ввода в какое-либо электрооборудование: выключатель, силовой трансформатор или другое. Шина ввода является проводником, по которому проходит измеряемый ток. Катушка ДИПТ содержит несущий тороид, выполненный на основе эластичной трубки из диэлектрического материала, стыковочные поверхности которой плотно соединены одна с другой при установке катушки ДИПТ на соединительную втулку изолятора ввода. N одинаковых секционных круговых соленоидов имеют однослойные обмотки. Обмоточные соединители с разъемными контактами и (n-1) соединительных муфт выполнены из жесткого изоляционного материала и прикреплены к несущему тороиду. Каждая из соединительных муфт снабжена двумя имеющими форму кругового цилиндра шипами, первый шип m–й муфты плотно соединен с цилиндрическим отверстием каркаса m–го соленоида, а второй шип m–й муфты - с цилиндрическим отверстием каркаса (m+1)–го соленоида. Секционные муфты равномерно распределены вдоль осевой линии несущего соленоида. Обратный провод проходит внутри катушки через сквозные цилиндрические каналы соединительных муфт в направлении, обратном по отношению к продольной осевой линии катушки. Начало обратного провода подключено к концу обмотки n–го соленоида. Начало обмотки первого соленоида и конец обратного провода соединены с зажимами катушки. Технический результат состоит в снижении стоимости ДИПТ путем упрощения технологии изготовления и монтажа. 2 з.п. ф-лы, 2 ил.
Наверх