Способ и система для определения угловой ориентации устройств корабля с учетом деформаций его корпуса

Изобретение относится к судовым системам ориентации и может найти применение в системах угловой ориентации устройств корабля с учетом статических и динамических деформаций корпуса корабля, а также ошибок установки систем на корабле. Технический результат - расширение функциональных возможностей. Для этого система содержит блок ориентации, соединенный с системой корабля, навигационный комплекс корабля, преобразователи координат, интегрирующие, множительные и запоминающие устройства, а также фильтры нижних частот. Угловое положение блока ориентации осуществляется замкнутыми системами автоматического регулирования, образованными из элементов системы. Текущие значения углов ориентации вычисляются путем совместной обработки в общей горизонтальной системе координат скоростей изменений этих углов, определенных блоком ориентации, и углов ориентации, определенных навигационным комплексом. Статические поправки к углам бортовой и килевой качек вычисляются, сглаживаются фильтрами и запоминаются как разности измеренных блоком ориентации и навигационным комплексом соответствующих величин. Статическая поправка курса вычисляется, сглаживается фильтром и запоминается после определения статических поправок к углам бортовой и килевой качек. Статическая поправка курса определяется путем сравнения между собой направлений, вокруг которых в данный момент времени происходят наклоны палубы корабля в местах расположения блока ориентации и навигационного комплекса. 2 н.п. ф-лы, 1 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Предлагаемое изобретение относится к области гироскопических систем и способов для определения угловой ориентации устройств корабля, имеющего центральный комплекс навигации и ориентации. Ориентация устройств определяется с учетом статических и динамических угловых деформаций корпуса корабля и погрешностей установки устройств на корабле.

УРОВЕНЬ ТЕХНИКИ

Эффективность использования различных устройств корабля (УК), например, антенны радиолокатора или оптического визира, зависит от точности определения их угловой ориентации в пространстве. Определение ориентации упомянутых устройств с использованием информации центрального комплекса навигации и ориентации (НК) корабля затруднено вследствие деформаций корпуса корабля. Дополнительные погрешности в ориентации возникают также при ошибках установки УК на корабль. Диапазон динамических угловых деформаций корабля при наличии качки в зависимости от его класса может колебаться от единиц угловых минут до одного градуса. Ошибки установки УК относительно системы координат НК, подлежащие определению, могут достигать нескольких градусов. Необходимо, чтобы ошибки определения угловой ориентации УК, как правило, не превышали одной угловой минуты. Динамические, квазистатические и статические рассогласования систем координат УК относительно НК могут определяться разными способами. Указанные рассогласования вокруг горизонтальных осей определяются с использованием гравитационных сил. Значительно сложнее определить рассогласования систем координат вокруг вертикальной оси.

Необходимость определения, уточнения и запоминания статических и квазистатических рассогласований УК возникает в процессе эксплуатации корабля.

Деформации корпуса корабля происходят при его качках и маневрировании, при суточных и сезонных изменениях окружающей температуры, при его перезагрузках, старения материала корпуса, а также заменах УК и элементов НК при ремонте.

Применение оптических систем ограничивается сложностью их установки на кораблях. Наиболее близким аналогом предлагаемого изобретения является «Способ определения деформаций и углов ориентации корабля с учетом деформаций» (Патент РФ №2261417). Согласно описанию этого патента, совместно обрабатывается информация триады датчиков угловой скорости (ДУС) 1 и блока акселерометров 7, расположенных в месте потребителя информации УК, с информацией гироазимутгоризонта (ГАГ) 10, расположенного вблизи центра тяжести корабля. Статические и динамические рассогласования УК относительно ГАГ по бортовой и килевой качкам определяют путем измерения разностей углов качек, определяемых ГАГ, и интегралов угловых скоростей, определяемых ДУС, при замыканиях контуров комплексирования. Динамические рассогласования упомянутых УК и ГАГ вокруг вертикальной оси определяют аналогичным образом. Для вычисления значения статического рассогласования УК и ГАГ вокруг вертикальной оси, т.е. поправки курса ΔΚ, используется достаточно сложная процедура обработки информации акселерометров, заимствованная из теории инерциальной навигации, заканчивающаяся применением фильтра Калмана.

К недостаткам рассматриваемого способа относится использование гироазимутгоризонта (ГАГ) в качестве основного измерителя углов качек θк и ψ, курса К, а также составляющих скорости движения VN и VE корабля и географической широте φ. Изделие такого типа определяет только углы качки корабля и хранит азимутальное направление. Необходимые для решения задачи параметры определяются навигационным комплексом корабля.

В рассматриваемом способе при использовании информации от ДУС для определения значений бортовой и килевой качек не учитывается, что система координат ДУС развернута по азимуту относительно ГАГ на некоторый угол ΔΚ. В результате определяются значения углов наклона относительно горизонта, которые не совпадают с углами бортовой и килевой качек. Для исключения таких погрешностей необходимо, например, значения угловых скоростей наклонов на выходе ДУС привести в систему координат, развернутую на угол ΔΚ.

К недостаткам рассматриваемого способа относится использование для вычисления значения статического рассогласования УК и ГАГ вокруг вертикальной оси достаточно сложной процедуры обработки информации акселерометров, заимствованная из теории инерциальной навигации, заканчивающаяся применением фильтра Калмана.

Кроме того, как следует из описания патента, устойчивость такого фильтра зависит от уровня ошибок ДУС и не всегда обеспечивается. В рассматриваемом способе не предусмотрено запоминающее устройство для хранения значения статической и квазистатической деформации корпуса корабля вокруг вертикальной оси на интервалах времени, когда она не может быть определена вследствие отсутствия качки корабля.

На практике чаще вместо ДУС и блока акселерометров используется блок ориентации (БО), в общем корпусе которого установлены ДУС и акселерометры. Это позволяет производить калибровку БО для определения ошибок ориентации измерительных осей его элементов относительно посадочных поверхностей корпуса блока. Результаты калибровки паспортизируются и учитываются в процессе решения задач ориентации. В состав таких блоков вводят также вычислительные устройства, наделяющие блоки свойствами гировертикали, гироазимутгоризонта или инерциальной системы. Использование блоков ориентации с целью определения угловых деформаций корабля существенно упрощает решение задачи по сравнению с рассмотренным способом.

