Способ получения наночастиц ароматизатора "тропик" в альгинате натрия

Изобретение относится к способу получения нанокапсул ароматизатора «тропик» в альгинате натрия. Указанный способ характеризуется тем, что ароматизатор «тропик» растворяют в бутаноле, диспергируют полученную смесь в раствор альгината натрия в метаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/мин, далее приливают бутанол и воду, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, а также увеличение их выхода по массе. 2 ил., 3 пр.

 

Изобретение относится к области нанотехнологии, в частности к пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, В01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения наночастиц искусственного ароматизатора «тропик», применяемого в пищевой промышленности, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - искусственный ароматизатор «тропик», при получении нанокапсул методом осаждения нерастворителем с применением метанола и бутанола в качестве осадителей.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием метанола и бутанола в качестве осадителей, а также использование альгината натрия в качестве оболочки частиц и ароматизатора «тропик» - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул в альгинате натрия.

На фиг. 1 представлена самоорганизация нанокапсул ароматизатора «тропик» в альгинате натрия.

ПРИМЕР 1. Получение нанокапсул ароматизатора «тропик» в альгинате натрия

100 мг ароматизатора «тропик» растворяют в 1 мл бутанола и диспергируют полученную смесь в раствор альгинате натрия в метаноле, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата Е472c в качестве поверхностно-активного вещества, при перемешивании 1300 об/мин. Далее приливают 2 мл бутанола и 1 мл воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,396 г порошка микрокапсул. Выход составил 99%.

ПРИМЕР 2. Исследование самоорганизации микрокапсул из растворов

Из порошка микрокапсул, полученных по методике, описанной в примере 1, были приготовлены водные растворы концентрациями 1%, 0,5%, 0,25%, 0,125% и т.д. путем разбавления раствора в два раза. Капля каждого из приготовленных растворов помещалась на предметное стекло до полного высушивания и по высушенной поверхности проводилась конфокальная сканирующая микроскопия.

ПРИМЕР 3. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной 405 нм и мощностью 45 мВт).

Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto. Длительность единичного измерения 215s, использование шприцевого насоса.

Е472c - европейская классификация пищевой добавки, которая представляет собой сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксикислота - другими жирными кислотами (см. Л.А. Сарафанова. Пищевые добавки. Энциклопедия, СПб, ГИОРД, 2004 - 808 с.).

Таким образом, получены нанокапсулы ароматизатора «тропик» с высоким выходом в течение 10 мин. Образование нанокапсул происходит спонтанно за счет нековалентных взаимодействий и это говорит о том, что для них характерна самосборка. Представленные на фиг. 1 структуры являются упорядоченными, а значит, они обладают самоорганизацией. Следовательно, инкапсулированный альгинатом натрия в качестве оболочки ароматизатор «тропик» обладает супрамолекулярными свойствами.

Способ получения нанокапсул ароматизатора «тропик» в альгинате натрия, характеризующийся тем, что 100 мг ароматизатора «тропик» растворяют в 1 мл бутанола, диспергируют полученную смесь в раствор альгината натрия в метаноле, содержащий 300 мг указанного полимера, в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 2 мл бутанола и 1 мл воды, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к способу получения нанокапсул флавоноидов шиповника. Указанный способ характеризуется тем, что флавоноиды шиповника диспергируют в суспензию альгината натрия в изопропаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/мин, далее приливают бутилхлорид, выпавший осадок нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1.

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию альгината натрия в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/мин, далее приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка в нанокапсулах составляет 1:3, 1:1 или 1:5.

Изобретение относится к способу получения нанокапсул бетулина. Указанный способ характеризуется тем, что порошок бетулина диспергируют в суспензию альгината натрия в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/мин, далее приливают бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 1:1.

Изобретение относится к способу получения нанокапсул настойки боярышника. Указанный способ характеризуется тем, что настойку боярышника добавляют в суспензию альгината натрия в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/мин, далее приливают метиленхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующемуся тем, что 5 мл настойки пустырника, или 5 мл настойки валерьяны, или 10 мл настойки пиона уклоняющегося добавляют в суспензию, содержащую 3 г конжаковой камеди в гексане, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии и медицины. Описан способ получения нанокапсул ципрофлоксацина гидрохлорида в оболочке из альгината натрия.

