Торцовое газодинамическое уплотнение опоры ротора турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок. Торцовое газодинамическое уплотнение опоры ротора турбомашины содержит невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, выполненное в виде уплотнительного разрезного кольца, установленного в канавке корпуса вместе с контактирующими с ним по торцам двумя дополнительными уплотнительными кольцами и промежуточным кольцом. Весь пакет вторичного уплотнения фиксируется разрезным упругим кольцом. Уплотнительное кольцо первичного уплотнения установлено в корпусе и фиксируется от проворота за счет наличия на его наружной поверхности выступа и фиксируется упругим разрезным кольцом от выпадания при монтаже из-за действия пружины. Это уплотнительное кольцо и контактирующее с ним с натягом по цилиндрической наружной поверхности уплотнительное разрезное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30. Причем уплотнительное разрезное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между этими уплотнительными кольцами обеспечивалась герметичность всех стыков на всех режимах работы турбомашины и отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой, а зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным. Изобретение повышает надежность уплотнения. 3 ил.

 

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок.

Известно торцовое уплотнение газовой турбины, установленное на валу ротора турбомашины, содержащее уплотнительное кольцо, установленное в корпусе и прижатое пружинами к вращающейся втулке, а также вторичное уплотнение в виде поршневого кольца, которое герметизирует соединение уплотнительного кольца и корпуса при их взаимных перемещениях (Уплотнения и уплотнительная техника: Справочник. / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общей редакцией А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с. С. 302, рис. 9.12). Данное уплотнение из-за применения поршневого чугунного кольца вместо традиционного вторичного уплотнения из резины можно применять при высоких температурах уплотняемой среды. Поршневое кольцо имеет поперечный разрез, наружный диаметр кольца выполняется диаметра корпуса, благодаря чему при установке кольца в результате его деформации на цилиндрической уплотняемой поверхности создается контактное давление (Уплотнения и уплотнительная техника: Справочник. / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общей редакцией А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с. С. 175, рис. 4.22).

Недостатком этого уплотнения является наличие повышенных утечек через вторичное уплотнение из-за наличия разреза поршневого кольца. При повышении температуры уплотняемой среды из-за различия коэффициентов температурного линейного расширения уплотнительного кольца и поршневого кольца контактное давление и величина зазора в поперечном разрезе поршневого кольца изменяются, что снижает эффективность торцового уплотнения.

В качестве наиболее близкого аналога выбрано торцовое газодинамическое уплотнение фирмы John Crane тип 28ST (https://www.johncrane.com/products/mechanical-seals/dry-gas/type-28st, и https://www.johncrane.eom/~/media/J/Johncrane_com/Files/Products/Tech1%20Specification/Seals/TD-28ST-4PG-BW-OCT2015.pdf, информационный материал прилагается). Уплотнение содержит невращающееся подвижное в осевом направлении уплотнительное кольцо, прижатое пружинами к вращающейся втулке, на рабочем торце которой выполнены газодинамические камеры в виде спиральных канавок, а также вторичное уплотнение из трех блоков сегментных графитовых колец, обжатых браслетными пружинами и расположенных относительно друг друга таким образом, чтобы взаимно перекрыть разрезы графитовых колец. Это позволяет использовать уплотнение при температуре уплотняемой среды до 400°C.

Недостатком конструкции данного уплотнения является наличие разгерметизации во вторичном уплотнении при повышении температуры уплотняемой среды, так как из-за различия коэффициентов температурного линейного расширения материала корпуса и графита нарушится концентричность соприкасаемых поверхностей корпуса и графитовых колец и увеличатся зазоры между торцами сегментов графитовых колец. Также это приведет к повышенному изнашиванию графитовых колец по внутреннему диаметру при частой смене температурного режима, что характерно для авиационных газотурбинных двигателей.

Цель изобретения - повышение эффективности и ресурса торцового уплотнения при повышенной температуре уплотняемой среды.

