Ферментативное обессмоливание

Изобретение относится к масложировой промышленности. Способ обработки растительных масел и/или животных жиров включает: нагревание масла и/или жира до температуры 20-90 оС, предварительную обработку масла и/или жира кислотой в течение 1 минуты, регулирование рН щелочным соединением в интервале 4-8 при температуре по меньшей мере 20 оС, и получение водной смеси, добавление ферментов в водной смеси, уменьшение температуры водной смеси до температуры кристаллизации тугоплавких глицеридов, разделение водной смеси на водную фазу и содержащую обработанные растительные масла и/или обработанные животные жиры фазу. Изобретение позволяет осуществить одновременные обессмоливание (с использованием ферментов) и депарафинизацию (кристаллизацию тугоплавких глицеридов), что позволяет осуществлять процессы при пониженных температурах. 12 з.п. ф-лы, 2 табл., 2 пр.

 

Настоящее изобретение предлагает способ обработки растительных масел и/или животных жиров.

Уровень техники, к которой относится изобретение

Большинство неочищенных пищевых жиров и масел растительного и животного происхождения содержат примеси, которые должны быть удалены, прежде чем масло становится подходящим для потребления. Кроме того, жиры и масла для технического использования часто требуется очищать в некоторой степени, чтобы сделать их подходящими для заданной цели.

Удаление примесей можно обеспечивать, осуществляя процесс обессмоливания и/или фракционирование при охлаждении, причем эти два процесса можно объединять в один процесс, так называемый процесс холодного обессмоливания. Однако традиционный процесс холодного обессмоливания не всегда оказывается успешным, поскольку:

- эффективность разделения является относительно низкой вследствие повышения вязкости смолы при низких температурах;

- кристаллизация парафинов и рост кристаллов в некоторой степени ингибируются в присутствии смол.

Сущность изобретения

Соответственно, настоящее изобретение решает вышеупомянутые технические проблемы, предлагая новый пригодный для патентования способ. Таким образом, настоящее изобретение предлагает новый способ обработки растительных масел и/или животных жиров для уменьшения содержания примесей, таких как разнообразные фосфолипиды, т.е. смолы, парафины и/или тугоплавкие глицериды. Один аспект настоящего изобретения заключается в том, чтобы предложить способ, позволяющий эффективно и одновременно удалять фосфолипиды и тугоплавкие глицериды с помощью фосфолипазы. Другой аспект настоящего изобретения заключается в том, чтобы предложить способ использования процесса ферментативной реакции, поскольку прореагировавшая смола имеет меньшую вязкость и меньшую прочность эмульсии и в результате этого уменьшаются потери масла.

Основная цель процесса обессмоливания заключается в том, чтобы удалить фосфолипиды из масла. Для масла некоторых типов, такого как масло из семян подсолнечника, масло из рисовых отрубей, кукурузное масло, требуется процесс фракционирования при охлаждении, чтобы удалить тугоплавкие глицериды, избегая проблемы в случае использования масел при пониженной температуре или в последующем процессе.

Процесс ферментативного обессмоливания оказался эффективным для удаления смолы. В процессах обессмоливания фосфолипиды превращаются в лизофосфолипиды и свободные жирные кислоты (FFA). Лизофосфолипиды имеют значительно меньшую эмульгирующую способность и меньшую вязкость. Таким образом, предполагается, что разделение при пониженной температуре в процессе ферментативного обессмоливания осуществляется значительно лучше, чем в традиционном процессе.

С другой стороны, поскольку лизофосфолипиды растворяются в воде, предполагается, что большинство лизофосфолипидов будут оставаться в водной фазе в процессе кристаллизации парафинов и роста кристаллов таким образом, что в присутствии смолы ингибирование исчезает.

Вкратце, процесс холодного ферментативного обессмоливания обеспечивает возможность одновременного осуществления обессмоливания и депарафинизации, а также значительно сокращает потери нейтрального масла.

