Способ определения палладия (ii)

Изобретение относится к области аналитической химии элементов, а именно к методам определения концентрации палладия, и может быть использовано при его определении в технологических растворах и техногенных водах. Способ включает приготовление сорбента и раствора палладия (II), извлечение палладия (II) из раствора сорбентом, переведение его в комплексное соединение на поверхности сорбента, отделение сорбента от раствора, измерение интенсивности окраски поверхностного комплекса палладия (II) и определение содержания палладия (II) по градуировочному графику. В качестве сорбента используют кремнезем, последовательно модифицированный полигексаметиленгуанидином и 2-нитрозо-1-нафтол-4-сульфокислотой (нитрозо-Н-соль), а измерение коэффициента диффузного отражения осуществляют при 550 нм. Использование способа позволяет с высокой точностью обнаружить содержание палладия (II) в растворах. 3 пр.

 

Изобретение относится к области аналитической химии элементов, а именно, к методам определения концентрации палладия, и может быть использовано при его определении в технологических растворах и техногенных водах.

Для определения палладия в объектах различного вещественного состава широко используется сорбционно-фотометрический метод, основанный на сочетании предварительного сорбционного концентрирования палладия и его последующего фотометрического определения непосредственно в фазе сорбента, что характеризуется высокой селективностью и низкими пределами обнаружения палладия.

Для реализации сорбционно-фотометрического определения палладия необходимо образование на поверхности сорбента его окрашенного соединения с функциональными группами сорбента и пропорциональное увеличение интенсивности окраски сорбента от концентрации палладия на его поверхности.

Известен способ сорбционно-спектрофотометрического определения палладия (II) 1-(2-пиридилазо)-2-нафтолом, иммобилизованным в полиметакрилатную матрицу [Саранчина Н.В., Гавриленко Н.А. Твердофазно-спектрофотометрическое определение палладия(II) с использованием 1-(2-пиридилазо)-2-нафтола, иммобилизованного в полиметакрилатную матрицу // Известия Томского политехнического университета. 2012. Т. 321. №3. С. 96-100].

Способ включает в себя следующие операции:

- получение полиметакрилатной матрицы;

- вырезание пластины размером 6,0×8,0 мм массой около 0,05 г;

- приготовление растворов палладия (II);

- приготовление 2,5·10-4 М раствора 1-(2-пиридилазо)-2-нафтола;

- сорбция 1-(2-пиридилазо)-2-нафтола из водно-этанольного раствора в течение 3 мин на матрицу;

- сорбция палладия (II) в статическом режиме из 50 мл раствора в течение 30 мин;

- измерение спектров поглощения полиметакрилатной матрицы при 665 нм.

Градуировочноный график линеен в интервале 0,1-1,0 мг/л палладия, что при использовании 50 мл раствора соответствует 5-50 мкг палладия на 0,05 г полиметакрилатной матрицы. Предел обнаружения составляет 0,06 мг/л или 3 мкг палладия на 0,05 г сорбента.

К недостаткам способа можно отнести высокий предел обнаружения палладия (II) и длительность процедуры.

Известен способ определения палладия (II) с использованием кремнезема, химически модифицированного N-пропил-N′-[1-(2-тиобензтиазол)-2,2′,2″-трихлорэтил]мочевинными группами [Дьяченко Н.А., Трофимчук А.К., Сухан В.В. Сорбционно-фотометрическое определение палладия с помощью кремнеземного сорбента с привитыми N-пропил-N′-[1-(2-тиобензтиазол)-2,2′,2"-трихлорэтил] мочевинными группами //Журнал аналитической химии. 1999. Т. 54. №2. С. 159-161], предусматривающий проведение следующих операций:

- приготовление раствора палладия в 1 М соляной кислоте;

- введение в раствор, содержащий палладий (II), 4-(2-пиридилазо) резорцин;

- добавление 0,2 г сорбента;

- сорбция в течение 15 мин;

- отделение сорбента от раствора фильтрованием, промывка сорбента водой и высушивание его на воздухе;

- измерение коэффициента диффузного отражения при 660 нм.

