Многозонная камера сгорания

Многозонная камера сгорания содержит корпус, имеющий головной конец, секцию камеры сгорания, расположенную ниже по потоку от головного конца, и смесительную секцию, расположенную между указанными головным концом и секцией камеры сгорания, предварительный смеситель, ступенчатый центральный корпус. Предварительный смеситель проходит от головного конца через смесительную секцию и предназначен для вывода, в первом осевом местоположении, первой смеси в секцию камеры сгорания. Ступенчатый центральный корпус расположен в кольцевом пространстве, ограниченном в предварительном смесителе, и содержит внешний корпус и внутренний корпус. Внешний корпус предназначен для вывода, во втором осевом местоположении ниже по потоку от первого осевого местоположения, второй смеси в секцию камеры сгорания. Внутренний корпус расположен в кольцевом пространстве, ограниченном во внешнем корпусе, и предназначен для вывода, в третьем осевом местоположении ниже по потоку от второго осевого местоположения, третьей смеси в секцию камеры сгорания, при этом обеспечивается независимое и отдельное регулирование вывода указанных смесей в соответствии с рабочим режимом многозонной камеры сгорания. Изобретение направлено на повышение эффективности сгорания. 6 з.п. ф-лы, 3 ил.

 

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0001] Изобретение, описанное в данном документе, относится к многозонной камере сгорания и более конкретно к многозонной камере сгорания, содержащей ступенчатый центральный корпус.

[0002] В газотурбинных двигателях компрессор обеспечивает сжатие поступающих газов с получением сжатого газа. Этот сжатый газ направляется в камеру сгорания, где он может быть смешан с топливом и сожжен с получением потока высокотемпературных текучих сред. Данные высокотемпературные текучие среды направляются в турбинную секцию, в которой их энергия преобразуется в механическую энергию, предназначенную для использования при выработке мощности и/или электроэнергии.

[0003] При работе в условиях полной скорости и полной нагрузки данная конфигурация может быть высокоэффективной и приводит к образованию относительно малого количества загрязняющих выбросов. Однако при работе в условиях неполной или частичной нагрузки смешивание топлива и воздуха и последующее сжигание происходят не при тех температурах и массовых расходах, которые приводят к эффективному сжиганию. Таким образом, в результате данного процесса возможно образование увеличенного количества загрязняющих выбросов, а также нежелательное снижение вырабатываемой мощности и/или электроэнергии.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] Согласно одному аспекту изобретения предложена многозонная камера сгорания, содержащая предварительный смеситель, предназначенный для вывода первой смеси в первичную зону секции камеры сгорания, и ступенчатый центральный корпус, расположенный в кольцевом пространстве, ограниченном в указанном предварительном смесителе. Ступенчатый центральный корпус содержит внешний корпус, предназначенный для вывода, у первой радиально-осевой ступени, второй смеси во вторичную зону секции камеры сгорания, и внутренний корпус, расположенный в кольцевом пространстве, ограниченном во внешнем корпусе, и предназначенный для вывода, у второй радиально-осевой ступени, третьей смеси в третичную зону секции камеры сгорания.

[0005] Согласно другому аспекту изобретения предложена многозонная камера сгорания, содержащая корпус, имеющий головной конец, секцию камеры сгорания, расположенную ниже по потоку от головного конца, и смесительную секцию, расположенную между головным концом и секцией камеры сгорания, предварительный смеситель, проходящий от головного конца через смесительную секцию и предназначенный для вывода, в первом осевом местоположении, первой смеси в секцию камеры сгорания, и ступенчатый центральный корпус, расположенный в кольцевом пространстве, ограниченном в предварительном смесителе. Ступенчатый центральный корпус содержит внешний корпус, предназначенный для вывода, во втором осевом местоположении ниже по потоку от первого осевого местоположения, второй смеси в секцию камеры сгорания, и внутренний корпус, расположенный в кольцевом пространстве, ограниченном в указанном внешнем корпусе, и предназначенный для вывода, в третьем осевом местоположении ниже по потоку от второго осевого местоположения, третьей смеси в секцию камеры сгорания.

