Устройство для измерения изменения угловой координаты объекта в плоскости

Изобретение относится к измерительной технике и может быть использовано для измерения изменения углового положения удаленных объектов. Заявлено устройство для определения измерения изменения угловой координаты объекта в плоскости содержит точечный источник излучения, связываемый с контролируемым объектом, установленный по ходу излучения приемный блок, включающий в себя два плоских зеркала, расположенных на одинаковом расстоянии от источника, разнесенных в плоскости контроля и ориентированных так, что их нормали лежат в плоскости контроля и образуют углы 45° с направлением на источник. При этом отражающие поверхности зеркал обращены одна к другой. Для обеспечения устранения неоднозначности отсчета используются две рабочие зоны каждого из входных зеркал, выбранные таким образом, что расстояния между соответствующими осевыми лучами пучков, падающих на эти зоны, относятся друг к другу как иррациональное число. Приемный блок может быть выполнен в виде склейки двух призм с нанесенными на ее грани отражающими и светоделительными поверхностями в соответствии с аналогичными поверхностями исходного устройства. Технический результат - уменьшение габаритов, массы и себестоимости прибора и упрощение схемы устройства. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения изменения углового положения удаленных объектов.

Известно устройство «Звездный интерферометр Майкельсона», сущность которого заключается в установке его с возможностью поворота вокруг оси, направленной на объект и выполненной в трехканальном варианте, каждый из которых включает отклоняющие зеркала, фокусирующую систему, измеритель контраста и общее регистрирующее устройство. [Патент РФ №2103662, M. Кл. G01B 11/26, 9/02 от 11.11.1996 г.]

Недостатком данного устройства являются большие габариты и сложность исполнения приборной схемы.

Наиболее близким по технической сущности и достигаемому результату является «Устройство для определения изменения угловой координаты объекта в плоскости», включающее точечный источник излучения, два входных плоских зеркала, два интерференционных смесителя и блок регистрации интерференционной картины. [А.С. СССР №1290063, М. Кл. G01B 11/26 от 31.10.1984 г. (прототип).]

Недостатками данного устройства являются также большие габариты и вес устройства.

Целью изобретения является упрощение схемы устройства, уменьшение габаритов, массы и себестоимости прибора.

Указанная цель достигается за счет применения четырех отражающих поверхностей, использующихся обоими каналами устройства. То есть для каждого канала используется своя отдельная часть (зона) общего приемного блока.

Сущность изобретения поясняется чертежами, где на фиг. 1 показан геометрический ход лучей в приемном блоке; на фиг. 2 показаны геометрические параметры приемной системы, на фиг. 3 показан приемный блок, выполненный в виде склейки двух призм.

Устройство содержит два входных плоских зеркала -1 и -2, светоделительную поверхность -3 и контрзеркало -4. Осевые лучи пучков излучения, испускаемых точечным источником, обозначены позициями -5, -6, -7 и -8, а осевые лучи проинтерферировавших пучков обозначены позициями -9 и -10.

Приемные поверхности зеркал -1, -2 размером поверхности равным -d2 (при минимальном размере приемной поверхности d2min, необходимом для обеспечения устранения неоднозначности отсчета расстояния между двумя базами D0 и D1 в проекции на плоскость приемного зеркала) и светоделительная поверхность -3 размером светоделительной поверхности равной d3 имеют одинаковые габариты. Нормали к этим поверхностям лежат в плоскости контроля, обращены к исследуемому объекту и образуют с направлением на объект угол 45°. Светоделительная поверхность -3 симметрична зеркалу -1 и составляет с ним прямой угол. При этом поверхность -3 параллельна зеркалу -2 и расстояние между ними составляет величину, равную их габаритному размеру. Расстояния между осевыми лучами пучков -5 и -6, -7 и -8 в плоскости измерения относятся друг к другу как иррациональное число. Контрзеркало -4 расположено параллельно плоскости измерения, нормаль к его зеркальной поверхности образует с направлением на исследуемый объект угол 180°. Габаритный размер контрзеркала -4 (D4) в раз меньше габаритного размера поверхности -3, так как контрзеркало -4 является проекцией светоделительной поверхности -3 на плоскость, параллельную плоскости измерения.

В связи с тем что в плоскости анализа образуются интерференционные полосы бесконечной ширины, то для получения линейной ширины полосы угол между зеркалом -1 и частично пропускающим зеркалом -3 выполняют отличным от 45° на величину φcx порядка 30′. Плоскости зеркал -1 и -2 образуют базу приема (расстояние между двумя базами D0 и D1 в проекции на плоскость приемного зеркала).