Поставленная цель достигается тем, что предлагается торцовое газодинамическое уплотнение опоры ротора турбомашины, содержащее невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, отличающееся тем, что уплотнительное кольцо и контактирующее с ним уплотнительное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30, уплотнительное кольцо вторичного уплотнения установлено в канавке корпуса и контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в той же канавке и выполненными из материала с малой теплопроводностью, причем уплотнительное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между уплотнительными кольцами первичного и вторичного уплотнения, обеспечивающей, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного кольца вторичного уплотнения с дополнительными уплотнительными кольцами на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины, а во вращающейся втулке выполнены сквозные отверстия, соединяющие зазор между торцами вращающейся втулки и уплотнительного кольца с масляной ванной, образованной отбортовкой, выполненной на другом торце вращающейся втулки, равнорасположенные по окружности между спиральными канавками или непосредственно в спиральных канавках.

При вращении ротора газодинамические спиральные канавки обеспечивают бесконтактную работу уплотнения на всех режимах с оборотами, большими и приблизительно равными 500 об/мин, благодаря чему износ уплотнительного кольца первичного уплотнения и вращающейся втулки на этих режимах будет исключен или незначителен.

При работе турбомашины на режимах с оборотами, меньшими 500 об/мин, например на переходных режимах, при останове и запуске турбомашины уплотнительное кольцо первичного уплотнения и вращающаяся втулка хотя и находятся в непосредственном контакте, но контактируют по хорошо смазываемым маслом поверхностям, поступающим в зону контакта под действием центробежных сил из масляной ванны через отверстия во вращающейся втулке и равномерно размазываемым по ним при вращении втулки.

Коэффициент трения скольжения бронзы БрС30 по стали при смазке по одному источнику (см. Интернет, Справочник конструктора - машиностроителя, sprav-constr.m/htm/tom1/pages/chapter1/ckm18.html) равен µ=0,004, а по другому источнику (см. Интернет, Марочник металлов, metallicheckiy-portal/ru/marki_metallov/broBrS30) µ=0,009, т.е. в 4,5÷10 раз меньше коэффициента трения скольжения графита, из которого делают разрезные уплотнительные кольца известных конструкций РТКУ (радиально торцового уплотнения), по стали при смазанных контактных поверхностях.

Благодаря столь низкому коэффициенту трения скольжения пары «уплотнительное кольцо - вращающаяся втулка» интенсивность износа этих деталей на этих режимах также будет очень низкой, и, следовательно, ресурс работы предлагаемого торцового газодинамического уплотнения будет высоким.

Теплота трения, выделяемая в контакте этой пары на любом режиме работы двигателя, невелика. К тому же пара трения охлаждается маслом, омывающим вращающуюся втулку с обратной стороны.

Уплотнительное кольцо первичного уплотнения быстро прогревается до определенной температуры, величина которой определяется его условиями теплообмена с омывающими его воздушной и масляной полостями. Уплотнительное кольцо вторичного уплотнения прогревается до этой же температуры, так как оно изготовлено из того же материала, а теплоотвод от него в корпус практически исключается за счет того, что это кольцо контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в корпусе и выполненными из материала с малой теплопроводностью. При этом практически не происходит изменения величины натяга между уплотнительным кольцом первичного уплотнения и контактирующим с ним уплотнительным кольцом вторичного уплотнения, и, следовательно, не происходит раззазоривания в стыке между этими уплотнительными кольцами и в разрезе уплотнительного кольца вторичного уплотнения. Этим и обеспечивается высокая эффективность предлагаемого торцового газодинамического уплотнения.

Требуемая ширина разреза уплотнительного кольца вторичного уплотнения в ряде случаев может оказаться меньше 0,5 мм. Причем должна быть обеспечена высокая точность этого размера и его формы, высокая чистота поверхностей в разрезе и очень незначительная зона у разреза, где допустимо некоторое изменение свойств металла кольца. Все эти условия могут быть выполнены при резке лазером на серийно выпускаемых установках при должном подборе мощности лазера, фокусности его луча и газовой среде, в которой происходит резка.