Новый способ обработки растительных масел и/или животных жиров согласно настоящему изобретению включает следующие стадии:

(i) нагревание растительных масел и/или животных жиров до температуры в интервале от приблизительно 20 до приблизительно 90°C, предпочтительно в интервале от приблизительно 40 до приблизительно 90°C;

(ii) предварительная обработка растительных масел и/или животных жиров кислотой в течение приблизительно одной минуты;

(iii) регулирование pH щелочным соединением в интервале от приблизительно 4 до приблизительно 8 при температуре, составляющей по меньшей мере 20°C, и предпочтительно при температуре, составляющей по меньшей мере 40°C, и получение водной смеси;

(iv) добавление ферментов в водную смесь;

(v) уменьшение температуры водной смеси до температуры кристаллизации тугоплавких глицеридов;

(vi) разделение водной смеси на водную фазу и содержащую обработанные растительные масла и/или обработанные животные жиры фазу; и

(vii) необязательная обработка содержащей обработанные растительные масла и/или обработанные животные жиры фазы горячей водой или адсорбентом на основе диоксида кремния.

На стадии (i) температуру растительных масел и/или животных жиров можно регулировать в интервале от приблизительно 60 до приблизительно 90°C.

На стадии предварительной обработки (ii) растительные масла и/или животные жиры можно обрабатывать кислотой в течение от приблизительно 1 до приблизительно 60 минут, предпочтительно от приблизительно 5 до приблизительно 60 минут, наиболее предпочтительно от приблизительно 20 до приблизительно 40 минут.

Значение pH на стадии (iii) можно регулировать щелочным соединением в интервале от приблизительно 4 до приблизительно 8 при температуре, составляющей предпочтительно от приблизительно 40 до приблизительно 60°C. Щелочное соединение на стадии (iii) выбирается из группы, которую составляют гидроксид натрия, гидроксид калия, силикат натрия, натрия карбонат, карбонат кальция и их сочетание, предпочтительно гидроксид натрия или гидроксид калия. Согласно настоящему изобретению перемешивание щелочного раствора на стадии (iii) можно продолжать в течение от приблизительно одной минуты до приблизительно 4 часов.

Температуру водной смеси на стадии (v) можно регулировать посредством скорости охлаждения и продолжительности выдерживания, чтобы оптимизировать кристаллизацию, причем предпочтительная скорость охлаждения находится в интервале от приблизительно 0,5°C/час до приблизительно 5°C/час, и продолжительность выдерживания находится в интервале приблизительно от 4 до 24 часов, предпочтительно от 6 до 12 часов.

Температуру водной смеси на стадии разделения (vi) можно регулировать, чтобы упростить разделение, предпочтительно температура находится в интервале от приблизительно 15 до приблизительно 50°C.

Фермент на стадии обработки (iv) может представлять собой фермент фосфолипазу, предпочтительно один или несколько ферментов типа фосфолипазы A, или один или несколько ферментов типа фосфолипазы C, или их сочетание.

Кислота, используемая на стадии (ii), выбирается из группы, которую составляют фосфорная кислота, уксусная кислота, лимонная кислота, винная кислота, янтарная кислота и их смесь, предпочтительно выбирается фосфорная кислота или лимонная кислота.

Следующие аспекты и варианты осуществления настоящего изобретения определяют зависимые пункты формулы изобретения. Настоящее изобретение будет подробно проиллюстрировано в примерах, которые предназначаются для цели разъяснения настоящего изобретения и не ограничивают его объем. Если не определены другие условия, приведенные в примерах и таблицах процентные доли означают массовые процентные доли.

Пример 1

В данном эксперименте использовали следующее оборудование: масляная ванна, колбы Эрленмейера (Erlenmeyer) объемом 500 мл, магнитная мешалка с нагревателем и терморегулятором, универсальный гомогенизатор Ultra Turrax, лабораторная центрифуга. Содержание свободных жирных кислот (FFA) анализировали способом согласно стандарту Ca 5a-40 Американского общества специалистов в области химии жиров (AOCS), влагосодержание анализировали способом согласно стандарту AOCS Ca 2b-38 и содержание фосфора анализировали способом согласно стандарту DIN EN 14107.