Устройство работает следующим образом.

Отправленный лазером когерентный пучок напрямую или после отражения от объекта возвращается в приемный блок, который состоит из четырех зеркал (-1,-2,-3,-4), два глухих зеркала (-1 и -2) образуют базу приема, а частично пропускающее (светоделительное) -3 и глухое зеркало -4 являются оптическим смесителем. Из-за смещения источника или поворота объекта (отражателя) возникает оптическая разность хода в двух ветвях каждого канала интерферометра: в ветвях, образованных пучками с осевыми лучами пучков -5 и -6, -7 и -8, соответственно. В результате взаимодействия этих пучков на выходе из системы зеркал появляются выходящие пучки с осевыми лучами -9 и -10, образующие две интерференционные картины с шагом полос, не кратным друг другу. По смещению интерференционных полос судят об изменении углового положения объекта. Устройством регистрации служит фотоприемное устройство, например веб-камера.

Излучение источника одновременно засвечивает приемные зеркала -1 и -2. Левая ветвь первого канала, ось которого обозначена как -5, отражаясь от левого зеркала -1, попадает на зеркальную поверхность -3, отражается от нее и попадает на контрзеркало -4, от которого также отражается, возвращается на светоделительную поверхность -3 и проходит через нее в направлении луча -9. Таким образом, в плоскость анализа попадает излучение одного из участков волнового фронта (для первого канала). Правая ветвь первого канала, ось которого обозначена как луч -6, отражаясь от правого зеркала -2, попадает на светоделительную поверхность -3 и отражается от нее в направлении луча -9. В результате в плоскость анализа попадает излучение второго участка волнового фронта. Сразу за частично пропускающим зеркалом -3 пучки первого канала, оси которых обозначены как пучки -5 и -6, взаимодействуют, образуя интерференционную картину. Положение интерференционных полос в этой картине зависит от положения источника относительно приемных зеркал -1 и -2. Если объект смещается от первоначального положения, то в плоскости анализа происходит перемещение интерференционных полос, которое фиксируют и получают информацию об изменении углового положения объекта.

Пучки второго канала, оси которых обозначены как -7 и -8, проходят систему аналогично пучкам первого канала и покидают систему в направлении луча -10. Таким образом, в плоскости анализа образуются и регистрируются две интерференционные картины. Угловая ширина интерференционных полос в каждой из картин определяется расстоянием между осевыми лучами пучков -5 и -6, -7 и -8 соответственно. Так как эти расстояния различны и относятся друг к другу как иррациональное число, то и угловая ширина интерференционных полос для каждой из картин имеет различные значения. Поэтому одному и тому же значению угловой координаты объекта относительно приемных зеркал соответствуют разные значения целой и дробной части интерференционных полос в каждом из каналов, что позволяет устранить неоднозначность интерференционных измерений. По значениям дробной части в каждом из каналов определяется также и целое число полос, и, следовательно, истинное значение угловой величины. Одному и тому же значению дробной части смещения интерференционной полосы одного из каналов соответствуют сразу несколько значений. Значение дробной части, измеренное по второму каналу, тоже дает неоднозначный отсчет. Совпадение происходит только при одном значении абсолютной величины в том случае, когда отношение расстояний между осевыми лучами пучков -5 и -6, -7 и -8 равно иррациональному числу, например квадратному корню из любого числа, не являющегося полным квадратом.

Для обеспечения жесткого взаимного расположения четырех зеркал -1, -2, -3, -4 приемный блок выполнен в виде склейки двух призм с нанесенными на ее грани отражающими и светоделительными поверхностями в соответствии с аналогичными поверхностями устройства для измерения изменения угловой координаты объекта в плоскости.

Геометрические параметры устройства для измерения изменения угловой координаты объекта в плоскости:

D0 - база приема первого канала;

D1 - база приема второго канала;

d2 - размер приемной поверхности зеркал -1 и -2;

d2min - минимальный размер приемной поверхности, необходимый для обеспечения устранения неоднозначности отсчета (расстояние между двумя базами D0 и D1 в проекции на плоскость приемного зеркала);

d3 - размер светоделительной поверхности -3;

D4 - размер контрзеркала -4;

А - проекция сечения пучка канала, необходимого для засветки чувствительной площадки приемника излучения.