[0006] Согласно еще одному аспекту изобретения предложена многозонная камера сгорания, содержащая корпус, имеющий головной конец, секцию камеры сгорания, расположенную ниже по потоку от головного конца, и смесительную секцию, расположенную между головным концом и секцией камеры сгорания, предварительный смеситель, проходящий от головного конца через смесительную секцию и предназначенный для вывода, в первом осевом местоположении, первой смеси в секцию камеры сгорания, и ступенчатый центральный корпус, расположенный в кольцевом пространстве, ограниченном в предварительном смесителе. Ступенчатый центральный корпус содержит внешний корпус, предназначенный для вывода, во втором осевом местоположении ниже по потоку от первого осевого местоположения, второй смеси в секцию камеры сгорания, и внутренний корпус, расположенный в кольцевом пространстве, ограниченном в указанном внешнем корпусе, и предназначенный для вывода, в третьем осевом местоположении ниже по потоку от второго осевого местоположения, третьей смеси в секцию камеры сгорания.

[0007] Эти и другие преимущества и особенности станут более очевидны из нижеследующего описания при его рассмотрении совместно с чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Рассматриваемое изобретение конкретно указано и четко изложено в формуле изобретения, приведенной в заключительной части описания. Вышеуказанные и другие особенности и преимущества изобретения очевидны из нижеследующего подробного описания при его рассмотрении совместно с прилагаемыми чертежами, на которых:

[0009] фиг. 1 изображает вид сбоку многозонной камеры сгорания,

[0010] фиг. 2 изображает увеличенный вид сбоку центрального корпуса многозонной камеры сгорания, показанной на фиг. 1,

[0011] фиг. 3 изображает увеличенный вид сбоку центрального корпуса, показанного на фиг. 2, в соответствии с другими вариантами выполнения.

[0012] В подробном описании рассмотрены варианты выполнения изобретения, а также его преимущества и особенности, приведенные в качестве примера со ссылкой на чертежи.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0013] На фиг. 1 изображена многозонная камера 10 сгорания турбоустановки, например газотурбинного двигателя. В иллюстративном газотурбинном двигателе компрессор обеспечивает сжатие поступающих газов с получением сжатого газа. Этот сжатый газ направляется в многозонную камеру 10 сгорания, где он может быть смешан с топливом и сожжен с получением потока высокотемпературных текучих сред. Данные высокотемпературные текучие среды направляются в турбинную секцию, в которой их энергия преобразуется в механическую энергию, предназначенную для использования при выработке мощности и/или электроэнергии.

[0014] Камера 10 содержит корпус 20, предварительный смеситель 40 и ступенчатый центральный корпус 60. Корпус 20 содержит жаровую трубу 21, которая является кольцевой и выполнена с образованием секции 211 камеры сгорания с расположенной в ней зоной сгорания, проточный патрубок 22, расположенный вокруг жаровой трубы 21 с образованием кольцевого пространства, через которое проходит по меньшей мере указанный сжатый газ, созданный компрессором, и торцевую крышку 23, ограничивающую головной конец 212 камеры 10. Секция 211 ограничена ниже по потоку от головного конца 212 смесительной секцией 213, расположенной между ними в осевом направлении.

[0015] Предварительный смеситель 40 проходит от головного конца 212 через смесительную секцию 213 и может иметь кольцевую форму или быть выполнен в виде ряда полостей, расположенных кольцевым образом. В любом случае смеситель 40 служит для приема первого количества топлива из первого топливного контура 41 и первого количества сжатого газа, созданного компрессором. Указанные первое количество топлива и первое количество сжатого газа смешиваются вдоль осевой длины смесителя 40 и выводятся в качестве первой смеси в первом осевом местоположении 70 в первичную зону 80 секции 211. Первичная зона 80 проходит назад от передней части секции 211 и может быть расположена вблизи жаровой трубы 21 в радиальном направлении.

[0016] В соответствии с фиг. 1 и 2 ступенчатый центральный корпус 60 расположен в кольцевом пространстве 61, ограниченном в смесителе 40, и содержит по меньшей мере внешний корпус 62 и внутренний корпус 63. Внешний корпус 62 служит для приема второго количества топлива из второго топливного контура 64 и второго количества сжатого газа, созданного компрессором. Указанные второе количество топлива и второе количество сжатого газа смешиваются вдоль осевой длины корпуса 62 и выводятся в качестве второй смеси во втором осевом местоположении 71, находящемся ниже по потоку от первого местоположения 70, во вторичную зону 90 секции 211. Вторичная зона 90 ограничена в радиально внутреннем направлении от первичной зоны 80 и проходит назад от второго местоположения 71. Местоположение 71 находится на осевом расстоянии L1 от местоположения 70. Таким образом, внешний корпус 62 предназначен для вывода второй смеси во вторичную зону 90 у первой радиально-осевой ступени 110.