Были использованы следующие материалы:

1. Моногидрат лимонной кислоты

2. Сухой гидроксид натрия

3. Фермент Lecitase Ultra®, т.е. фермент фосфолипаза A

4. Вода

Неочищенное масло семян подсолнечника нагревали в печи до 70°C, обеспечивая полное плавление всех кристаллов парафинов и их растворение в масле. Были использованы две колбы Эрленмейера A и B объемом 500 мл, одна (A) для обычного глубокого ферментативного обессмоливания и другая (B) для холодного глубокого ферментативного обессмоливания. В каждую колбу Эрленмейера помещали по 250 г масла и колбы помещали в масляную ванну при 55°C. В течение всей реакции масло в колбах перемешивали магнитной мешалкой при скорости, составляющей приблизительно 350 об/мин.

Раствор лимонной кислоты (5 мл) изготавливали, растворяя 1,78 г моногидрата лимонной кислоты в дистиллированной воде. Раствор гидроксида натрия (5 мл) изготавливали, растворяя 0,5075 г гранулированного гидроксида натрия в дистиллированной воде.

В каждую колбу добавляли по 0,5 мл раствора лимонной кислоты и смесь перемешивали, используя универсальный гомогенизатор Ultra Turrax при высокой скорости, составляющей приблизительно 24000 об/мин, в течение 14 минут. Через 1 час добавляли по 0,5 мл раствора NaOH и смеси перемешивали, используя универсальный гомогенизатор Ultra Turrax, в течение 14 минут. В каждую колбу добавляли по 0,012 мл фермента вместе с водой, доводя суммарный объем каждого образца до 6 мл, и перемешивание продолжали в течение 14 дополнительных минут.

Через 3 часа ферментативной обработки масляную ванну для колбы A нагревали до 80°C, чтобы инактивировать фермент; при этом колбу B вместе с магнитной мешалкой перемещали в холодильник (7-8°C) и перемешивание продолжали при скорости, составляющей приблизительно 40 об/мин, в течение ночи.

Через 4 часа выдерживания при 80°C масло из колбы A центрифугировали в течение 5 минут при 2000-кратном ускорении свободного падения (19620 м/с2). Анализировали содержание влаги, свободных жирных кислот и фосфора в легкой фазе (масляной фазе).

После перемешивания в течение ночи в холодильнике колбу B и магнитную мешалку извлекали из холодильника и перемешивание продолжали при комнатной температуре (приблизительно 22°C) в течение приблизительно 15 минут. Масло из колбы B центрифугировали в течение 5 минут при 2000-кратном ускорении свободного падения (19620 м/с2) и анализировали содержание влаги, свободных жирных кислот и фосфора в легкой фазе.

Содержание остаточного фосфора в обессмоленном масле составляло лишь приблизительно 1 ч./млн, что доказывает полное обессмоливание обоих образцов.

Таблица 1
Анализ Неочищенное масло Образец A Образец В
Кислотное число [мг KOH/г] 0,84 0,85 0,82
Влагосодержание [мг/кг] 947 1342 669
Фосфор [мг/кг] 265 0,9 1,1

С другой стороны, было обнаружено некоторое удаление парафинов вместе со смолой из масла в процессе холодного глубокого ферментативного обессмоливания образца (B) после разделения с помощью центрифуги. Однако в данном эксперименте количество парафинов не анализировали.

Вывод: масло семян подсолнечника успешно подвергается обессмоливанию в процессе холодного ферментативного обессмоливания. Даже несмотря на то, что температура разделения является значительно ниже, чем в обычном процессе обессмоливания, содержание остаточного фосфора в подвергнутом холодному ферментативному обессмоливанию масле находится на таком же уровне, как в обычном обессмоленном масле.

Пример 2

Процесс, описанный в примере 1, повторяли, используя другую партию подсолнечного масла, которая представляла собой смесь неочищенного подсолнечного масла и обессмоленного водой подсолнечного масла. Она содержала 177 ч./млн фосфора и по меньшей мере 1000 ч./млн парафинов. Результаты обработки двух образцов (обычное глубокое ферментативное обессмоливание (A) и холодное глубокое ферментативное обессмоливание (B)) кратко представлены ниже в таблице 2.

Таблица 2
Анализ Неочищенное масло Образец A Образец В
Кислотное число [мг KOH/г] 2,10 2,19 2,21
Фосфор [мг/кг] 177 8 10
Парафины [мг/кг] 1000* 1000* 152
* Прибор может анализировать парафины только при их содержании до 1000 ч./млн

Вывод: подсолнечное масло успешно подвергается обессмоливанию и депарафинизации в процессе холодного ферментативного обессмоливания. Содержание остаточных парафинов в обессмоленном масле составляет менее чем 15% их содержания в исходном масле.