Таким образом, в области техники существует необходимость в обеспечении более точных, простых и надежных способа и системы для определения угловых деформаций корпуса корабля. Кроме того, существует потребность в создании способа и системы для уточнения начальных угловых рассогласований УК между собой и относительно навигационного комплекса корабля при установках УК на корабль и их заменах в процессе эксплуатации корабля.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В одном аспекте предлагаемое изобретение относится к системе для определения ориентации устройств корабля с учетом деформаций его корпуса. Предлагаемая система содержит интеграторы; сумматоры; инверторы; и, кроме того, содержит навигационный комплекс корабля, блок ориентации, установленный на устройстве корабля, преобразователь координат, связывающий системы координат навигационного комплекса и блока ориентации, преобразователь координат, осуществляющий преобразование координат угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек, преобразователь координат, осуществляющий преобразование координат углов наклона палубы в углы бортовой и килевой качек, множительные устройства, фильтры нижних частот и запоминающие устройства; причем выход навигационного комплекса с информацией о курсе, составляющих линейной скорости и географической широте соединен с входом блока ориентации, выход блока ориентации соединен с входом преобразователя координат, связывающего системы координат блока ориентации и навигационного комплекса, выходы преобразователя, связывающего системы координат блока ориентации и навигационного комплекса, содержащие информацию об угловых скоростях наклонов палубы, соединены с входом преобразователя координат, осуществляющего преобразование координат угловых скоростей наклона палубы в угловые скорости качек, выходы преобразователя, связывающего системы координат блока ориентации и навигационного комплекса, содержащие информацию об угловых скоростях наклонов палубы, соединены с входами преобразователя координат углов наклона в углы бортовой и килевой качек, выход преобразователя координат, осуществляющего преобразование координат угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек, содержащий информацию об угловой скорости бортовой качки, соединен с входом соответствующего сумматора, сумматор выполнен с возможностью суммировать поступающие на его входы сигналы, выход сумматора соединен с входом соответствующего интегратора, а другой вход сумматора соединен с выходом соответствующего фильтра нижних частот, интегратор выполнен с возможностью интегрировать сигналы с выхода сумматора и вырабатывать выходной сигнал, содержащий информацию об углах бортовой качки, с учетом динамических изгибов корпуса корабля, причем коэффициент преобразования интегратора устанавливается равным обратной величине коэффициента преобразования измерителя угловой скорости бортовой качки блока ориентации, выход интегратора соединен с входом сумматора, другой вход сумматора соединен с запоминающим устройством, в котором хранится значение постоянной составляющей рассогласования по бортовой качке систем координат модуля ориентации и навигационного комплекса, выход интегратора соединен также с соответствующим инвертором, инвертер выполнен с возможностью инвертировать входной сигнал, выход инвертора соединен с входом сумматора, другой вход которого соединен с выходом навигационного комплекса, содержащим информацию о бортовой качке, выход сумматора соединен с входом соответствующего фильтра нижних частот, фильтр нижних частот выполнен таким образом, чтобы частота среза его частотной характеристики была существенно меньше, например, в 100 раз, частоты качки корабля, а произведение коэффициента преобразования в полосе прозрачности фильтра на коэффициент преобразования интегратора также было существенно меньше частоты качки, выход фильтра соединен с входом сумматора, соединенного с входом интегратора, выход преобразователя координат, осуществляющего преобразование угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек, содержащий информацию об угловой скорости килевой качки, соединен с входом соответствующего сумматора, сумматор выполнен с возможностью суммировать поступающие на его входы сигналы, выход сумматора соединен с входом соответствующего интегратора, а другой вход сумматора соединен с выходом соответствующего фильтра нижних частот, интегратор выполнен с возможностью интегрировать сигналы с выхода сумматора и вырабатывать выходной сигнал, содержащий информацию об углах килевой качки с учетом динамических изгибов корпуса корабля, причем коэффициент преобразования интегратора устанавливается равным обратной величине коэффициента преобразования измерителя угловой скорости килевой качки блока ориентации, выход интегратора соединен с входом сумматора, другой вход которого соединен с запоминающим устройством, в котором хранится значение постоянной составляющей рассогласования по килевой качке систем координат модуля ориентации и навигационного комплекса, выход интегратора соединен также с соответствующим инвертором, инвертер выполнен с возможностью инвертировать входной сигнал, выход инвертора соединен с входом сумматора, другой вход которого соединен с выходом навигационного комплекса, содержащим информацию о килевой качке, выход сумматора соединен с входом соответствующего фильтра нижних частот, фильтр нижних частот выполнен таким образом, чтобы частота среза его частотной характеристики была существенно меньше, например, в 100 раз, частоты качки корабля, а произведение коэффициента преобразования в полосе прозрачности фильтра на коэффициент преобразования интегратора также было существенно меньше частоты качки, выход фильтра соединен с входом сумматора, соединенного с входом интегратора, выход интегратора соединен с сумматором, на выходе которого вырабатывается текущее значение угла килевой качки, а также соединен с входом инвертора, выход инвертора связан с входом сумматора, выход сумматора соединен с фильтром нижних частот, а другой вход сумматора соединен с выходом навигационного комплекса, на котором имеется информация о килевой качке, выход преобразователя координат, связывающего системы координат навигационного комплекса и блока ориентации, содержащий информацию о курсе блока ориентации соединен с входом соответствующего сумматора, сумматор выполнен с возможностью суммировать поступающие на его входы сигналы, выход сумматора соединен с входом соответствующего интегратора, а другой вход сумматора соединен с выходом соответствующего фильтра нижних частот, интегратор выполнен с возможностью интегрировать сигналы выхода сумматора и вырабатывать выходной сигнал, содержащий информацию о курсе корабля в месте расположения блока ориентации, с учетом динамических изгибов корпуса корабля, причем коэффициент преобразования интегратора устанавливается равным обратной величине коэффициента преобразования измерителя азимутальной угловой скорости блока ориентации, выход интегратора соединен с входом сумматора, другой вход которого соединен с запоминающим устройством, в котором хранится значение постоянной составляющей рассогласования по курсу систем координат модуля ориентации и навигационного комплекса, выход интегратора соединен также с соответствующим инвертором, инвертер выполнен с возможностью инвертировать входной сигнал, выход инвертора соединен с входом сумматора, другой вход сумматора соединен с выходом навигационного комплекса, содержащим информацию о курсе корабля, выход сумматора соединен с входом соответствующего фильтра нижних частот, фильтр нижних частот выполнен таким образом, чтобы частота среза его частотной характеристики была существенно меньше, например, в 100 раз, частоты качки и рыскания корабля, причем коэффициент преобразования в полосе прозрачности фильтра выбран таким образом, чтобы его произведение на коэффициент преобразования интегратора также было существенно меньше частоты качки и рыскания, выход фильтра соединен с входом сумматора, соединенного с входом интегратора, выход интегратора соединен с входом сумматора, на выходе которого вырабатывается текущее значение курса корабля, а также с входом инвертора, выход которого соединен с сумматором, выход которого соединен с фильтром нижних частот, а другой вход сумматора соединен с выходом навигационного комплекса, на котором имеется информация о курсе корабля, выход навигационного комплекса, содержащий информацию о бортовой качке, соединен также с сумматором, второй вход которого соединен с выходом запоминающего устройства, в котором хранится значение постоянной составляющей рассогласования по бортовой качке систем координат модуля ориентации и навигационного комплекса, выход сумматора соединен с входом инвертора, выход инвертора соединен с сумматором, выход сумматора соединен с входом соответствующего множительного устройства и входом фильтра нижних частот, выход фильтра соединен с входом запоминающего устройства, другой вход сумматора соединен с выходом преобразователя координат, аналитически поворачивающего по курсу систему координат, в которой вырабатывается в блоке ориентации угол наклона, близкий к углу бортовой качки, и соединен с входом множительного устройства, участвующего в обработке информации о килевой качке, выход навигационного комплекса, содержащий информацию о килевой качке, соединен также с сумматором, второй вход которого соединен с выходом запоминающего устройства, в котором хранится значение постоянной составляющей рассогласования по килевой качке систем координат модуля ориентации и навигационного комплекса, выход сумматора соединен с входом инвертора, выход инвертора соединен с сумматором, выход сумматора соединен с входом соответствующего множительного устройства и входом фильтра нижних частот, выход фильтра соединен с входом запоминающего устройства, другой вход сумматора соединен с выходом преобразователя координат, аналитически поворачивающего по курсу систему координат, в которой вырабатывается в блоке ориентации угол наклона, близкий к углу килевой качки, и соединен с входом множительного устройства, участвующего в обработке информации о бортовой качке, выход множительного устройства, один из входов которого соединен с фильтром нижних частот для обработки информации о килевой качке, соединен с входом инвертора, выход инвертора соединен с сумматором, другой вход которого соединен с другим множительным устройством, выход сумматора соединен с входом фильтра нижних частот, выход которого соединен с входом интегратора, выход интегратор соединен с входом запоминающего устройства величины поправки курса, выход запоминающего устройства поправки курса соединен с преобразователем координат угловых скоростей наклона палубы в угловые скорости бортовой и килевой качеки с преобразователем координат, аналитически поворачивающего по курсу систему координат, в которой вырабатываются в блоке ориентации углы наклонов, а также соединен с входом инвертора, выход которого соединен с входом сумматора, на выходе которого вырабатывается значение курса корабля в месте установки блока ориентации,