[0017] Внутренний корпус 63 расположен в кольцевом пространстве 65, ограниченном во внешнем корпусе 62. Корпус 63 служит для приема третьего количества топлива из третьего топливного контура 66 и третьего количества сжатого газа, созданного компрессором. Указанные третье количество топлива и третье количество сжатого газа смешиваются вдоль осевой длины корпуса 63 и выводятся в качестве третьей смеси в третьем осевом местоположении 72, находящемся ниже по потоку от второго местоположения 71, в третичную зону 100 секции 211. Третичная зона 100 ограничена в радиально внутреннем направлении от вторичной зоны 90 и проходит назад от третьего местоположения 72. Местоположение 72 находится на осевом расстоянии L2 от местоположения 71. Таким образом, внутренний корпус 63 предназначен для вывода третьей смеси в третичную зону 100 у второй радиально-осевой ступени 120.

[0018] В соответствии с вариантами выполнения осевые расстояния LI и L2 могут быть равными или отличаться друг от друга в зависимости от проектных соображения и эксплуатационных требований.

[0019] Первый топливный контур 41, второй топливный контур 64 и третий топливный контур 66 выполнены независимыми друг от друга и управляются по отдельности так, что первая смесь, вторая смесь и третья смесь снабжаются топливом независимо и по отдельности. Таким образом, относительные количества топлива и сжатых газов в каждой смеси могут регулироваться независимо и отдельно в соответствии с рабочим режимом камеры 10 сгорания. Например, при работе в условиях полной скорости и полной нагрузки (FSFL) все смеси - первая, вторая и третья - могут содержать топливо и сжатые газы. В отличие от этого при работе в условиях неполной или частичной нагрузки вторая смесь и третья смесь могут содержать сжатые газы и значительно уменьшенные количества (то есть нулевые или ничтожные количества) топлива.

[0020] Как показано на фиг. 2, внешний корпус 62 может содержать первый ряд лопаток 130, а внутренний корпус 63 может содержать второй ряд лопаток 131. В соответствии с вариантами выполнения первый ряд лопаток 130 и второй ряд лопаток могут служить для придания завихрения соответственно второй смеси и третьей смеси. Указанное завихрение может быть обеспечено таким образом, что вторая смесь и третья смесь выводятся с вращением в одном направлении или с вращением в противоположных направлениях. В любом случае завихрение может быть создано с равными/аналогичными углами завихрения или различными углами завихрения. Несмотря на то, что первый ряд лопаток 130 и второй ряд лопаток 131 показаны расположенными сзади от первого осевого местоположения 70, следует понимать, что изображенный вариант приведен исключительно в качестве примера и первый ряд лопаток 130 и второй ряд лопаток 131 могут быть расположены спереди, сзади и/или на одной оси с местоположением 70.

[0021] В соответствии с фиг. 3 и согласно другим вариантам выполнения для ступенчатого центрального корпуса 60 могут быть выполнены по меньшей мере одна или более дополнительных радиально-осевых ступеней 140. Для ясности и краткости ниже описана только одна дополнительная радиально-осевая ступень 140, однако следует понимать, что данный вариант приведен исключительно в качестве примера. Если центральный корпус 60 содержит дополнительную ступень 140, указанный корпус 60 также содержит дополнительный корпус 141, расположенный между внешним корпусом 62 и внутренним корпусом 63. В дополнительный корпус 141 независимо и отдельно подаются топливо и сжатые газы, которые смешиваются вдоль осевой длины корпуса 141 и выводятся в секцию 211 в качестве четвертой смеси в четвертом осевом местоположении 142, находящемся ниже по потоку от второго местоположения 71 и выше по потоку от третьего местоположения 72. Второе местоположение 71 находятся на осевом расстоянии L1 от первого местоположения 70, четвертое местоположение 142 находится на осевом расстоянии L2 от первого местоположения 70, а третье местоположение 72 находится на осевом расстоянии L3 от первого местоположения 70. Таким образом, дополнительный корпус 141 предназначен для вывода четвертой смеси у дополнительной ступени 140.