1. Способ обработки растительных масел и/или животных жиров, включающий следующие стадии
(i) нагревание растительных масел и/или животных жиров до температуры в интервале от приблизительно 20 до приблизительно 90°C;
(ii) предварительная обработка растительных масел и/или животных жиров кислотой в течение приблизительно одной минуты;
(iii) регулирование pH щелочным соединением в интервале от приблизительно 4 до приблизительно 8 при температуре, составляющей по меньшей мере 20°C, и получение водной смеси;
(iv) добавление ферментов в водную смесь;
(v) уменьшение температуры водной смеси до температуры кристаллизации тугоплавких глицеридов;
(vi) разделение водной смеси на водную фазу и содержащую обработанные растительные масла и/или обработанные животные жиры фазу; и
(vii) необязательная обработка содержащей обработанные растительные масла и/или обработанные животные жиры фазы горячей водой или адсорбентом на основе диоксида кремния.

2. Способ по п. 1, в котором температура на стадии (i) регулируется в интервале от приблизительно 40 до приблизительно 90°C.

3. Способ по любому одному из пп. 1 или 2, в котором на стадии предварительной обработки (ii) растительные масла и/или животные жиры обрабатывают кислотой от приблизительно одной минуты до приблизительно 60 минут, предпочтительно от приблизительно 5 до приблизительно 60 минут и наиболее предпочтительно от приблизительно 20 до приблизительно 40 минут.

4. Способ по любому одному из пп. 1 или 2, в котором pH на стадии (iii) регулируется щелочным соединением в интервале от приблизительно 4 до приблизительно 8 при температуре, составляющей от приблизительно 40 до приблизительно 60°C.

5. Способ по любому одному из пп. 1 или 2, в котором температура водной смеси на стадии (v) регулируется посредством скорости охлаждения и продолжительности выдерживания, чтобы оптимизировать кристаллизацию, причем предпочтительная скорость охлаждения находится в интервале от приблизительно 0,5°C/час до приблизительно 5°C/час, а продолжительность выдерживания находится в интервале приблизительно от 4 до 24 часов и предпочтительно от 6 до 12 часов.

6. Способ по любому одному из пп. 1 или 2, в котором температура водной смеси на стадии разделения (vi) регулируется, чтобы упростить разделение.

7. Способ по любому одному из пп. 1 или 2, в котором температура водной смеси на стадии разделения (vi) регулируется, чтобы упростить разделение, а предпочтительная температура находится в интервале от приблизительно 15 до приблизительно 50°C.

8. Способ по любому одному из пп. 1 или 2, в котором фермент на стадии обработки (iv) представляет собой фермент фосфолипазу, предпочтительно фермент фосфолипазу A или фермент фосфолипазу C или их сочетание.

9. Способ по любому одному из пп. 1 или 2, в котором кислота на стадии (ii) выбирается из группы, которую составляют фосфорная кислота, уксусная кислота, лимонная кислота, винная кислота, янтарная кислота и их сочетания, предпочтительно фосфорная кислота или лимонная кислота.

10. Способ по любому одному из пп. 1 или 2, в котором температура на стадии (i) регулируется в интервале от приблизительно 60 до приблизительно 90°C.

11. Способ по любому одному из пп. 1 или 2, в котором перемешивание фермента на стадии (iv) продолжается в течение от приблизительно одной минуты до приблизительно 6 часов.

12. Способ по любому одному из п.п. 1 или 2, в котором перемешивание щелочного раствора на стадии (iii) продолжается в течение от приблизительно одной минуты до приблизительно 4 часов.

13. Способ по любому одному из пп. 1 или 2, в котором щелочное соединение на стадии (iii) выбирается из группы, которую составляют гидроксид натрия, гидроксид калия, силикат натрия, карбонат натрия, карбонат кальция и их сочетания, предпочтительно гидроксид натрия или гидроксид калия.