Градуировочный график линеен в интервале концентраций 1-25 мкг палладия на 0,2 г сорбента.

К недостаткам способа можно отнести высокий предел обнаружения - 1,0 мкг палладия на 0,2 г сорбента и недоступность сорбента - кремнезема с привитыми N-пропил-N′-[1-(2-тиобензтиазол)-2,2′,2″-трихлорэтил] мочевинными группами.

Наиболее близким к предлагаемому способу по технической сущности и достигаемым результатам, выбранным в качестве прототипа, является способ определения палладия (II) [RU №2374640, G01N 31/22, опубл. 27.11.2009 г.], который включает сорбционно-фотометрическое определение палладия (II) с использованием кремнезема, последовательно модифицированного полигексаметиленгуанидином и 1-нитрозо-2-нафтол-3,6-дисульфокислотой (нитрозо-Р-соль).

Способ предусматривает следующие операции:

- приготовление сорбента, основанное на последовательной обработке кремнезема водными растворами полигексаметиленгуанидина и нитрозо-Р-соли;

- внесение в раствор объемом 10 мл, содержащим палладий (II) при рН=2, 0,1 г сорбента;

- перемешивание в течение 5 мин;

- отделение сорбента от раствора декантацией и высушивание на воздухе;

- измерение коэффициента диффузного отражения при 510 нм.

Предел обнаружения палладия (II) составляет 0,2 мкг на 0,1 г сорбента. Линейность градуировочного графика сохраняется до 16 мкг палладия на 0,1 г сорбента.

К недостаткам способа можно отнести относительно высокий предел обнаружения палладия (II) и узкий диапазон его определяемых содержаний.

Техническим результатом является снижение предела обнаружения, расширение диапазона определяемых содержаний.

Указанный технический результат достигается тем, что в способе определения палладия (II), включающем приготовление сорбента и раствора палладия (II), извлечение палладия (II) из раствора сорбентом и переведение его в комплексное соединение на поверхности сорбента, отделение от раствора, измерение интенсивности окраски поверхностного комплекса палладия (II) и определение содержания палладия (II) по градуировочному графику, новым является то, что в качестве сорбента используют кремнезем, последовательно модифицированный полигексаметиленгуанидином и 2-нитрозо-1-нафтол-4-сульфокислотой (нитрозо-Н-соль), а измерение коэффициента диффузного отражения осуществляют при 550 нм.

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данных и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критериям «новизна» и «изобретательский уровень».

Сущность способа заключается в том, что находящийся в растворе в диапазоне рН=1,0-7,5 палладий (II) количественно (степень извлечения составляет 99%) извлекается сорбентом - кремнеземом, последовательно модифицированным полигексаметиленгуанидином и нитрозо-Н-солью (2-нитрозо-1-нафтол-4-сульфокислота). Сорбция палладия (II) в статическом режиме протекает быстро - время установления сорбционного равновесия не превышает 5 мин. В процессе сорбции при рН=1 на поверхности сорбента образуется окрашенный в сиреневый цвет комплекс палладия (II) с нитрозо-Н-солью, имеющий в спектре поглощения максимум при 550 нм.

К навеске 10 г кремнезема добавляют 100 мл 5%-ного раствора полигексаметиленгуанидина в воде, перемешивают в течение 5 мин, кремнезем отделяют от раствора декантацией и промывают дистиллированной водой. Затем кремнезем, обработанный полигексаметиленгуанидином, обрабатывают 100 мл 3·10-3 М раствором нитрозо-Н-соли в воде, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, промывают дистиллированной водой, сушат на воздухе.

В исследуемый раствор с рН=1, содержащий палладий (II), вносят сорбент - кремнезем, модифицированный полигексаметиленгуанидином и нитрозо-Н-солью, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету и измеряют коэффициент диффузного отражения при 550 нм.