1. Устройство для определения изменения угловой координаты объекта в плоскости, включающее блок регистрации интерференционной картины, точечный источник излучения, связанный с контролируемым объектом, установленный по ходу излучения приемный блок, включающий в себя два плоских зеркала, расположенных на одинаковом расстоянии от источника, разнесенных в плоскости контроля и ориентированных так, что нормали лежат в плоскости контроля и образуют углы близкие к 45° с направлением на источник, а отражающие поверхности обращены одна к другой, частично пропускающее зеркало, нормаль которого также лежит в плоскости контроля и образует с направлением на источник угол 45°, и контрзеркало, обращенное зеркальной поверхностью к плоскости измерения, отличающееся тем, что устройство имеет один оптический приемный блок, в котором используются две рабочие зоны каждого из входных зеркал, выбранные таким образом, что расстояние между соответствующими осевыми лучами пучков, падающих на эти зоны, относятся друг к другу как иррациональное число.

2. Устройство для определения изменения угловой координаты объекта в плоскости, включающее точечный источник излучения, связанный с контролируемым объектом, установленный по ходу излучения приемный блок, выполненный в виде склейки прямоугольной и ромбоидальной призм с нанесенными на их грани отражающими и светоделительными покрытиями, и блок регистрации интерференционной картины, отличающееся тем, что устройство состоит из одного оптического приемного блока, в котором используются две рабочие зоны каждой из входных отражающих поверхностей, выбранные таким образом, что расстояния между соответствующими осевыми лучами пучков, падающих на эти зоны, относятся друг к другу как иррациональное число.



 

Похожие патенты:

Изобретение относится к измерительной технике, к устройствам для задания и измерения углов ориентации изделий приборостроения при их изготовлении и контроле, и может быть использовано в любой другой области при необходимости точного задания и измерения углов.

Способ определения погрешности геодезических приборов за неправильность формы цапф и боковое гнутие зрительной трубы включает закрепление на объективном конце зрительной трубы исследуемого прибора отражающего зеркала под углом 45° к визирной оси, размещение на продолжении горизонтальной оси вращения зрительной трубы исследуемого прибора марки.

Способ центрирования подвижных оптических элементов панкратической оптической системы методом проточки диаметра и подрезки посадочной плоскости каретки для оптических элементов проводят в два этапа.

Изобретение относится к устройствам для измерения углового положения. Заявленный видеоавтоколлимационный угломер для измерения взаимного углового положения автоколлимационных зеркал содержит видеодатчик, расположенный перед объективом и выполненный по схеме видеоавтоколлиматора.

Видеоустройство для передачи заданного направления с одного горизонта на другой содержит установленные на одном горизонте узел с объективом и фотоприемником и узел с призмой типа БР-180, установленный на другом горизонте.

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим.
Устройство состоит из измерительной рамки с цифровыми, угловыми и линейными значениями, лазерного прибора, который проецирует на нее крестообразный лазерный луч, держателей, которые удерживают лазерный прибор и измерительную рамку на соответствующем колесе, поворотных подставок для свободного поворота и скольжения регулируемых колес и блокиратора руля, который удерживает руль в неподвижном положении.

Изобретение относится к области измерительной техник и может быть использовано в углоизмерительных устройствах. Датчик угла поворота содержит осветитель с маской, измерительный блок, включающий многоплощадочное фотоприемное устройство (МФПУ), оптически сопряженное с маской, и светоделитель, расположенный между объективом и МФПУ.

Изобретение относится к оптическому стенду измерения горизонтального угла. Система содержит автоколлиматор, оптически связанный с базовым отражателем, и контролируемые элементы с зеркальными поверхностями, которые оптически связаны с пентагональными отражателями.

Изобретение относится к устройству для контроля погрешности преобразования угла поворота вала в код. Устройство содержит образцовый преобразователь поворота вала в код, блок сопряжения контролируемого и образцового преобразователей, состоящий из узла жесткого соединения валов образцового и контролируемого преобразователей, узла для ограничения поворота корпуса контролируемого или образцового преобразователей с установленным на нем автоколлимационным зеркалом, угловое положение которого измеряется цифровым автоколлиматором.

Устройство повторной установки для установки и повторной установки первого объекта относительно второго объекта содержит по меньшей мере один источник света и источник питания. Источник света предназначен для создания по меньшей мере двух лучей света, где каждый луч света способен задавать точку местоположения луча на втором объекте. По меньшей мере один источник света функционально соединен с первым объектом. Источник питания функционально соединен с по меньшей мере одним источником света. Устройство повторной установки также содержит средство для задания точки местоположения луча. Также раскрывается способ установки и повторной установки первого объекта относительно второго объекта. Технический результат заключается в обеспечении возможности повторной установки одного объекта по отношению к другому в заданное место. 3 н. и 68 з.п. ф-лы, 26 ил.