 

Похожие патенты:
Изобретение относится к масложировой промышленности. Способ производства рафинированного масла со сниженным содержанием глицидилового эфира, предусматривает этап отбеливания, этап дезодорирования, этап окончательного отбеливания и этап окончательного дезодорирования.

Изобретение относится к масложировой промышленности и может быть использовано для адсорбционной очистки растительных масел от свободных жирных кислот, перекисных соединений, а также катионов тяжелых металлов.

Изобретение относится к пищевой промышленности. Способ уменьшения эмульгируемости растительного масла в водных фазах, вклчающий приведение в контакт неочищенного растительного масла или слизи растительного масла с составом, включающим в себя первый ферментный компонент, включающий в себя по меньшей мер, один расщепляющий фосфолипид фермент, а также второй ферментный компонент, включающий в себя по меньшей мере один не расщепляющий фосфолипид фермент, причем вторым ферментным компонентом является альфа-амилаза.

Изобретение относится к способу очистки и обработки натуральных масляных глицеридов, который включает обеспечение (а) исходного сырья, включающего натуральные масляные глицериды, и (b) низкомолекулярных олефинов; перекрестный метатезис натуральных масляных глицеридов с низкомолекулярными олефинами в реакторе реакции метатезиса в присутствии катализатора метатезиса для формирования полученного реакцией метатезиса продукта, включающего олефины и сложные эфиры; отделение олефинов в полученном реакцией метатезиса продукте от сложных эфиров в полученном реакцией метатезиса продукте с получением отделенного потока олефинов; и рециркуляцию отделенного потока олефинов в реактор реакции метатезиса.

Изобретение относится к масложировой промышленности. Способ комплексной очистки растительных масел предусматривает холодную гидратацию масла с последующей вакуумной мембранной фильтрацией с использованием половолоконных мембран из полимерного материала, имеющего диаметр пор в диапазоне от 0,01 до 5 мкм, волокно мембраны имеет внутренний диаметр в диапазоне от 0,1 до 10 мм, внутреннее пространство полых волокон мембраны соединено с вакуумной системой для создания градиента давлений с разных сторон мембранной полупроницаемой перегородкой и формирования внутри волокон разряжения величиной от 0,1 до 0,9 кгс/см2 с возможностью обеспечения направленного движения очищаемого масла по всей площади мембраны, при этом полимерный материал выбран из группы, включающей поливинилиденфторид, поливинилхлорид, полипропилен, полиэтилен, полиэфирсульфон, полиакриламид, ацетатцеллюлозу или их комбинации, или их сополимеры.

Изобретение относится к масложировой промышленности. Аппарат для очистки растительных масел и жиров, состоящий из вертикального цилиндрического корпуса с коническим днищем, заключенных в паровую рубашку, вертикального вала с прямоугольными вертикальными лопастями, привода, патрубков для подвода и отвода масла, греющего пара и конденсата, а также газовой фазы, прямоугольные вертикальные лопасти выполнены перфорированными, при этом с их тыльной стороны соответственно для каждого отверстия установлены наклонные п-образные направляющие.

Изобретение относится к области пищевой промышленности, а именно направлено на решение задач упрощения и повышения эффективности процессов микрокапсулирования при производстве дезодорированных и капсулированных жирорастворимых пищевых продуктов, в частности улучшение органолептических показателей рыбных жиров, используемых для обогащения продуктов питания.

Группа изобретений относится к биотехнологии. Предложены способ получения лизогликолипида, способ биоконверсии гликолипидов и способ получения пищевого продукта.
Изобретение относится к масложировой промышленности. Способ рафинации растительного масла предусматривает смешивание нерафинированного растительного масла с водным раствором гидратирующего агента - раствором поваренной соли концентрацией 11- 16% в количестве 0,5-0,8% от массы масла, после смешивания производят перемешивание полученной смеси в течение 16-20 минут, затем обрабатывают раствором кислотного реагента концентрацией 21-25% в количестве 0,35-0,80% от веса масла и перемешивают в течение 16-25 минут, добавляют в полученную смесь водный раствор щелочного реагента - раствор жидкого натриевого стекла, или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, далее непрерывно перемешивают для образования геля кремниевой кислоты, затем определяют кислотное число масла и для нейтрализации свободных жирных кислот добавляют раствор жидкого натриевого стекла, или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного.