Содержание палладия (II) находят по градуировочному графику, построенному в условиях определения. Предел обнаружения равен 0,05 мкг палладия на 0,1 г сорбента. Линейность градуировочного графика сохраняется до 20 мкг палладия на 0,1 г сорбента.

Пример 1 (прототип).

В раствор, содержащий 5 мкг палладия, с кислотностью в диапазоне рН-2-5, вносят 0,1 г сорбента - кремнезема, модифицированного полигексаметиленгуанидином и 1-нитрозо-2-нафтол-3,6-дисульфокислотой (нитрозо-Р-соль), интенсивно перемешивают 5 мин. Сорбент отделяют от раствора декантацией, переносят во фторопластовую кювету, высушивают до воздушно-сухого состояния и измеряют коэффициент диффузного отражения при 510 нм.

Содержание палладия находят по градуировочному графику, построенному в аналогичных условиях. Найдено 4,9±0,2 мкг.

Пример 2 (предлагаемый способ).

В 10 мл раствора при рН=1, содержащего 1,0 мкг палладия (II), вносят сорбент - кремнезем, последовательно модифицированный полигексаметиленгуанидином и 2-нитрозо-1-нафтол-4-сульфокислотой (нитрозо-Н-соль), интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету, убирают излишки воды фильтровальной бумагой и измеряют коэффициент диффузного отражения при 550 нм.

Количество палладия (II) находят по градуировочному графику, построенному в аналогичных условиях. Найдено 1,02±0,05 мкг.

Пример 3 (предлагаемый способ).

В 10 мл раствора при рН=1, содержащего 10,0 мкг палладия (II), вносят сорбент - кремнезем, модифицированный полигексаметиленгуанидином и нитрозо-Н-солью, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету, убирают излишки воды фильтровальной бумагой и измеряют коэффициент диффузного отражения при 550 нм.

Количество палладия находят по градуировочному графику, построенному в аналогичных условиях. Найдено 9,9±0,1 мкг.

Способ характеризуется высокой чувствительностью, простотой выполнения и не требует использования дорогостоящего оборудования и вредных веществ. Использование кремнезема, последовательно модифицированного полигексаметиленгуанидином и нитрозо-Н-солью, позволяет в четыре раза снизить предел обнаружения палладия (II) в фазе сорбента (по сравнению с прототипом) и расширить диапазон определяемых содержаний.

Способ определения палладия (II), включающий приготовление сорбента и раствора палладия (II), извлечение палладия (II) из раствора сорбентом и переведение его в комплексное соединение на поверхности сорбента, отделение от раствора, измерение интенсивности окраски поверхностного комплекса палладия (II) и определение содержания палладия (II) по градуировочному графику, отличающийся тем, что в качестве сорбента используют кремнезем, последовательно модифицированный полигексаметиленгуанидином и 2-нитрозо-1-нафтол-4-сульфокислотой (нитрозо-Н-соль), а измерение коэффициента диффузного отражения осуществляют при 550 нм.



 

Похожие патенты:

Группа изобретений относится к области оптических химических датчиков для определения органофосфатов. Способ изготовления оптического химического датчика для определения органофосфатов с мембраной, полученной по золь-гель технологии, включает следующие стадии: добавление тетраэтоксисилана (TEOS) и метилтриэтоксисилана (MTriEOS) к индикатору Кумарин 1, растворенному в 10-7 М этаноле; перемешивание в ультразвуковой бане в течение 10 мин с последующим добавлением раствора катализатора в виде 0.001 М HCl и перемешиванием в ультразвуковой бане в течение 20 мин; получение покрывающих слоев на стеклянных пластинках путем погружения стеклянных пластинок в полученный золь через 24 ч старения золя в закрытом сосуде при комнатной температуре, вытягивание из него пластинок с последующим удалением покрывающего слоя с одной стороны пластинки и сушкой в течение 24 ч при комнатной температуре с образованием мембраны.