Изобретение относится к области измерительной техники и касается устройства для измерения угловых перемещений объекта. Устройство включает в себя источник когерентного излучения, расширитель светового пучка, светоделитель, который пропускает без изменения направления первый луч и отражает второй луч, установленное на пути второго луча зеркало, два установленных на измеряемом объекте уголковых отражателя, приемник интерференционной картины, блок фильтрации и усиления сигнала, компаратор и концевые датчики положения. Все оптические компоненты, оправы для них и корпуса интерферометра выполнены из материалов с низкими и близкими по величине друг к другу коэффициентами теплового расширения. Технический результат заключается в повышении точности измерений. 2 з.п. ф-лы, 1 ил.

Способ измерения перемещений изображения марки в цифровых автоколлиматорах включает в себя формирование изображения марки в виде линейчатого растра в плоскости многоэлементного приёмника излучения. При этом ширину боковых штрихов растра выбирают равной ширине элементов приёмника излучения, а ширину центрального штриха выбирают равной удвоенной ширине остальных штрихов растра. Далее измеряют сигналы с засвеченных элементов, запоминают их и фиксируют элемент, на котором сигнал отсутствует. На основе полученных данных вычисляют приближенное перемещение марки. Определяют положение энергетического центра тяжести изображения линейчатого растра. И с учётом полученного положения энергетического центра тяжести определяют величину перемещения изображения марки. Технический результат заключается в повышении точности за счет увеличения диапазона измерений и упрощении конструкции устройства. 2 н.п. ф-лы, 3 ил.

Лазерный измеритель может быть использован для контроля прямолинейности и соосности при изготовлении, сборке и монтаже крупногабаритных изделий протяженностью до 100 метров и более. Измеритель содержит лазер, оптическую систему, создающую стабильное базовое направление путем образования кольцевой структуры лазерного пучка, и измерительный блок с фотоприемником, подключенным к вычислительному блоку. С целью создания возможности вести измерения непрямолинейности и соосности одновременно в нескольких точках протяженной трассы оптическая система дополнена узлом из двух оптических клиньев, установленных навстречу друг другу, светоделителем, а измерительная система - базовой маркой с трипельпризмой, и измерительной маркой, состоящей из двух трипельпризм, расположенных симметрично относительно базовой оси. Лазер, оптическая система и фотоприемник размещены на одном общем основании. Технический результат - повышение точности и производительности измерений непрямолинейности и соосности на больших расстояниях. 2 ил.

Способ юстировки контрольного элемента линии визирования объектива, установленного в зоне экранирования светового пучка объектива, осуществляют с помощью зеркального коллиматора, содержащего вогнутое зеркало, плоское поворотное зеркало, установленное на его оптической оси под углом 45 градусов, и точечную диафрагму, установленную в фокусе коллиматора. На первом этапе диафрагму освещают при помощи автоколлимационной трубы с перефокусировкой, установленной на оптической оси коллиматора и сфокусированной на эту диафрагму, посылают лучи через коллиматор в объектив и фиксируют положение линии визирования объектива. На втором этапе убирают диафрагму, перефокусируют автоколлимационную трубу на бесконечность, разворачивают плоское зеркало коллиматора на 90 градусов и юстируют контрольный элемент до совпадения автоколлимационного блика от его зеркальной плоской поверхности с линией визирования объектива. Технический результат - уменьшение габаритов установки, предназначенной для юстировки. 2 ил.