Согласно другому аспекту предлагаемого изобретения, оно относится также к способу определения ориентации системы корабля с учетом деформаций его корпуса, согласно которому текущие параметры угловой ориентации устройства корабля вычисляются путем совместной обработки информации, приведенной в одну систему координат, блока ориентации, соединенного с устройством корабля, и навигационного комплекса корабля, причем текущие значения углов качек и курса, без учета значений статических угловых рассогласований блока ориентации относительно навигационного комплекса корабля, определяются в каждом канале вычисления значений данной величины путем интегрирования суммы угловой скорости данной величины, определенной модулем ориентации, и отфильтрованной разности величин, определенных навигационным комплексом и ее значения, вычисленного в процессе интегрирования, а статические угловые рассогласования системы координат блока ориентации относительно навигационного комплекса по углам бортовой и килевой качкам вычисляются путем определенных модулем ориентации и навигационным комплексом, причем статическое угловое рассогласование по курсу блока ориентации относительно навигационного комплекса вычисляется и запоминается путем сведения к минимуму, соответствующим преобразованием координат, суммы разностей значений углов бортовой качки, определенных модулем ориентации и навигационным комплексом, умноженных на значения углов килевой качки, и разностей значений углов килевой качки, определенных модулем ориентации и навигационным комплексом, умноженных на значения углов бортовой качки.

Техническим результатом предлагаемого изобретения является повышение точности определения ориентации устройства корабля с учетом динамических и статических деформаций его корпуса а также упрощение используемых математических процедур.

Сущность и преимущества предлагаемого изобретения будут далее более подробно объяснены со ссылками на прилагаемую структурную схему.

Необходимо отметить, что, так как изобретение имеет единый замысел, то все пояснения в работе системы могут быть также перенесены на функционирование предлагаемого способа.

КРАТКОЕ ОПИСАНИЕ СТРУКТУРНОЙ СХЕМЫ

Структурная схема содержит блок ориентации (БО), соединенный с устройством корабля, навигационный комплекс корабля (НК), преобразователи координат, интегрирующие устройства, фильтры нижних частот, множительные и запоминающие устройства, а также сумматоры и инверторы.

В предлагаемой системе определяются значения следующих величин:

θУКΗΚ+Δθ~+Δθ0, ψУКНК+Δψ~+Δψ0, KУК=KНК+ΔΚ~+ΔΚ0,

здесь: θУК, ψУК, KУК - углы бортовой качки, килевой качки и курса, определенные в месте установки устройства корабля (УК) с учетом динамических и статических деформаций корпуса корабля и ошибок установки УК на корабле;

θНК, ψНК, KНК - те же параметры, выработанные навигационным (НК);

Δθ~, Δψ~, ΔК~ - переменные составляющие углов качек и курса, обусловленные упругими деформациями корпуса корабля между местами установки УК и НК при качке корабля;

Δθ0, Δψ0, ΔΚ0 - величины статических или квазистатических угловых рассогласований системы координат УК относительно системы координат НК, обусловленные деформациями корпуса корабля и неточностью установки УК на корабле.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

В предлагаемой системе и способе для определения угловой ориентации систем корабля относительно приборов навигационного комплекса корабля используется блок ориентации. Известно большое количество практически применяемых платформенных и бесплатформенных приборов такого типа. В процедуре обработки информации заявленного изобретения используются широко известные методы автоматического регулирования. Поэтому практическое применение изобретения не вызывает затруднений.