Изобретение относится к области аналитической химии элементов, а именно к методам определения платины, и может быть использовано при ее определении в геологических и промышленных материалах, технологических и техногенных водах.
Изобретение относится к области аналитической химии элементов и может быть использовано для выделения и определения осмия в объектах различного вещественного состава.

Изобретение относится к фармацевтическому анализу. Способ осуществляют путем растворения анализируемой пробы, обработки раствора химическим реактивом с последующим фотоэлектроколориметрированием - измерением оптической плотности окрашенных растворов, причем растворение проводят в воде очищенной, выдерживают на нагретой водяной бане до полного растворения при перемешивании, охлаждают и в дальнейшем аликвотную часть приготовленного раствора объемом от 1,0 до 5,0 мл последовательно обрабатывают при перемешивании каплями 3,5 мл 0,1 Н спиртового раствора KОН, выдерживают и перемешивают 5 минут, далее обрабатывают каплями 2,5 мл 0,5% раствора вератрового альдегида в серной кислоте и 1,5 мл 0,1 Н раствора серной кислоты, выдерживают еще 3 минуты и после этого фотоэлектроколориметрируют окрашенные растворы.

Изобретение относится к фармацевтическому анализу. Способ характеризуется растворением анализируемой пробы, обработкой раствора химическим реактивом с последующим фотоэлектроколориметрированием окрашенных растворов, при этом растворение проводят в воде очищенной, выдерживают на нагретой водяной бане до полного растворения, охлаждают и разбавляют тем же растворителем до 100 мл; аликвотную часть приготовленного раствора объемом от 1,0 до 5 мл последовательно обрабатывают 2,0-2,3 мл щелочного 1% раствора нитропруссида натрия и 0,1 мл 3% раствора водорода перекиси, выдерживают в течение 1 мин, после чего прибавляют 0,1 М раствор калия гидроксида до рН 10 и фотоэлектроколориметрируют окрашенные растворы.
Группа изобретений относится к аналитической химии, а именно к области химических методов контроля стерилизации, и описывает способ изготовления химического индикатора контроля озоновой стерилизации, а также химический индикатор контроля озоновой стерилизации.

Изобретение относится к области стерилизации, а именно к дезинфекции офтальмологической линзы. Для количественного определения дезинфицирующих доз ультрафиолетового излучения (УФ-излучения), достаточных для стерилизации офтальмологической линзы при помощи одного или более дополнительных индикаторов, осуществляют добавление одного или более красителей FD&C (химических индикаторов, основанных на разрушении пищи, лекарств и косметики), способных взаимодействовать до разрушения одного или более индикаторов, определяемого легко заметным изменением цвета и/или флуоресценции при УФ-облучении, в водный раствор; применение дозы УФ-излучения в течение контролируемого отрезка времени и с контролируемой интенсивностью; и получение обратной связи за счет разрушения одного или более индикаторов.

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа тетранитротолуола.

Изобретение относится к поглощающему изделию, выполненному с возможностью определения ионной силы мочи. Изделие включает непроницаемый для жидкости слой; проницаемый для жидкости слой; поглощающий внутренний слой, расположенный между непроницаемым для жидкости слоем и проницаемым для жидкости слоем; устройство с латеральным потоком, интегрированное в изделие и расположенное таким образом, что оно находится в жидкостном соединении с потоком мочи, выделяемой пользователем изделия.

Группа изобретений относится к медицине и описывает композицию реактивов для измерения количества лития в биологических образцах, отличающуюся тем, что указанная композиция реактивов для измерения количества лития представляет собой водный раствор, содержащий соединение, которое имеет структуру, представленную формулой (I), смешиваемый с водой органический растворитель, выбранный из диметилсульфоксида (DMSO), диметилформамида (DMF) и диметилацетамида (DMA), и модификатор pH для доведения pH до значения в диапазоне от pH 5 до pH 12, концентрация соединения формулы (I) составляет от 0,1 до 1,0 г/л.