Изобретение относится к электротехнике, в частности к способу измерения положения стойки композитной опоры линии электропередачи. Способ измерения положения стойки композитной опоры линии электропередачи включает измерение угла наклона стойки композитной опоры, проводится в двух ее сечениях для дальнейшей оценки расчетным способом пространственного положения стойки опоры в целом по формулам: , где y - деформация стойки, х - текущая координата сечения стойки, а А и В - коэффициенты, подлежащие определению по результатам двух измерений ;.Техническим результатом является повышение надежности электроснабжения потребителей. 1 ил.
Регулятор развала-схождения колес автомобиля состоит из поворотных подставок под колеса для свободного поворота и скольжения регулируемых колес, блокиратора руля автомобиля, колесных держателей, которые крепятся на регулируемые колеса и удерживают измерительный прибор и измерительную планку на соответствующем колесе. Также имеется измерительная планка с вертикальными цифровыми, угловыми и линейными значениями или приемник лазерного луча и измерительный прибор, состоящий из электронного уклономера и лазера, проецирующего точку-луч. Измерительный прибор крепится держателем к регулируемому колесу так, чтобы лазерный луч и уклономер измерительного прибора были параллельны и перпендикулярны плоскости данного колеса. Электронный уклономер, встроенный в измерительный прибор, отображает развал колеса, а лазер измерительного прибора посылает точку-луч, параллельный плоскости данного колеса, на измерительную планку, установленную вертикально плоскости земли и закрепленную аналогичным держателем и с одинаковым расстоянием от центра на другом колесе, отображая сход или расхождение регулируемого колеса. Необходимые значения получают регулировкой колеса, к которому прикреплен измерительный прибор до совмещения точки лазерного луча с требуемыми значениями на планке или получения сигнала от приемника лазерного луча, электронный уклономер также показывает или сообщает о достижении необходимых значений угла регулируемого колеса. Технический результат - упрощение и удешевление процесса регулировки развала-схождения колес у автомобилей.

Изобретение относится к области измерительной техники - метрологии - и может быть использовано при создании эталона единицы плоского угла нового поколения с улучшенными метрологическими показателями по сравнению с ныне действующими в РФ первичными эталонами. Предложенный эталон единицы плоского угла содержит прозрачный кварцевый носитель, на котором последовательно в направлении от центра диска к периферии нанесены: метка «начало/конец оборота», первый растр (синхронизирующий) и второй растр (интерполирующий), кроме него в состав эталона входят: осветитель метки «начало/конец оборота», кольцевой осветитель первого растра (синхронизирующего) и осветитель второго растра (интерполирующего), диск индикаторный, фотоприемник метки «начало/конец оборота», два фотоприемника первого растра (синхронизирующего), и система считывания данных со второго растра (интерполирующего), при этом на рабочей поверхности диска индикаторного нанесены: структура, сопрягаемая со структурой метки «начало/конец оборота», и две кольцевые структуры, образующие с первым растром (синхронизирующим) два растровых сопряжения обтюрационного типа, сдвинутые по фазе относительно друг друга на 180°, причем в окнах кольцевых структур диска индикаторного нанесены сегменты внеосевых линз Френеля, фокусирующих излучение, проходящее через эти окна, на соответствующие фотоприемники первого растра (синхронизирующего); второй растр (интерполирующий) выполнен в виде дифракционной решетки с радиальной ориентацией штрихов, а система считывания информации со второго растра (интерполирующего) выполнена, соответственно, в виде дифракционного интерферометра, выделяющего первые дифракционные порядки излучения. Основным выходом эталона единицы плоского угла является выход формирователя, входы которого соединены с выходом фотоприемника метки «начало/конец оборота» и выходами фотоприемников растра (синхронизирующего». В составе эталона предусмотрена система сличений произвольных углов в статическом режиме работы эталона единицы плоского угла, состоящей из первого цифрового компаратора, счетчика штрихов второго растра (интерполирующего) и блока внутришаговой интерполяции. Кроме того, в составе эталона единицы плоского угла предусмотрены: система самокалибровки второго растра (интерполирующего) и система сличений произвольных углов в динамическом режиме работы эталона единицы плоского угла, содержащая второй цифровой компаратор. Технический результат - повышение метрологического качества единицы плоского угла. 3 н.п. ф-лы, 6 ил.

Приемное устройство для измерения положения лазерного луча линейной светочувствительной матрицей в плоскости матрицы, состоящее из линейной светочувствительной матрицы, ряда оптически прозрачных прилегающих к друг другу цилиндров, располагающихся параллельно указанной матрице, обеспечивающих разворот луча в линию, перпендикулярную матрице, длина цилиндров l не меньше высоты матрицы h (l≥h), а расстояние между ними r и светочувствительной матрицей зависит от радиуса R цилиндров r≤10⋅R. Техничекий результа заключается в повышении надежности определения положения лазерного пятна линейной матрицей без повышения мощности излучения лазера и расширение области его применения. 4 ил.

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства. Датчик угла выполнен в виде многозначных голографических мер угла, формирующих каждая под воздействием внешнего оптического излучения стабильный плоский веер дифрагированных лучей с известными углами между лучами. Отсчетное устройство выполнено на основе ПЗС-линеек, снабжено шкалой времени и подключено к внешнему компьютеру. Технический результат заключается в повышении точности измерений. 3 табл., 2 ил.
Наверх