Изобретение относится к масложировой промышленности. Способ обработки сильнокислого гидрофуза включает нагревание гидрофуза, разделение на фракции при помощи активатора, перемешивание смеси и отстаивание.

Изобретение относится к масложировой промышленности. Способ получения рафинированного ароматного подсолнечного масла предусматривает выведение свободных жирных кислот, фосфолипидов, восков и воскоподобных веществ, красящих соединений, продуктов окисления и влаги на стадии гелевой сорбции с последующей стадией контрольного вымораживания. При этом гелевую сорбцию проводят путем смешения нерафинированного масла с гелевым раствором, перемешивания, отстаивания, формирования и осаждения гелевого осадка и отделения масла от гелевого осадка. Гелевую рафинацию проводят при температуре 14-15°C модифицированным гелевым раствором плотностью 1,33-1,38 г/см3, взятым с избытком 35-50% по отношению к необходимому для хемосорбции свободных жирных кислот и проводят хемосорбцию и осаждение гелевого осадка в течение 10-12 часов. Модифицированный гелевый раствор готовят путем растворения в воде, нагретой до 60-65°C, порошка метасиликата натрия, предпочтительно 9-ти водного, до достижения плотности раствора 1,35-1,38 г/см3 с последующим вводом двуокиси кремния до получения отношения двуокиси кремния к окиси натрия 1,25-1,35; температура гелевого раствора при вводе в масло не должна превышать 22°C. Контрольное вымораживание проводят при температуре 6°C в течение 4-х часов с вводом сорбента (предпочтительно ацетатного) в количестве 0,2-0,25% от массы масла с последующей фильтрацией при температуре 12°C. Изобретение позволит повысить качество рафинированного масла за счет сохранения в нем натурального вкуса и аромата, физиологически и биологически активных веществ, увеличить стойкость масла при хранении и кулинарной обработке, сократить число технологических операций, снизить отходы, потери, расход вспомогательных материалов, повысить выход целевого продукта и снизить затраты при его производстве. 2 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к масложировой промышленности. Рафинацию растительного масла проводят путем обработки фосфорной кислотой при интенсивном перемешивании без вывода продуктов реакции, после этого в масло одновременно добавляют раствор полиакриламида с концентрацией до 1% в количестве до 4% и раствор каустической соды, смесь перемешивают, отстаивают и разделяют на масло и соапсток. Изобретение позволяет получить масло с улучшенными показателями качества, а именно более низким кислотным числом и цветным числом, кроме того, снижается себестоимость готового продукта. 1 табл., 1 пр.