[0022] Дополнительный корпус 141 может также содержать дополнительный ряд лопаток 143 для придания завихрения четвертой смеси в том же направлении/под тем же углом, как в первом ряде лопаток 130 и/или во втором ряде лопаток 131, либо в другом направлении/под другим углом. Как и в вышеописанном варианте, несмотря на то, что первый ряд лопаток 130, второй ряд лопаток 131 и дополнительный ряд лопаток 143 показаны расположенными сзади от первого осевого местоположения 70, следует понимать, что изображенный вариант приведен исключительно в качестве примера и первый ряд лопаток 130, второй ряд лопаток 131 и дополнительный ряд лопаток 143 могут быть расположены спереди, сзади и/или на одной оси с местоположением 70.

[0023] В соответствии с вариантами выполнения осевые расстояния L1, L2 и L3 могут быть отнесены друг от друга с одинаковым или различным осевым интервалом в зависимости от проектных соображений и эксплуатационных требований.

[0024] Несмотря на то, что изобретение подробно описано применительно только к ограниченному числу вариантов выполнения, следует понимать, что оно не ограничено указанными описанными вариантами выполнения. Напротив, изобретение может быть изменено с включением любого числа вариантов, модификаций, замен или эквивалентных конструкций, которые не описаны выше, но соответствуют сущности и объему изобретения. Кроме того, несмотря на то, что описаны различные варианты выполнения, следует понимать, что в аспекты изобретения могут входить лишь некоторые из описанных вариантов выполнения. Таким образом, изобретение не ограничено вышеприведенным описанием, а ограничено только объемом прилагаемой формулы изобретения.

1. Многозонная камера сгорания, содержащая
корпус, имеющий головной конец, секцию камеры сгорания, расположенную ниже по потоку от головного конца, и смесительную секцию, расположенную между указанными головным концом и секцией камеры сгорания,
предварительный смеситель, проходящий от головного конца через смесительную секцию и предназначенный для вывода, в первом осевом местоположении, первой смеси в секцию камеры сгорания,
ступенчатый центральный корпус, расположенный в кольцевом пространстве, ограниченном в предварительном смесителе, и содержащий
внешний корпус, предназначенный для вывода, во втором осевом местоположении ниже по потоку от первого осевого местоположения, второй смеси в секцию камеры сгорания, и
внутренний корпус, расположенный в кольцевом пространстве, ограниченном во внешнем корпусе, и предназначенный для вывода, в третьем осевом местоположении ниже по потоку от второго осевого местоположения, третьей смеси в секцию камеры сгорания, при этом обеспечивается независимое и отдельное регулирование вывода указанных смесей в соответствии с рабочим режимом многозонной камеры сгорания.

2. Многозонная камера сгорания по п. 1, в которой первая смесь, вторая смесь и третья смесь снабжаются топливом по отдельности.

3. Многозонная камера сгорания по п. 1, в которой вторая смесь и третья смесь содержат воздух и значительно уменьшенные количества топлива при работе в условиях неполной нагрузки.

4. Многозонная камера сгорания по п. 1, в которой вторая смесь и третья смесь выводятся с вращением в одном направлении.

5. Многозонная камера сгорания по п. 1, в которой вторая смесь и третья смесь выводятся с вращением в противоположных направлениях.

6. Многозонная камера сгорания по п. 1, в которой вторая смесь и третья смесь выводятся под одинаковыми углами вращения.

7. Многозонная камера сгорания по п. 1, в которой ступенчатый центральный корпус содержит дополнительный корпус, расположенный между внешним корпусом и внутренним корпусом и предназначенный для вывода, у третьей радиально-осевой ступени, четвертой смеси в четвертую зону секции камеры сгорания.



 

Похожие патенты:

Система для впрыска эмульсии из первой текучей среды и второй текучей среды в пламя горелки содержит центральный газовый канал, наружный газовый канал, канал текучей среды и смесительное устройство для образования эмульсии из первой текучей среды и второй текучей среды и для выпуска эмульсии в сужающийся кольцевой канал текучей среды и для впрыска эмульсии из указанного кольцевого канала текучей среды в пламя.