Группа изобретений относится к области фармацевтической промышленности, а именно к гипотонической композиции для быстрого и равномерного распределения терапевтического, профилактического, диагностического или нутрицевтического агента по мукозальной поверхности, содержащей частицы, проникающие через слизь, которые содержат терапевтический, профилактический, диагностический или нутрицевтический агент и полиалкиленоксидное покрытие, улучшающее проникновение через слизь, которое улучшает диффузию частиц через слизь, где покрытие имеет коэффициент плотности [Г]/[Г*]>3, где Г - это плотность полиэтиленгликоля, характеризующая число молекул полиэтиленгликоля на 100 нм2 поверхности частицы, а Г* - это полное покрытие поверхности частицы, характеризующее теоретическое число свободных молекул полиэтиленгликоля, требуемое для полного покрытия 100 нм2 поверхности частицы, а также к способу введения одного или более терапевтических, профилактических и/или диагностических агентов человеку или животному с помощью указанных композиций.

Изобретение относится к лакокрасочным композициям, предназначенным для поглощения (и/или уменьшения уровня отражения) СВЧ электромагнитного излучения. Лакокрасочная радиопоглощающая композиция представляет полимерное связующее на основе эпоксидной смолы с электропроводящим радиопоглощающим наполнителем.

Изобретение относится к способу получения функциональных покрытий (варианты) и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике.

Изобретение относится к области машиностроения, а именно к листовым слоистым полимерным износостойким композиционным материалам, и может быть использовано в опорах скольжения различного назначения.

Изобретение относится к области нанотехнологии и медицины. Описан способ получения нанокапсул ципрофлоксацина гидрохлорида в оболочке из альгината натрия.

Изобретение относится в области нанотехнологии и ветеринарной медицине. Технической задачей изобретения является упрощение процесса получения микрокапсул и увеличение выхода по массе.
Группа изобретений относится к способу изготовления мягкой гелевой капсулы, содержащей микроинкапсулированные пробиотические бактерии, предусматривающему стадии: (a) обеспечения микроинкапсулированных пробиотических бактерий по меньшей мере с одним покрытием, содержащим по меньшей мере один растительный липид, имеющий температуру плавления от 35°С до 75°С; (b) суспендирования этих микроинкапсулированных пробиотических бактерий в суспендирующем препарате с получением заполнителя; (c) смешивания этого заполнителя при интенсивности, меньшей чем приблизительно 3000 об/мин, и температуре приблизительно 15-32°C с получением смешанного заполнителя; (d) уменьшения агломератов микроинкапсулированных пробиотических бактерий в этом смешанном заполнителе с получением деагломерированного заполнителя; и (e) инкапсулирования деагломерированного заполнителя в мягкой гелевой капсуле, где поддерживается целостность покрытия микроинкапсулированных пробиотических бактерий, а также к пробиотической мягкой гелевой капсуле, изготовленной в соответствии с этим способом.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы.

Способ получения нанокапсул креатина в альгинате натрия, которые можно использовать в спортивном питании и животноводстве, относится к области нанотехнологии. Способ включает осаждение нанокапсул креатина петролейным эфиром из раствора альгината натрия в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании со скоростью 1000 об/мин.

Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина.

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул с настойкой эхинацеи в оболочке из альгината натрия.

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из ксантановой камеди.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков - цефтриаксона или цефотаксима.
Изобретение относится к способу получения микрокапсул цефотаксима. Указанный способ характеризуется тем, что к 1% водному раствору интерферона человеческого лейкоцитарного в альфа- или бета-форме добавляют порошок цефотаксима и препарат Е472с в качестве поверхностно-активного вещества, полученную смесь перемешивают, после растворения компонентов реакционной смеси до образования прозрачного раствора медленно по каплям приливают бутанол в качестве первого осадителя, а затем ацетон - в качестве второго осадителя, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат.

Изобретение относится к пищевой промышленности. Предложена водная дисперсия микрокапсул, включающих по крайней мере одно гидрофобное вещество и белковую поверхность раздела, окружающую по крайней мере одно гидрофобное вещество.
Наверх