Изобретение относится к экспресс-средству индикации, предназначенному для визуального обнаружения утечек и проливов фтористого водорода и его водных растворов. Индикаторная краска состоит из (мас. %): комплекса хинализарина с европием (III) - 2,5÷3,5; сополимера винилхлорида с винилиденхлоридом марки ВХВД-40 - 3,0÷4,0; сульфата бария - 20,0÷30,0; диоксида титана - 20,0÷30,0; бутилацетата - 2,0÷14,0; ксилола - 18,5÷52,5. Достигается высокая селективность, надежность и точность индикации при осуществлении визуального обнаружения утечек и проливов фтористого водорода и его водных растворов. 1 ил., 3 табл., 3 пр.

Изобретение относится к аналитической химии и может быть использовано для определения минеральных масел в атмосферном воздухе и воздухе закрытых помещений. Отбирают пробы из атмосферного воздуха и воздуха закрытых помещений путем концентрации их на фильтр АФА-ВП-20 со скоростью 100 л/мин в течение 20 мин. Далее проводят экстракцию изооктаном. Для построения градуировочного графика используют растворы минерального масла в изооктане с концентрацией 2,0; 5,0; 10,0; 20,0; 50,0; 100,0 мкг/см3. Измерение проводят при аналитической длине волны 210 нм. Диапазон определяемых концентраций минеральных масел в воздухе составляет 0,01-0,5 мг/м3. Обеспечивается повышение точности анализа. 1 ил., 1 табл.

Изобретение относится к области испытания и проверки боеприпасов, а именно к способу качественного определения течи тротилового масла в снарядах и минах, снаряженных тротилом. Включает отбор пробы исследуемого вещества прикладыванием к выделяющейся жидкости полоски фильтровальной бумаги с помощью пинцета. При обнаружении жидкости на резьбе очка снаряда отбор пробы осуществляется латунным скребком. Полученные пробы растворяют в спирте и (или) ацетоне с добавлением растворов 10% KОН или 10% NH4OH. Оценивают полученный результат по цвету окрашивания раствора в темно-коричневый, ярко-красный и (или) при использовании ацетона в темно-красный цвет. Подтверждает дефект выделения из тротила тротилового масла. Позволяет исключить боевое применение боеприпасов при обнаружении дефекта в виде течи тротилового масла. 1 ил.

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного катионита КБ-2Э-16 на основе полиметакрилата и дивинилового эфира диэтиленгликоля с последующим наполнением анализируемым раствором. При этом на первой стадии визуально определяют медь(II) по длине окрашенной зоны катионита при рН ~4,5 и ионной силе 0,1 (NaNO3) анализируемого раствора. На второй стадии после пропускания раствора определяют марганец(II) по длине окрашенной зоны катионита, которая появляется с добавлением к индикаторной трубке комплексообразующего реагента формальдоксима и NaOH для создания среды рН ~10. Способ обеспечивает снижение трудоемкости, сокращение количества используемых реагентов и времени проведения анализа при определении меди(II) и марганца(II) в водном растворе в полевых и лабораторных условиях. 2 ил., 1 пр.
Изобретение относится к аналитической химии, а именно к аналитическим реагентам, которые позволяют определять содержание ферроцена в бензине. Реагент для количественного спектрофотометрического определения ферроцена в бензине содержит окислитель, воду, катализатор, в качестве которого используют хлороводородную кислоту, и полярный органический растворитель с диэлектрической проницаемостью от 20 до 35 при 25°С при следующем содержании компонентов, мас.%: окислитель 0,016÷2,297; хлороводородная кислота 0,1⋅10-5÷0,2⋅10-3; вода 0,096÷1,264; полярный органический растворитель – остальное. Достигается увеличение экспрессности и повышение надежности определения ферроцена в бензине. 2 з.п. ф-лы, 4 пр.