Изобретение относится к горелочному устройству промежуточного подогрева и способу работы газотурбинной установки с последовательным сгоранием. Горелочное устройство промежуточного подогрева выполнено для второй камеры сгорания газотурбинной установки.

Изобретение относится к области сжигания топлива и может найти применение в воздушно-реактивных двигателях, в газотурбинных, топочных и теплоэнергетических установках, в установках по переработке и утилизации бытовых и промышленных отходов.

Камера сгорания газовой турбины содержит пилотную топливную форсунку, расположенную в среднем участке цилиндра, открывающегося на одном конце в камеру сгорания. Пилотная топливная форсунка содержит топливную форсунку, а также радиально отстоящую вокруг внешнего периметра топливной форсунки цилиндрическую наружную обшивку.

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора.

Камера сгорания для газовой турбины содержит группу радиально внешних сопел, по меньшей мере центральное сопло, первую и вторую камеры сгорания. Внешние сопла расположены по существу по кольцевой схеме и выпускной конец каждого из них расположен с возможностью подачи топлива и/или воздуха в первую камеру сгорания.

Горелка газовой турбины содержит реакционную камеру (5) и множество выходящих в реакционную камеру (5) реактивных сопел (6). Реактивными соплами (6) с помощью струи (2) флюида через выпускное отверстие (22) флюид подается в реакционную камеру (5).

Камера сгорания содержит торцевую крышку, камеру воспламенения, расположенную за торцевой крышкой, форсунки, расположенные радиально в торцевой крышке и содержащие первое подмножество форсунок и второе подмножество форсунок.

Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя содержит корпус с расположенной в нем кольцевой жаровой трубой, включающей две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части жаровой трубы фронтовым устройством, систему подачи топлива и, по меньшей мере, две запальные свечи.

Изобретение относится к энергетическому, химическому и транспортному машиностроению и может быть использовано в камерах сгорания газотурбинных установок. Предложен способ сжигания топлива, заключающийся в предварительном разделении потока воздуха на коаксиальные кольцевые струи, закрутке соседних смежных струй в противоположных направлениях, причем ближайшие одна к другой части соседних закрученных в противоположном направлении струй подают в радиальном направлении навстречу одна другой с образованием турбулентного сдвигового слоя, при этом подачу топлива осуществляют в этот слой для последующего воспламенения образовавшейся топливовоздушной смеси.

Группа изобретений относится к парогазогенераторам для применения в забое промысловых скважин. Парогазогенератор содержит корпус, образующий основную камеру сгорания, корпус форсунки, присоединенный в корпусе, теплоизоляцию, компоновку форсунки с предварительным смешиванием воздуха с топливом, впуск воздуха предварительного смешивания, элемент предварительного смешивания топлива, калильное воспламеняющее устройство. Кроме того, парогазогенератор содержит топливную форсунку, горелку и струйный удлинитель. Причем корпус включает в себя впуск топлива для приема потока топлива и впуск воздуха для приема потока воздуха. Корпус форсунки включает в себя камеру первоначального сгорания. Теплоизоляция выполнена внутри камеры первоначального сгорания. Компоновка форсунки с предварительным смешиванием воздуха с топливом выполнена с возможностью дозирования подачи топливовоздушной смеси в камеру первоначального сгорания. Впуск воздуха предварительного смешивания выполнен с возможностью направления части потока воздуха, принятого из впуска воздуха, в компоновку форсунки с предварительным смешиванием воздуха с топливом. Элемент предварительного смешивания топлива выполнен с возможностью направления части потока топлива из впуска топлива в компоновку форсунки с предварительным смешиванием воздуха с топливом. Калильное воспламеняющее устройство выполнено с возможностью нагрева и воспламенения топливовоздушной смеси в камере первоначального сгорания для создания нестационарного выброса, проходящего в основную камеру сгорания. Топливная форсунка выполнена с возможностью дозирования подачи остального топлива в основную камеру сгорания. Горелка выполнена с возможностью дозирования подачи остального воздуха в основной камере сгорания. При этом поток топлива из топливной форсунки и поток воздуха из горелки воспламеняются в основной камере сгорания с помощью нестационарного выброса из камеры первоначального сгорания. Струйный удлинитель установлен для предотвращения входа топлива из топливной форсунки в камеру первоначального сгорания. Техническим результатом является повышение эффективности системы сжигания топлива. 3 н. и 18 з.п. ф-лы, 5 ил.