На фиг. 1 изображен продольный разрез предлагаемого торцового газодинамического уплотнения опоры ротора турбомашины. Детали опоры ротора, не относящиеся к уплотнению и не описанные в описании, показаны тонкой сплошной линией, как «обстановка» на сборочном чертеже.

На фиг. 2 изображен вид по стр. А на фиг. 1 на торцовую поверхность вращающейся втулки, у которой сквозные отверстия, подающие масло для смазки этой поверхности, расположены между спиральными канавками. Стрелкой показано направление вращения втулки.

На фиг. 3 изображен вид по стр. А на фиг. 1 на торцовую поверхность вращающейся втулки, у которой сквозные отверстия, подающие масло для смазки этой поверхности, расположены в спиральных канавках.

Торцовое газодинамическое уплотнение опоры ротора турбомашины (см. фиг. 1) содержит невращающееся подвижное в осевом направлении уплотнительное кольцо 1 первичного уплотнения, прижатое пружинами или пружиной 2 к вращающейся втулке 3, на рабочем торце которой выполнены спиральные газодинамические камеры 4 (см. фиг. 1 и 2), и вторичное уплотнение (см. фиг. 1), выполненное в виде уплотнительного разрезного кольца 5, установленного в канавке корпуса 6 вместе с контактирующими с ним по торцам двумя дополнительными уплотнительными кольцами 7 и 8 и промежуточным кольцом 9, обеспечивающем осевой зазор между кольцами 7 и 8. Весь пакет вторичного уплотнения фиксируется разрезным упругим кольцом 10. Уплотнительное кольцо 1 установлено в корпусе 6, фиксируется от проворота за счет наличия на его наружной поверхности выступа 11, входящего в осевую канавку 12, выполненную в корпусе 6, и фиксируется упругим разрезным кольцом 13 от выпадания при монтаже из-за действия пружины 2. Уплотнительное кольцо 1 и контактирующее с ним с натягом по цилиндрической наружной поверхности уплотнительное разрезное кольцо 5 вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, например из бронзы БрС30. Причем уплотнительное разрезное кольцо 5 вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм, выполненным, например, лазерной резкой, и ширина разреза выполнена такой, чтобы при требуемой величине натяга между этими уплотнительными кольцами обеспечивалась, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного разрезного кольца 5 вторичного уплотнения с дополнительными уплотнительными кольцами 7 и 8 на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца 1 первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца 5 вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины. Дополнительные уплотнительные кольца 7 и 8 выполнены из материала с малой теплопроводностью. С обратной стороны вращающейся втулки 3 выполнена по наружному диаметру отбортовка 14, образующая масляную ванну, в которую подается масло от форсунки 15. Во вращающейся втулке 3 выполнены сквозные отверстия 16 (см. фиг. 1, 2 и 3), соединяющие зазор 17 между торцами вращающейся втулки 3 и уплотнительного кольца 1 с масляной ванной, равнорасположенные по окружности между спиральными канавками 4 (см. фиг. 2) или непосредственно в спиральных канавках 4 (см. фиг. 3).

Сборка предлагаемого торцового газодинамического уплотнения ясна из описания и чертежей и не описывается.

Торцовое газодинамическое уплотнение служит для снижения утечек уплотняемой среды из полости 18 (см. фиг. 1) в масляную полость 19.

При работе турбомашины газодинамические камеры 4 обеспечивают бесконтактную работу торцового уплотнения, начиная приблизительно с 500 об/мин. Форсунки 15 подают масло в масляную ванну под отбортовку 14. Это обеспечивает прокачку масла под действием центробежных сил и охлаждение вращающейся втулки 3. Уплотнительное разрезное кольцо 5 контактирует с уплотнительным кольцом 1 и обеспечивает герметизацию соединения при осевых смещениях уплотнительного кольца 1 относительно корпуса 6. Наличие дополнительных уплотнительных колец 7 и 8, выполненных из материала с малой теплопроводностью, существенно снижает теплоотвод от уплотнительного кольца 5 в корпус 6. Это обеспечивает одинаковость температур уплотнительных колец 1 и 5 и, так как эти кольца изготовлены из одного металла, в итоге обеспечивает герметичность и надежность вторичного уплотнения при изменении температуры уплотняемой среды.