Изобретение относится к контролю качества углеводородных топлив. Содержание монометиланилина (ММА) в углеводородных топливах определяют по цветовому переходу индикаторного тестового средства после контактирования с анализируемой пробой. Индикаторное тестовое средство представляет собой пластину для тонкослойной хроматографии марки «Sorbfil» с сорбентом силикагель, импрегнированную раствором индикатора - тетрахлор-1,4-бензохинона. По появлению в месте контактирования анализируемой пробы с индикаторным тестовым средством пятна, имеющего окраску от светло-фиолетовой до темно-синей, судят о присутствии ММА в пробе, после чего определяют интенсивность окраски пятна и по градуировочной зависимости интенсивности окраски пятна от концентрации определяют концентрацию ММА в углеводородном топливе. Достигается повышение чувствительности и селективности анализа. 4 ил., 4 табл., 4 пр.

Группа изобретений относится к санитарии и гигиене и может быть использована для датчиков увлажнения, применяемых для определения присутствия жидкости на водной основе в изделии для личной гигиены. Датчик включает подложку, содержащую первый слой определяющего увлажнение материала, который при увлажнении становится из бесцветного цветным, и второй слой определяющего увлажнение материала, который при увлажнении становится из цветного бесцветным, где первый и второй слои имеют разные цветовые тона. Также предложено впитывающее изделие, содержащее датчик. Группа изобретений обеспечивает визуальную сигнализацию о необходимости замены изделия для личной гигиены при его увлажнении. 2 н. и 6 з.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к области нанотехнологий, а также может быть использовано в биологии, медицине, гетерогенном катализе. Способ определения концентрации адсорбатов наночастиц (НЧ) серебра на поверхности нанопористого кремнезема включает приготовление раствора исследуемого вещества, извлечение исследуемого вещества из раствора сорбентом, измерение интенсивности флуоресценции органолюминофора в присутствии исследуемого вещества, определение неизвестной поверхностной концентрации исследуемого вещества по градуировочному графику, где в качестве сорбента используют немодифицированный кремнезем, в качестве адсорбата - монодисперсные наночастицы серебра и молекулы органолюминофора - Родамина 6Ж, интенсивность флуоресценции измеряют при возбуждении на плазмонной длине волны 420 нм, измерение проводят при комнатной температуре. Достигается высокая чувствительность способа определения концентрации адсорбатов НЧ серебра на поверхности кремнезема в пределах (10-11-10-7) нм-2. 3 пр., 1 ил.

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и соединительных стыков трубопроводов, резервуаров и аппаратуры. Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих состоит из бумаги-основы для экспресс-тестов, импрегнированной индикатором, в качестве которого содержит калия тетрагидро-12-молибдосиликат в диапазоне 10-28 мас. % и иминодиуксусную кислоту в диапазоне 1-5 мас. %, причем импрегнированная бумага дублирована с гидроизоляционной подложкой. Изобретение позволяет повысить чувствительность, экспрессность и точность определения утечки микроколичеств жидкого и газообразного несимметричного диметилгидразина. 1 з.п. ф-лы, 4 ил., 2 табл., 3 пр.

Изобретение относится к аналитической химии, а именно изготовлению индикаторных составов для изготовления индикаторной ленты с последующим фотоколориметрическим измерением для определения формальдегида в воздухе. Для этого используют следующий состав индикаторного раствора, содержащий компоненты в соотношении мас.%: глицин - 1,5-12; метиловый красный - 0,004-0,4; щелочь - 0,04-0,6; спирт этиловый - 30-70; вода дистиллированная - остальное. Способ приготовления индикаторного раствора состоит в получении раствора А при растворении метилового красного в этиловом спирте и получении раствора Б при растворения глицина в дистиллированной воде. Затем растворы А и Б смешивают до получения малиново-алой окраски, после чего добавляют щелочь до окраски в желтый цвет при перемешивании в течение 30-40 мин. Изобретение обеспечивает определение содержания формальдегида в воздухе за счет селективной цветной реакции с помощью состава при минимальном наборе компонентов, отсутствии токсичности раствора и его химической стойкости к атмосферному воздуху. Кроме того, индикаторная лента, изготовленная с использованием этого состава, имеет длительный срок хранения. 2 н.п. ф-лы, 1 табл., 1 ил., 3 пр.
Наверх