Система для подачи рабочей текучей среды в камеру сгорания содержит топливную форсунку, топочную камеру, проточный рукав, который по окружности охватывает топочную камеру для ограничения кольцевого канала, который окружает жаровую трубу, топливные инжекторы, распределительный коллектор, проход для текучей среды. Топочная камера расположена ниже по потоку от топливной форсунки и содержит жаровую трубу, которая по окружности расположена вокруг по меньшей мере части топочной камеры. Топливные инжекторы расположены по окружности вокруг проточного рукава и обеспечивают проточное сообщение через жаровую трубу и проточный рукав и в топочную камеру. Распределительный коллектор по окружности охватывает топливные инжекторы с обеспечением кольцевого объема между коллектором и проточным рукавом. Проход для текучей среды проходит через распределительный коллектор и обеспечивает проточное сообщение через распределительный коллектор к указанным кольцевому объему и топливным инжекторам. Изобретение направлено на увеличение кпд и снижение выбросов из камеры сгорания. 3 н. и 17 з.п. ф-лы, 10 ил.

Изобретение относится к энергетике. Камера сгорания содержит камеру горения, которая задает продольную ось. Первичная зона реакции расположена в камере горения, а вторичная зона реакции расположена внутри камеры горения ниже по потоку от первичной зоны реакции. Центральная топливная форсунка проходит по оси внутри камеры горения ко вторичной зоне реакции, при этом несколько инжекторов для текучей среды расположены по окружности внутри центральной топливной форсунки ниже по потоку от первичной зоны реакции. Каждый инжектор для текучей среды задает дополнительную продольную ось в наружном направлении от центральной топливной форсунки, которая, по существу, перпендикулярна продольной оси камеры горения. Также представлены варианты камеры сгорания. Изобретение позволяет избежать образования локализованных горячих полос вдоль внутренней поверхности камеры горения и переходного патрубка. 3 н. и 17 з.п. ф-лы, 5 ил.

Газотурбинный двигатель с внешним теплообменником содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с возможностью регулируемого забора воздуха в двигатель. Система подачи электролита выполнена с возможностью подачи электролита через форсунку с кавитатором в поток забираемого в двигатель воздуха и с возможностью подачи топлива в камеру сгорания. Электролизер выполнен в виде кавитатора с центральным телом путем подводки постоянного электрического тока от источника питания к элементам кавитатора и установлен в обособленном корпусе, герметично соединенном с камерой сгорания, с возможностью подачи газовой смеси под давлением за компрессором через этот электролизер-кавитатор с центральным телом в камеру сгорания, трубу Леонтьева для разделения потока газа из камеры сгорания на дозвуковую и сверхзвуковую составляющие, канал рециркуляции дозвукового потока. Канал рециркуляции дозвукового потока соединен с теплообменником. Изобретение направлено на сокращение расхода топлива и повышение экономичности двигателя. 2 ил.

Изобретение относится к блоку камеры сгорания газотурбинного двигателя, содержащему корпус, камеру сгорания и, по меньшей мере, один топливный инжектор для запуска газотурбинного двигателя. Камера сгорания образована двумя стенками вращения, а именно, внутренней стенкой и внешней стенкой, протягивающимися одна внутри другой и соединяемыми посредством кольцевой стенки основания камеры. Внешняя стенка камеры прикреплена к кольцевой внешней стенке корпуса. Инжектор присоединен к кольцевой внешней стенке корпуса и содержит оболочку для зажигания топлива, протягивающуюся внутри корпуса последовательно через отверстие в стенке корпуса и отверстие во внешней стенке камеры сгорания перед раскрытием в упомянутую камеру. По меньшей мере, одна стенка оболочки зажигания, которая протягивается между стенкой корпуса и стенкой камеры сгорания, снабжена, по меньшей мере, одним воздухозаборным отверстием. Блок камеры сгорания характеризуется тем, что внешняя стенка камеры сгорания жестко соединена с устройством для перекрытия воздухозаборного отверстия(-ий) согласно состоянию термического расширения камеры сгорания. Изобретение направлено на создание камеры сгорания с топливными инжекторами, в которых подача воздуха является переменной, согласно фазе работы двигателя. 2 н. и 10 з.п. ф-лы, 13 ил.