В известном из уровня техники способе в качестве основного средства ориентации корабля применяется гироазимутгоризонт (ГАГ), по определению не способный определять курс корабля. В указанном способе не осуществляется необходимое преобразование координат измеренных угловых скоростей качек, что приводит к дополнительным ошибкам решения поставленной задачи. В способе не предусмотрено запоминание величины статической поправки курса, а также используется довольно сложное построение системы и связанные с этим сложные математические модели.

Предлагаемая система и способ направлены на устранение недостатков имеющегося уровня техники.

Предлагаемая система в соответствие со структурной схемой работает следующим образом.

Текущие значения бортовой качки θ1 корабля в месте установки БО с учетом переменой составляющей θ~ деформаций корпуса корабля определяются следующим образом. В части схемы автоматического регулирования, образованной интегратором 10 и фильтром 11, поступают значения θΗΚ и производной ωθ=k1p(θΗΚ~) от угла θБО, где k1 - передаточная функция измерителя угловой скорости БО. При этом значение ωθ определяется путем обработки информации БО в ПК3. Передаточная функция интегратора имеет вид k10/р, а фильтра - k11/(Тр+1). Промежуточные значения величин в цепях обратной связи - ε1 и ε2. Разность ε1НК1 поступает на вход фильтра 11. На вход интегратора поступает значение ε2=k1p(θΗΚ~)+ε1k11./(Tp+1). Для решения задачи устанавливается следующее соотношение коэффициентов k1=1/k10.

При этом уравниваются масштабы величин θБО и θΗΚ.

Рассмотренные величины связаны следующими формулами:

θ12(k10/р) или ε21(р/k10); θ1(p/k10)=(θНК~)k1p+(θΗΚ1)k11./(Тр+1);

θ1[р/k10+k11./(Тр+1)]=θНК k1p+θ~k1p+θHK k11./(Тр+1).

Заменим k1 на 1/k10. θ1[р/k10+k11./(Тр+1)]=θНК р/k10~р/k10HK k11./(Тр+1);

θ1[р/k10+k11./(Тр+1)]=θΗΚ[р/k10+k11./(Тр+1)]+θ~р/k10;

Таким образом, получим соотношение: θ1ΗΚ~.(Тр+1)]/[р.(Тр+1)+k10k11].

При условии k10k11c≤0,01, где ωс - частота среза фильтра НЧ, образованного интегратором, охваченного обратной связью, текущие значения углов бортовой качки в месте установки БО определяется с достаточной точностью формулой θ1ΗΚ~.

Поскольку θ1 определяется интегрированием величины ωθ, то существует возможность значительно чаще выдавать в УК значение θ1 по сравнению с θΗΚ.

Аналогичным образом с использованием интеграторов 12 и 5 а также фильтров 13 и 6 определяются текущие значения килевой качки ψ1ΗΚ+Δψ~ и курса корабля Κ1=KНК+ΔK~. Для определения значений θ1 и ψ1 использовался преобразователь координат ПК3, на вход которого поступали значения угловых скоростей ωx, ωy, а на выходе формировались значения ωθ, ωΨ.

Определение Δθ0 осуществляется путем сравнения θБО и θΗΚ между собой.

Значение Δθ0БОΗΚ поступает на вход интегратора 17, выходная величина которого через запоминающее устройство 16 добавляется к θΗΚ. В результате работы интегратора его входная величина обнуляется, a Δθ0 оказывается добавленной к θΗΚ. Значение этой добавки запоминается в устройстве 16 и суммируется с θ1. При этом определяется значение θСК1+Δθ0. Аналогичным образом определяются Δψ0 и ψСК1+Δψ0 с использованием интегратора 19 и запоминающего устройства 18.

Процедуру определения и запоминания значений Δθ0 и Δψ0 целесообразно проводить при малых значениях углов θ и ψ, например, при отсутствии интенсивной качки и маневрирования корабля или в условиях ошвартованного корабля.

Угол ΔΚ0, на который развернуты между собой вокруг вертикальной оси системы координат БО и НК, определяется следующим образом. Значения θБΟ, ψБО и θНК, ψНК связаны между собой следующими соотношениями:

θНКБО cos ΔΚ0БО sin ΔΚ0; ψНКБО cos ΔΚ0БО sin ΔΚ0.

С учетом малости ΔΚ0 получим: θΗΚБОБΟ ΔΚ0; ψΗКБОБΟ ΔΚ0

Такие величины вырабатываются на выходе ПК4. Вычитая из них, соответственно, (θΗΚ+Δθ0) и (ψΗΚ+Δψ0), получим значения в данный момент времени величин на входах множительных устройств 14 и 15:

ΗΚ+Δθ~+Δθ0)-(θΗΚ+Δθ0)+ ψБОΔΚ0БОΔΚ0+Δθ~,

ΗΚ+Δψ~+Δψ0)-( ψΗΚ+Δψ0)-θБОΔΚ0=-θБОΔΚ0+Δψ~.

На выходах множительных устройств 14 и 15, соответственно, образуются величины:

БΟΔΚ0+Δθ~БО=(ψБО)2ΔΚ0БΟΔθ~,

(-θБОΔΚ0+Δψ~БО=-(θБО)2ΔΚ0БΟΔψ~).

Сумма этих текущих величин {-[(ψБО)2+(θБО)2]ΔΚ0БОΔθ~+Δψ~θБΟ} через фильтр 9, интегратор 8 и запоминающее устройство 7 управляет работой ПК4. Сигналы ψБО Δθ~ и θБО Δψ~ подавляются фильтром и не влияют на работу системы. Постоянная составляющая величины - [(ψБО)2+(θБО)2]ΔΚ0 поступает на вход интегратора, выход которого через ПК4 аналитически совмещает по азимуту системы координат БО и НК. При этом входная величина интегратора обнуляется, а на его выходе сохраняется значение величины - ΔΚ0. Результирующий текущий угол ρБО наклона палубы в месте установки БО определяется из соотношения (ρБО)2=(ψБО)2+(θБО)2. Таким образом, статическая поправка курса ΔΚ0 вычисляется сравнением между собой направлений, вокруг которых в данный момент времени происходят наклоны палубы в местах расположения БО и НК с последующим осреднением результатов сравнения. Совокупность устройств определения значения ΔΚ0 и их связи между собой образуют систему автоматического регулирования, на входы которой поступают текущие значения величин θБО, ψБО и θНК, ψНК. Точность вычисления ΔΚ0 зависит от величины (ρБО)2.