При останове или разгоне турбомашины или ее работе на переходных режимах с оборотами, меньшими 500 об/мин, уплотнительное кольцо 1 находится в непосредственном контакте с вращающейся втулкой 3 и торцовое газодинамическое уплотнение работает как РТКУ. При этом контактирующие поверхности хорошо смазываются маслом, подаваемым под действием центробежных сил из масляной ванны через отверстия 16, и далее под действием этих же сил на охлаждение уплотнительного кольца 1 в полость 20 снаружи этого кольца. Ввиду чрезвычайно малого коэффициента трения скольжения на контактных поверхностях этой пары (см. выше) теплота трения, выделяемая в контакте этой пары и на этих режимах работы турбомашины, невелика. К тому же эта пара трения хорошо охлаждается маслом, омывающим вращающуюся втулку 3 с обратной стороны и уплотнительное кольцо 1 снаружи. Поэтому и на этих режимах исключен перегрев деталей торцового уплотнения (особенно уплотнительного кольца 1 и вращающейся втулки 3) и обеспечена герметичность и надежность работы предлагаемого торцового газодинамического уплотнения.

Наличие натяга между уплотнительным кольцом 1 первичного уплотнения и уплотнительным разрезным кольцом 5 вторичного уплотнения повышает надежность и «запас» по герметичности предлагаемого торцового газодинамического уплотнения опоры ротора турбомашины.

Другие преимущества этого уплотнения описаны выше.

Торцовое газодинамическое уплотнение опоры ротора турбомашины, содержащее невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, отличающееся тем, что уплотнительное кольцо и контактирующее с ним уплотнительное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30, уплотнительное кольцо вторичного уплотнения установлено в канавке корпуса и контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в той же канавке и выполненными из материала с малой теплопроводностью, причем уплотнительное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между уплотнительными кольцами первичного и вторичного уплотнения, обеспечивающей, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного кольца вторичного уплотнения с дополнительными уплотнительными кольцами на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины, а во вращающейся втулке выполнены сквозные отверстия, соединяющие зазор между торцами вращающейся втулки и уплотнительного кольца с масляной ванной, образованной отбортовкой, выполненной на другом торце вращающейся втулки, равнорасположенные по окружности между спиральными канавками или непосредственно в спиральных канавках.



 

Похожие патенты:

Изобретение относится к скользящему кольцевому уплотнению для устройств, используемых для перекачивания текучих сред, таких как жидкость, газ или их смеси с твердыми частицами, в частности для вентиляторов и насосов, а также для аксиального уплотнения валов других устройств.

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок.

Изобретение относится к уплотнительной технике и может быть использовано для уплотнения масляной полости опоры ротора турбомашины. Уплотнение содержит радиально-торцовое контактное уплотнение, состоящее из корпуса, образующего масляную полость опоры ротора, закрепленного на корпусе опоры, вращающуюся втулку, два разрезных уплотнительных кольца, установленных в корпусе встык друг к другу с натягом по цилиндрическим поверхностям колец так, что разрезы уплотнительных колец расположены диаметрально противоположно, и лабиринтное уплотнение, уплотняющее предмасляную полость опоры ротора, образованное лабиринтным кольцом, закрепленным на роторе, и корпусом.