Изобретение относится к системе сгорания и способу прогнозирования концентрации загрязняющих веществ системы сгорания для газотурбинного двигателя. Задачей изобретения является обеспечение более надежной прогнозирующей системы контроля выбросов. Система (100) сгорания содержит камеру (101) сгорания, в которую впрыскиваются и воспламеняются запальное топливо (102) и основное топливо (103), причем выхлопной газ (104), производимый сгоревшим запальным топливом (102) и сгоревшим основным топливом (103), выпускается из камеры (101) сгорания. Блок (112) управления соединен с блоком (105) управления топливом для регулировки соотношения запального топлива (102), с датчиком (107) температуры для приема сигнала температуры, с блоком (109) определения топлива для приема определенного сигнала топлива и с датчиком (110) массового расхода для приема определенного сигнала массового расхода. Блок (112) управления выполнен с возможностью определения прогнозируемой концентрации загрязняющих веществ выхлопного газа (104) на основании сигнала температуры, сигнала топлива, сигнала массового расхода и соотношения разделения топлива. Способ прогнозирования концентрации загрязняющих веществ системы сгорания для газотурбинного двигателя содержит несколько этапов. Блоком (105) управления топливом делят топливо (106) на запальное топливо (102) и основное топливо (103). Топливо впрыскивается и воспламеняется внутри камеры сгорания. Генерируют сигнал температуры датчиком (107) температуры, указывающий температуру выхлопного газа внутри камеры (101) сгорания или дальше по потоку после камеры сгорания. Генерируют сигнал массового расхода датчиком (110) массового расхода, указывающий массовый расход (111) воздуха, входящего в камеру сгорания. Блоком (109) определения топлива определяют сигнал топлива, указывающий состав топлива (106). Блоком управления на основании сигнала температуры, сигнала топлива, сигнала массового расхода и соотношения разделения топлива определяют прогнозируемую концентрацию загрязняющих веществ выхлопного газа (104). 3 н. и 8 з.п. ф-лы, 3 ил.

Вторичное устройство сгорания предназначено для введения топливно-воздушной смеси в поток газов сгорания в камере сгорания газотурбинного двигателя и содержит кольцевой распределитель и инжекторы, проходящие от кольцевого распределителя в поток газов сгорания. Инжекторы имеют сопла, сообщающиеся с кольцевым распределителем и выполненные с возможностью введения топливно-воздушной смеси в поток газов сгорания. Каждое сопло наклонено под первым углом к потоку газов сгорания вверх по потоку от вторичного устройства сгорания для увеличения скорости смешивания топливно-воздушной смеси в потоке газов сгорания, и при этом каждое сопло наклонено под вторым углом к стенке соответствующего инжектора, причем второй угол может быть различным. Изобретение направлено на уменьшение вредных выбросов. 3 н. и 10 з.п. ф-лы, 8 ил.

Система сгорания газотурбинного двигателя содержит камеру сгорания, по меньшей мере одну пусковую форсунку, выполненную с возможностью инициации горения в камере, множество главных форсунок, распределенных с постоянным угловым интервалом по окружности камеры сгорания, выполненных с возможностью питания топливом камеры сгорания после инициации горения, и контур подачи топлива в форсунки. Камера сгорания ограничена двумя осесимметричными стенками, наружной и внутренней, которые расположены одна внутри другой и соединены кольцевой стенкой дна камеры. Контур подачи топлива выполнен с возможностью непрерывного питания по меньшей мере одной пусковой форсунки так, чтобы указанная форсунка получала питание топливом как во время инициации горения, так и во время питания камеры после инициации горения. Каждая непрерывно питаемая пусковая форсунка ориентирована в сторону стенки дна камеры и выполнена по размерности так, чтобы рассеивать топливную струю с угловым раствором в первом направлении, составляющим от 120 до 180°. Расход топлива, впрыскиваемого главными форсунками, между которыми находятся пусковые форсунки, меньше по сравнению с расходом топлива, впрыскиваемого другими главными форсунками. Каждая пусковая форсунка расположена между двумя последовательными главными форсунками на одинаковом от них расстоянии. Изобретение направлено на упрощение контура подачи топлива. 2 н. и 9 з.п. ф-лы, 8 ил.
Наверх