Поэтому определение или обновление значения ΔΚ0 целесообразно осуществлять в условиях достаточно интенсивной качки корабля или при его значительных наклонах.

Величина статической поправки курса ΔΚ0 запоминается и используется при других условиях эксплуатации корабля.

Процедура определения значения ΔΚ0 выполняется после выполнения процедур определения значений величин Δθ0 и Δψ0. Тем самым ослабляется влияние взаимной связи вычислений этих величин на точность измерений.

Согласно еще одному аспекту, предлагаемое изобретение относится к способу определения параметров угловой ориентации систем корабля с учетом деформаций его корпуса.

Функциональная схема предлагаемого способа аналогична структурной схеме предлагаемой системы.

Согласно предложенному способу текущие параметры угловой ориентации устройства корабля вычисляются путем совместной обработки информации, приведенной в одну систему координат, блока ориентации, соединенного с устройством корабля, и навигационного комплекса корабля, причем текущие значения углов качек и курса, без учета значений статических угловых рассогласований блока ориентации относительно навигационного комплекса корабля, определяются в каждом канале вычисления значений данной величины путем интегрирования суммы угловой скорости данной величины, определенной модулем ориентации, и отфильтрованной разности величин, определенных навигационным комплексом и ее значения, вычисленного в процессе интегрирования, а статические угловые рассогласования системы координат блока ориентации относительно навигационного комплекса по углам бортовой и килевой качкам вычисляются путем фильтрации и запоминания результатов сравнения между собой соответствующих углов, определенных модулем ориентации и навигационным комплексом, причем статическое угловое рассогласование по курсу блока ориентации относительно навигационного комплекса вычисляется и запоминается после определения статических рассогласований по углам бортовой и килевой качек путем сведения к минимуму соответствующим преобразованием координат суммы результатов умножений разностей значений углов бортовой качки, определенных модулем ориентации и навигационным комплексом, умноженной на значение угла килевой качки, и разностей значений углов килевой качки, определенных модулем ориентации и навигационным комплексом, умноженной на значение углов бортовой качки.

Заявленное изобретение может быть также использовано для определения взаимной ориентации нескольких систем, расположенных на корабле. В этом случае на каждой системе устанавливается блок ориентации. Совместная обработка информации этих блоков в соответствии с заявленным изобретением позволяет определить их взаимную ориентацию.

Заявленное изобретение может также найти применение на других объектах, например самолетах и вертолетах.