Изобретение относится к устройству (DGSM) для уплотнения (SHS) вала турбомашины (CO), причем устройство (DGSM) для уплотнения вала с одного конца оси имеет сторону (HPS) высокого давления, а с другого конце оси - сторону низкого давления (LPS), содержащему роторную часть (RS), вращающуюся при работе, неподвижную статорную часть (CS), по меньшей мере одно сухое газовое уплотнение (DGS), причем в конце стороны (HPS) высокого давления устройства (DGSM) для уплотнения вала предусмотрено другое дополнительное уплотнение вала для герметизации промежуточного пространства (IR) при последовательной установке относительно сухого газового уплотнения (DGS), содержащее неподвижную и вращающуюся части уплотнения вала, причем расположенная посредине поверхность уплотнения вала, простирающаяся в направлении окружности и в аксиальном направлении, расположена между неподвижной и вращающейся частями уплотнения вала на пятом диаметре (DSS5) коаксиально оси (AX) вращения, причем между неподвижным уплотнительным элементом (SSE) и статорной частью (CS) для герметизации от первого перепада давлений на четвертом диаметре (DSS4) установлено четвертое стационарное уплотнение (SS4).

Изобретение касается вставки (DGSM) уплотнения для уплотнения (SHS) вала турбомашины (CO), которое распространяется в осевом направлении по оси (AX) вращения, включающей в себя роторную часть (RS), которая выполнена таким образом, что она может устанавливаться на валу (SH) распространяющегося по оси (AX) вращения ротора (R), статорную часть (CS), которая выполнена таким образом, что она может вставляться в выемку (CR) статора, включающей в себя по меньшей мере одно сухое газовое уплотнение (DGS), которое имеет установленный на роторной части (RS) вращающийся уплотнительный элемент (RSE) и установленный на статорной части (CS) неподвижный уплотнительный элемент (SSE) для уплотнения промежуточного пространства (IR).

Изобретение относится к области машиностроения, в частности к уплотнительной технике, и может быть использовано в конструкциях быстроходных компрессоров, газовых и паровых турбин, насосов и других центробежных машин.

Изобретение относится к области машиностроения и может быть использовано в качестве уплотнения вращающихся валов различных механизмов. Торцевое уплотнение вращающегося вала содержит седло с отверстием, через которое с возможностью вращения пропущен вал, уплотнительное кольцо, установленное с возможностью его возвратно-поступательного перемещения вдоль вала, эластичное кольцевое уплотнение и средство придания возвратно-поступательного перемещения уплотнительному кольцу вдоль вала.

Группа изобретений относится к уплотнительной технике. Разрезная механическая торцевая уплотнительная сборка содержит разрезную сальниковую плиту в сборе, разрезное стыковочное уплотнительное кольцо в сборе, разрезное главное уплотнительное кольцо в сборе и разрезную поджимающую сборку.

Изобретение относится к насосостроению и может быть использовано для насосов, перекачивающих жидкости, в том числе взрывопожарные среды с присутствием абразивных механических примесей.

Изобретение относится к области судостроения и может быть использовано на надводных судах и подводных объектах для уплотнения валов движительных установок, а также в машиностроении в качестве уплотнения вращающихся валов насосов, работающих, прежде всего в импульсных режимах с длительной готовностью в режиме ожидания.

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок.

Изобретение относится к двойному уплотнительному устройству для вращающегося вала и насосу, включающему в себя такое устройство. Устройство содержит первое и второе уплотнение, установленные рядом друг с другом в круглом цилиндрическом корпусе, через который проходит вал, подлежащий уплотнению, причем каждое из этих уплотнений состоит, с одной стороны, из опорного кольца из металлического материала с наружным осевым фланцем и внутренним радиальным фланцем, и, с другой стороны, из уплотнительной шайбы, образующей уплотнительный выступ, с возможностью скольжения опирающийся на вал.

Группа изобретений относится к расходным уплотнениям для использования в промышленности, угольной индустрии, обработке минералов и может быть использована в гидроциклонах и насосах для суспензий.

Изобретение относится к уплотнительной технике и может использоваться для герметизации цилиндра газовых компрессоров. Сальник газовых компрессоров содержит по меньшей мере одну уплотнительную камеру, размещенную в отдельном корпусе и содержащую разрезанное уплотнительное кольцо, сегменты которого стянуты кольцом-пружиной, и разрезанное замыкающее кольцо, сегменты которого также стянуты кольцом-пружиной, при этом уплотнительное и замыкающее кольца в каждой уплотнительной камере зафиксированы между собой штифтом.