1. Система для определения параметров угловой ориентации устройств корабля с учетом деформаций его корпуса, содержащая:
интеграторы;
сумматоры;
инверторы;
и отличающаяся тем, что система, кроме того, содержит навигационный комплекс корабля, блок ориентации, установленный на устройстве корабля, преобразователь координат, связывающий системы координат навигационного комплекса и блока ориентации, преобразователь координат, осуществляющий преобразование координат угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек, преобразователь координат, осуществляющий преобразование координат углов наклона палубы в углы бортовой и килевой качек, множительные устройства, фильтры нижних частот и запоминающие устройства; причем выход навигационного комплекса с информацией о курсе, составляющих линейной скорости и географической широте соединен с входом блока ориентации, выход блока ориентации соединен с входом преобразователя координат, связывающего системы координат блока ориентации и навигационного комплекса, выходы преобразователя, связывающего системы координат блока ориентации и навигационного комплекса, содержащие информацию об угловых скоростях наклонов палубы, соединены с входом преобразователя координат, осуществляющего преобразование координат угловых скоростей наклона палубы в угловые скорости качек, выходы преобразователя координат, связывающего системы координат блока ориентации и навигационного комплекса, содержащие информацию об угловых скоростях наклонов палубы, соединены с входами преобразователя координат углов наклона в углы бортовой и килевой качек, выход преобразователя координат, осуществляющего преобразование координат угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек, содержащий информацию об угловой скорости бортовой качки, соединен с входом сумматора, сумматор выполнен с возможностью суммировать поступающие на его входы сигналы, выход сумматора соединен с входом соответствующего интегратора, а другой вход сумматора соединен с выходом соответствующего фильтра нижних частот, интегратор выполнен с возможностью интегрировать сигналы с выхода сумматора и вырабатывать выходной сигнал, содержащий информацию об углах бортовой качки, с учетом динамических изгибов корпуса корабля, причем коэффициент преобразования интегратора устанавливается равным обратной величине коэффициента преобразования измерителя угловой скорости бортовой качки блока ориентации, выход интегратора соединен с входом сумматора, другой вход сумматора соединен с запоминающим устройством, в котором хранится значение постоянной составляющей рассогласования по бортовой качке систем координат модуля ориентации и навигационного комплекса, выход интегратора соединен также с соответствующим инвертором, инвертер выполнен с возможностью инвертировать входной сигнал, выход инвертора соединен с входом сумматора, другой вход которого соединен с выходом навигационного комплекса, содержащим информацию о бортовой качке, выход сумматора соединен с входом соответствующего фильтра нижних частот, фильтр нижних частот выполнен таким образом, чтобы частота среза его частотной характеристики была существенно меньше, например в 100 раз, частоты качки корабля, а произведение коэффициента преобразования в полосе прозрачности фильтра на коэффициент преобразования интегратора также было существенно меньше частоты качки, выход фильтра соединен с входом сумматора, соединенного с входом интегратора, выход преобразователя координат, осуществляющего преобразование угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек, содержащий информацию об угловой скорости килевой качки, соединен с входом соответствующего сумматора, сумматор выполнен с возможностью суммировать поступающие на его входы сигналы, выход сумматора соединен с входом соответствующего интегратора, а другой вход сумматора соединен с выходом соответствующего фильтра нижних частот, интегратор выполнен с возможностью интегрировать сигналы с выхода сумматора и вырабатывать выходной сигнал, содержащий информацию об углах килевой качки с учетом динамических изгибов корпуса корабля, причем коэффициент преобразования интегратора устанавливается равным обратной величине коэффициента преобразования измерителя угловой скорости килевой качки блока ориентации, выход интегратора соединен с входом сумматора, другой вход которого соединен с запоминающим устройством, в котором хранится значение постоянной составляющей рассогласования по килевой качке систем координат модуля ориентации и навигационного комплекса, выход интегратора соединен также с соответствующим инвертором, инвертер выполнен с возможностью инвертировать входной сигнал, выход инвертора соединен с входом сумматора, другой вход которого соединен с выходом навигационного комплекса, содержащим информацию о килевой качке, выход сумматора соединен с входом соответствующего фильтра нижних частот, фильтр нижних частот выполнен таким образом, чтобы частота среза его частотной характеристики была существенно меньше, например в 100 раз, частоты качки корабля, а произведение коэффициента преобразования в полосе прозрачности фильтра на коэффициент преобразования интегратора также было существенно меньше частоты качки, выход фильтра соединен с входом сумматора, соединенного с входом интегратора, выход интегратора соединен с сумматором, на выходе которого вырабатывается текущее значение угла килевой качки, а также соединен с входом инвертора, выход инвертора связан с входом сумматора, выход сумматора соединен с фильтром нижних частот, а другой вход сумматора соединен с выходом навигационного комплекса, на котором имеется информация о килевой качке, выход преобразователя координат, связывающего системы координат навигационного комплекса и блока ориентации, содержащий информацию о курсе блока ориентации, соединен с входом соответствующего сумматора, сумматор выполнен с возможностью суммировать поступающие на его входы сигналы, выход сумматора соединен с входом соответствующего интегратора, а другой вход сумматора соединен с выходом соответствующего фильтра нижних частот, интегратор выполнен с возможностью интегрировать сигналы выхода сумматора и вырабатывать выходной сигнал, содержащий информацию о курсе корабля в месте расположения блока ориентации, с учетом динамических изгибов корпуса корабля, причем коэффициент преобразования интегратора устанавливается равным обратной величине коэффициента преобразования измерителя азимутальной угловой скорости блока ориентации, выход интегратора соединен с входом сумматора, другой вход которого соединен с запоминающим устройством, в котором хранится значение постоянной составляющей рассогласования по курсу систем координат модуля ориентации и навигационного комплекса, выход интегратора соединен также с соответствующим инвертором, инвертер выполнен с возможностью инвертировать входной сигнал, выход инвертора соединен с входом сумматора, другой вход сумматора соединен с выходом навигационного комплекса, содержащим информацию о курсе корабля, выход сумматора соединен с входом соответствующего фильтра нижних частот, фильтр нижних частот выполнен таким образом, чтобы частота среза его частотной характеристики была существенно меньше, например в 100 раз, частоты качки и рыскания корабля, причем коэффициент преобразования в полосе прозрачности фильтра выбран таким образом, чтобы его произведение на коэффициент преобразования интегратора также было существенно меньше частоты качки и рыскания, выход фильтра соединен с входом сумматора, соединенного с входом интегратора, выход интегратора соединен с входом сумматора, на выходе которого вырабатывается текущее значение курса корабля, а также с входом инвертора, выход которого соединен с сумматором, выход которого соединен с фильтром нижних частот, а другой вход сумматора соединен с выходом навигационного комплекса, на котором имеется информация о курсе корабля, выход навигационного комплекса, содержащий информацию о бортовой качке, соединен также с сумматором, второй вход которого соединен с выходом запоминающего устройства, в котором хранится значение постоянной составляющей рассогласования по бортовой качке систем координат модуля ориентации и навигационного комплекса, выход сумматора соединен с входом инвертора, выход инвертора соединен с сумматором, выход сумматора соединен с входом соответствующего множительного устройства и входом фильтра нижних частот, выход фильтра соединен с входом запоминающего устройства, другой вход сумматора соединен с выходом преобразователя координат, аналитически поворачивающего по курсу систему координат, в которой вырабатывается в блоке ориентации угол наклона, близкий к углу бортовой качки, и соединен с входом множительного устройства, участвующего в обработке информации о килевой качке, выход навигационного комплекса, содержащий информацию о килевой качке, соединен также с сумматором, второй вход которого соединен с выходом запоминающего устройства, в котором хранится значение постоянной составляющей рассогласования по килевой качке систем координат модуля ориентации навигационного комплекса, выход сумматора соединен с входом инвертора, выход инвертора соединен с сумматором, выход сумматора соединен с входом соответствующего множительного устройства и входом фильтра нижних частот, выход фильтра соединен с входом запоминающего устройства, другой вход сумматора соединен с выходом преобразователя координат, аналитически поворачивающего по курсу систему координат, в которой вырабатывается в блоке ориентации угол наклона, близкий к углу килевой качки, и соединен с входом множительного устройства, участвующего в обработке информации о бортовой качке, выход множительного устройства, один из входов которого соединен с фильтром нижних частот для обработки информации о килевой качке, соединен с входом инвертора, выход инвертора соединен с сумматором, другой вход которого соединен с другим множительным устройством, выход сумматора соединен с входом фильтра нижних частот, выход которого соединен с входом интегратора, выход интегратор соединен с входом запоминающего устройства величины поправки курса, выход запоминающего устройства поправки курса соединен с преобразователем координат угловых скоростей наклона палубы в угловые скорости бортовой и килевой качек и с преобразователем координат, аналитически поворачивающего по курсу систему координат, в которой вырабатываются в блоке ориентации углы наклонов, а также соединен с входом инвертора, выход которого соединен с входом сумматора, на выходе которого вырабатывается значение курса корабля в месте установки блока ориентации.

2. Способ определения угловой ориентации устройств корабля с учетом деформаций его корпуса, согласно которому текущие параметры угловой ориентации системы вычисляются путем совместной обработки информации, приведенной в одну систему координат, блока ориентации, соединенного с устройством корабля, и навигационного комплекса корабля, причем значения качек и курса, без учета значений статических угловых рассогласований блока ориентации относительно навигационного комплекса корабля, определяются в каждом канале вычисления значений данной величины путем интегрирования суммы угловой скорости данной величины, определенной модулем ориентации, и отфильтрованной разности величин, определенных навигационным комплексом, и значения данной величины, вычисленного в процессе интегрирования, а статические угловые рассогласования системы координат блока ориентации относительно навигационного комплекса по углам бортовой и килевой качек вычисляются путем фильтрации и запоминания результатов сравнения между собой соответствующих углов, определенных модулем ориентации и навигационным комплексом, причем статическое угловое рассогласование по курсу блока ориентации относительно навигационного комплекса вычисляется и запоминается после определения статических рассогласований по углам бортовой и килевой качек путем сведения к минимуму соответствующим преобразованием координат суммы результатов умножений разностей значений углов бортовой качки, определенных модулем ориентации и навигационным комплексом, умноженной на значение угла килевой качки, и разностей значений углов килевой качки, определенных модулем ориентации и навигационным комплексом, умноженной на значение углов бортовой качки.



 

Похожие патенты:

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства.

Изобретение относится к области гироскопических систем и может быть использовано в навигационных системах. Технический результат - расширение функциональных возможностей.

Изобретение относится к области навигационного приборостроения и может быть использовано для определения положения платформы трехосного гиростабилизатора в азимуте, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к системам автоматического регулирования, а конкретно к двухосным управляемым гиростабилизаторам оптической линии визирования, работающим на подвижных объектах и предназначенным для стабилизации и наведения линии визирования.

Способ коррекции дрейфа микромеханического гироскопа, используемого в системе дополненной реальности на движущемся объекте. Изобретение относится к области навигационного приборостроения.

Изобретение относится к области гироскопических систем и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Азимутальная ориентация платформы трехосного гиростабилизатора по приращениям угла прецессии гироблока относится к области приборостроения и может быть использована для определения азимута, например, в высокоточных системах различного назначения.

Изобретение относится к области навигационного приборостроения и может быть использовано для контроля гиростабилизированных платформ космического назначения. .

Изобретение относится к гироскопической технике, а именно к управляемым гиростабилизаторам с косвенной стабилизацией, работающим на подвижных объектах. .

Изобретение относится к области гироскопии и может быть использовано для выставки в плоскость горизонта и на заданный азимут стабилизированной платформы (СП) трехосного гиростабилизатора (ТГС) системы управления ракет-носителей и разгонных блоков космического назначения, запускаемых со стартовых комплексов наземного базирования и морских платформ. В предлагаемом способе после грубого приведения СП в плоскость горизонта включается система стабилизации, в датчики моментов (ДМ) двухстепенных поплавковых интегрирующих гироскопов (ГБ) системы стабилизации СП подаются токи компенсации уходов СП, затем вычисляется отклонение СП от плоскости горизонта и нескомпенсированные скорости поворота СП относительно осей ОХП и ΟΖП, вычисляются проекции горизонтальной составляющей скорости вращения Земли на оси чувствительности ГБ по осям рыскания (Р) и тангажа (Т), грубо определяется азимут корпуса ТГС, затем уточняются масштабные коэффициенты акселерометров, составляющие уходов ГБ Ρ и Τ и калибровочные коэффициенты их трактов путем выставки СП в четыре положения с азимутом 0°, 90°, 180° и 270°, компенсацией уходов СП и проведением измерений в этих положениях, после чего СП осью ОХП грубо выставляется на азимут запуска, в ДМ ГБ подаются токи компенсации собственных уходов ГБ и составляющих вектора вращения Земли, уточняются проекции горизонтальной составляющей скорости вращения Земли на оси чувствительности ГБ Τ и Ρ и производится их пересчет на направления север-юг, запад-восток, вычисляется рассогласование оси ОХП с азимутом запуска, вычисленное рассогласование устраняется поворотом вокруг вертикальной оси на рассчитанный угол, и СП удерживается у азимута запуска токами компенсации. Технический результат – уменьшение погрешности выставки трехосного гиростабилизатора стабилизированной платформы в плоскость горизонта и на заданный азимут. 2 ил.

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в гироскопических стабилизаторах. Способ стабилизации гироскопической платформы заключается в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, при этом при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенном стабилизирующем двигателе, измеряя при этом напряжение на выходе усилителя стабилизации. Технический результат – повышение качества стабилизации и обеспечения необходимого запаса устойчивости системы. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения и может быть использовано в высокоточных навигационных системах различного назначения для определения положения платформы трехосного гиростабилизатора в азимуте. Технический результат – расширение функциональных возможностей за счет обеспечения возможности определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, а также сокращения времени и повышения точности определения азимута. Для этого измерения производятся в инерциальном управляемом режиме движения платформы относительно вертикальной оси и инерциальном режиме относительно двух или одной из горизонтальных осей. Перед началом измерений платформа горизонтируется точной системой приведения и грубо устанавливается и удерживается в требуемом исходном положении по азимуту. Затем система удержания платформы по азимуту и система точного приведения платформы в горизонт по двум или одной из горизонтальных осей отключается, а в датчик моментов азимутального гироблока подаются расчетные сигналы, увеличивающие скорость и угол поворота платформы по азимуту. Азимут исходного положения платформы определяют путем обработки сигналов с акселерометров об изменяющихся видимых уходах платформы относительно двух или одной горизонтальных осей, а также информации о видимых уходах по азимуту и об углах поворота гироскопов систем стабилизации платформы относительно двух или одной горизонтальных осей. 1 з.п. ф-лы.

Изобретение относится к гироскопической технике, а конкретно к двухосным гироскопическим стабилизаторам оптических элементов, работающим на подвижных объектах и предназначенным для стабилизации и управления оптическими элементами, и может найти применение в создании систем типа бинокль, перископ, лазерный дальномер. Заявленный гиростабилизатор оптических элементов, содержащий трехстепенной гироскоп, у которого во внешней рамке установлен гироузел, с которым кинематически шарнирно связан оптический элемент, и коррекционный двигатель, при этом оптический элемент представляет два зеркала, установленные во внешней рамке гироскопа симметрично относительно оси подвеса гироузла, а в кинематические шарнирные связи введены пружины, причем оси вращения зеркал параллельны оси подвеса гироузла, на котором с одной стороны в направлении оси ротора гиромотора установлена штанга с закрепленным на ее конце шарикоподшипнике, а на противоположном конце закреплена направляющая механического арретира, при этом шарикоподшипник штанги может перемещаться по направляющей бугеля, которая имеет П-образное сечение и средний радиус, равный длине штанги от центра подвеса гироузла до шарикоподшипника, при этом ось вращения бугеля находится в корпусе прибора и перпендикулярна оси подвеса внешней рамки. Технический результат состоит в увеличении угла обзора и угловых скоростей слежения с увеличением точности управления оптическими элементами с уменьшением массы и габаритов. 2 з.п. ф-лы, 7 ил.