Изобретение относится к уплотнительной технике и может использоваться для герметизации цилиндра компрессоров. Сальник компрессора содержит корпус с по крайней мере одной дренажной уплотнительной камерой, в каждой из которых размещены манжета и подпирающая ее пружина, также у стенки корпуса в каждой дренажной уплотнительной камере размещена кольцевая проставка, на внешней поверхности которой выполнена канавка, сообщающаяся через по крайней мере одно отверстие с внутренней поверхностью проставки.

Винтовой центробежный насос (1) содержит корпус (3) насоса с входным отверстием (3а) насоса и расположенное внутри корпуса (3) насоса с возможностью вращения винтовое центробежное колесо (20) со ступицей (21), а также лопастью (25), и содержит вращаемый приводной вал (33), который соединен с винтовым центробежным колесом (20), и закрывающую пластину (2).

Изобретение относится к уплотнительной технике. Устройство (1) для уплотнения насоса электростанции содержит корпус насоса, включающий в себя первый и второй трубопроводы для прохождения текучей среды, вал, включающий в себя, рядом с корпусом насоса, первый канал для текучей среды, механическое уплотнение, вмонтированное между валом и корпусом насоса и содержащее фрикционные элементы для трения друг о друга вращающейся детали и стационарной детали.

Изобретение относится к уплотнительной технике и может использоваться для герметизации цилиндра компрессора. Техническим результатом является обеспечение ремонтопригодности уплотнительного устройства.

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом является упрощение конструкции уплотнения и повышение его надежности при работе за счет снижения степени износа графитового кольца.

Изобретение относится к области машиностроения и может быть использовано в компрессорной технике. Двухсекционный центробежный компрессор содержит корпус, размещенные в нем статор первой и второй секции, межсекционную перегородку с лабиринтным уплотнением, ротор с рабочими колесами и думмисом, причем думмис выполнен ступенчатым.

Изобретение относится к области авиадвигателестроения. Браслетное контактное уплотнение вала ротора компрессора низкого давления турбореактивного двигателя летательного аппарата установлено между масляной полостью и полостью суфлирования передней опоры. Браслетное уплотнение включает контактную втулку с подвижным примыканием к контактным поверхностям колец уплотнительного браслета, упруго-подвижно установленного в корпусе роликоподшипника. Контактная втулка состоит из внутреннего и внешнего колец. Внешнее кольцо выполнено с внутренним спиральным оребрением. Браслет выполнен состоящим из трех многосекционных колец. Внутреннее уплотнительное и радиально охватывающее его наружное кольца установлены в браслете с фронтальной стороны. Третье кольцо выполнено тыльным и примыкает к первым двум боковой гранью. Каждое из колец браслета выполнено из локальных секций, собранных с угловой частотой . Тыльное кольцо выполнено радиальной высотой, соответствующей суммарной радиальной высоте Σh внутреннего уплотнительного и наружного колец браслета. Кольца браслета снабжены разгрузочными воздушными каналами. Внешние поверхности наружного и тыльного колец браслета снабжены кольцевым пазом для стягивающей секции колец пружины. От осевого смещения браслет упруго зафиксирован упорным и стопорным кольцами. Для чего в каждой секции тыльного кольца выполнено не менее двух глухих отверстий, в которых установлены упирающиеся в упорное кольцо пружины сжатия. От смещения по окружности каждая секция наружного и тыльного колец обращена к стопорным элементам. Каждая секция внутреннего кольца смещена в браслете относительно осевой плоскости симметрии стопорного элемента на половину длины дуги секции и снабжена в средней части призматической выемкой для фиксации стопорным элементом. Технический результат группы изобретений заключается в повышении ресурса компрессора в два раза и продолжительности межремонтной работы двигателя на 18-20% за счет уменьшения изнашивания элементов опоры КНД ТРД ЛА. 4 н. и 10 з.п. ф-лы, 2 ил.
Наверх