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного назначения (ОВН) типа танков, БМП, БМД, БТР и т.п. Техническим результатом является повышение эксплуатационных возможностей за счет сохранения конструктивных установочных размеров в модернизируемом ОВН при установке на него нового прицельного комплекса (ПК) с независимой линией визирования (ЛВ), улучшение ремонтопригодности ОВН в условиях эксплуатации при установке модернизированного ПК с независимой ЛВ. Система стабилизации содержит прицельный комплекс с управляющей и силовой электроникой, связанной с внешним управляющим сигналом, датчики, двигатель, электрически связанный с первым выходом управляющей и силовой электроники, оптические узлы и механизмы. При этом система разделена на электроблок, размещенный в ОВН и содержащий управляющую и силовую электронику, и блок электромеханический, размещенный в прицельном комплексе, устанавливаемом на ОВН и содержащий датчики, двигатель, оптические узлы и механизмы, а также блок памяти и последовательный порт памяти. Элементы системы стабилизации соединены согласно блок-схеме на фиг. 1. 1 ил.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

Группа изобретений относится к средствам для определения положения объектов в заданной системе координат. Инерциальный блок для закрепления на вращающемся узле транспортного средства, сочлененный с его силовым оборудованием, содержит по меньшей мере один датчик ускорения, и/или по меньшей мере один магнитометр, выполненный с возможностью определения угла наклона вращающегося узла, и/или по меньшей мере одно счетное устройство, выполненное с возможностью определения количества вращений вращающегося узла, и два гироскопа, выполненные с возможностью определения направления на уровне обода вращающегося узла в целях предоставления информации об углах для определения положения, при этом данные первого гироскопа умножаются на ряд синусов, а данные второго гироскопа умножаются на ряд косинусов, причем оба ряда выбираются таким образом, чтобы обеспечить максимально точное представление рядов значений акселерометра, и чтобы сумма ряда была равна нулю с максимально возможной точностью. Также предложено устройство, содержащее множество инерциальных датчиков, которое крепится к транспортному средству. Указанный инерциальный блок реализует соответствующий способ определения координат транспортного средства. Описанная выше группа изобретений позволяет с высокой точностью определять координаты транспортных средств. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к области навигационного приборостроения и может быть использовано для создания прецизионных систем инерциальной навигации подвижных объектов. Опора карданова подвеса гиростабилизатора содержит стабилизирующий двигатель, преобразователь координат, цапфу оси подвеса, шарикоподшипник, редуктор, корпус, токоподвод коллекторного типа. Особенность конструкции опоры карданова подвеса гиростабилизатора состоит в том, что в нее введены: косозубое люфтовыбирающее колесо с фланцем, четыре люфтовыбирающие пружины, дополнительный фланец опоры, при этом шарикоподшипник выполнен в виде дуплексного шарикоподшипника, цапфа выполнена с косозубым зубчатым венцом, редуктор представляет собой два конических зубчатых колеса и червяк, который находится в зацеплении с косозубым венцом цапфы и косозубым венцом люфтовыбирающего колеса, токоподвод расположен внутри цапфы. Техническим результатом является повышение точности разворота рамок карданова подвеса, уменьшение массы и габаритов конструкции опоры, улучшение технологичности конструкции опоры карданова подвеса гиростабилизатора. 3 ил.

Изобретение относится к области навигации наземных транспортных средств и может найти применение в комплексной навигационной аппаратуре на основе аппаратуры счисления координат и спутниковой навигационной системы. Технический результат – повысить целостность системы навигации. Для этого автоматизированная система навигации с контролем целостности навигационных данных спутниковых радионавигационных систем состоит из аппаратуры счисления координат, в качестве основного элемента которой используется бесплатформенная инерциальная навигационная система (БИНС), оснащенной датчиком скорости механическим (ДСМ), датчиком скорости доплеровским (ДСД) и барометрическим высотомером (БВ), спутниковой навигационной аппаратуры (СНА), бортовой ЭВМ, выносного комплекса спутниковой навигационной аппаратуры (ВК СНА), устройства контроля качества (УКК) навигационных полей спутниковых систем и формирования корректирующей информации. Бесплатформенная инерциальная навигационная система (БИНС) оснащена вычислителем навигационных параметров (ВНП), выполненным с возможностью автоматического учета температурных поправок, а в качестве датчиков первичной информации БИНС используются инерциальные датчики: лазерные гироскопы (ЛГ) и кварцевые акселерометры (КА). Спутниковая навигационная аппаратура (СНА), основой которой является приемоиндикатор (ПИ), оснащена антенной системой (АС), состоящей из четырех антенных модулей (AM). Бортовая ЭВМ связана с барометрическим высотомером (БВ), состоящим, в свою очередь, из датчика температуры (ДТ), измерителя цифрового атмосферного давления (ИЦАД) и блока обработки данных (БОД), а через блок согласования (БС) - с датчиком скорости механическим (ДСМ) и датчиком скорости доплеровским (ДСД). Кроме того, она оснащена периферийными устройствами: клавиатурой (К), видеомонитором (ВМ), устройством документирования (УД), манипулятором графической информации (МГИ). Выносной комплекс спутниковой навигационной аппаратуры (ВК СНА), состоящий из носимого приемоиндикатора (НПИ) и антенны геодезической (АГ), оснащен переносным накопителем навигационной информации (ННИ). Бортовая ЭВМ связана по соответствующим каналам обмена и управления с вышеперечисленной аппаратурой, дополнительно - с аппаратурой передачи данных (АПД). При этом схема разрешения использования сигналов спутников (СРИСС) функционирует на основе алгоритма контроля целостности навигационного обеспечения спутниковых радионавигационных систем. В ее состав входят сумматор, пороговое устройство (ПУ) и ключевое устройство (КУ). 1 ил.
Наверх