Изобретение относится к масложировой промышленности. Способ предусматривает выведение свободных жирных кислот, фосфолипидов, красящих соединений, восков и воскоподобных веществ, продуктов окисления, нежирных примесей и влаги, вкусовых и одорирующих веществ на стадии гелевой сорбции с последующими контрольными стадиями отбелки и вымораживания и стадией дезодорации. Гелевую сорбцию проводят при температуре 16-20°C путем смешения нерафинированного масла с гелевым раствором и коагулянтом, в результате чего в масле образуется нерастворимая взвесь, которая коагулирует, осаждается и при отстаивании система разделяется на две фазы: гелевый осадок и слой прозрачного масла, которые разделяют в гравитационном поле. Гелевый раствор создают путем растворения в воде 9-водного метасиликата натрия до получения плотности раствора 1,10-1,41 г/см3 и дополнительного введения в него расчетного количества диоксида кремния и повышения гидромодуля раствора до 1,5; количество гелевого раствора рассчитывают до получения результатов при гелевой сорбции, соответствующих требованиям стандартов для каждого вида масла. После ввода гелевого раствора в масло дополнительно вводят коагулянт в количестве до 100 г на 1 тонну масла в виде 20%-ного раствора, перемешивают в течение 15-30 минут и отстаивают 8-9 часов. После гелевой сорбции масло направляют на контрольную отбелку, которую проводят в течение 30 минут при температуре 18-20°C с вводом адсорбента с рН 2-5 в количестве 0,35-0,55%, при этом при отбелке соевого и кукурузного масел дополнительно вводят 0,2-0,25% активированного угля, а при отбелке рапсового - 0,5-1,0%. После отбелки масло направляют на контрольное вымораживание при 6°C в течение 4-х часов с вводом 0,2-0,3% сорбента, а фильтрацию масла проводят при 12°C, и далее масло направляют на дезодорацию при остаточном давлении до 5 мм рт. ст. при температуре 190-225°C. Изобретение позволяет повысить производительность линии рафинации масла на 25-30%, повысить качество растительных масел за счет проведения рафинации при низких температурах, повысить выход масел, сократить отходы, потери и расход вспомогательных материалов. 2 з.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к масложировой промышленности. На первом этапе проводят анализ исходного прессового подсолнечного масла на содержание в нем фосфолипидов. В качестве гидратирующего агента применяют конденсат водяного пара 3-5% от массы масла в виде водного раствора хлорида натрия с концентрацией не более 1 г/л, подвергнутый электрохимической активации в диафрагменном электролизере с получением кислого анолита с pH 4 и щелочного католита с pH 9-10. Гидратацию проводят в 2 ступени последовательно сначала кислым анолитом с pH 4 в количестве 1,5-2,5 масс. % к массе масла, в который добавляют в качестве активатора лимонную кислоту в количестве 0,1±0,01 масс. % к массе масла, затем - щелочным католитом pH 9-10 в количестве 1,5-2,5 масс. % к массе масла. Затем проводят отстой не менее 8 ч, выводят гидрофуз и сушат масло. Далее гидратированное высушенное масло охлаждают сначала быстро со скоростью 9±0,5°C/ч до 40±2°C, затем медленно со скоростью 3±0,5°C/ч до +5±1°C. При перекачивании в кристаллизатор используют плоский маслопровод толщиной проходного отверстия 0,6 см и шириной 16,0 см из немагнитного материала, на который намотаны последовательно с интервалом не более 0,4-0,5 м пять одинаковых катушек медным проводом диаметром 5 мм с числом витков 10 и устанавливают в направлении магнитного поля Земли, а выводы катушек подключают к постоянному току с напряжением 220 B так, чтобы направления векторов напряженности, создаваемых магнитными полями катушек, совпадали с направлением вектора напряженности магнитного поля Земли. Затем, выдерживая при +5±1°C не менее 2 ч, масло медленно со скоростью 2-3°C/ч нагревают до 18-20°C, фильтрование подготовленного масла проводят через хлопчатобумажную ткань на фильтр-прессе при давлении 1,0-2,0 атм, после чего масло фасуют в бутылки с защитой азотом. Изобретение позволяет улучшить качество подсолнечного масла, уменьшив содержание фосфолипидов – вплоть до их отсутствия. 2 табл., 4 пр.

Изобретение относится к масложировой промышленности и может быть использовано в переработке растительных масел. На первом этапе проводят анализ исходного прессового подсолнечного масла на содержание в нем фосфолипидов. В качестве гидратирующего агента вместо технической водопроводной воды применяют конденсат водяного пара 3÷5% от массы масла в виде водного раствора минеральной соли хлорида натрия концентрацией не более 1 г/л, подвергнутый электрохимической активации в диафрагменном электролизере с получением кислого анолита с рН 4 и щелочного католита с рН 9-10. Гидратацию проводят в 2 ступени последовательно сначала кислым анолитом с рН 4 в количестве 1,5÷2,5 мас.% к массе масла, в который добавляют в качестве активатора лимонную кислоту в количестве 0,1±0,01 мас.% к массе масла, затем щелочным католитом с рН 9-10 в количестве 1,5÷2,5 мас.% к массе масла. Перед отделением фосфолипидной эмульсии проводят отстой не менее 8 часов, выделяют гидрофуз, гидратированное масло сушат. Далее в гидратированное высушенное масло с температурой 80°С добавляют в предварительно расплавленном состоянии 2% воска от массы масла; масло размешивают и охлаждают быстро со скоростью 9±0,5°С/час до +40±2°С, затем медленно со скоростью 3±0,5°С/час до температуры +10±1°С, выдерживая при этой температуре не менее 4 часов, далее масло медленно со скоростью 2÷3°С/час нагревают до 18÷20°С, фильтрование подготовленного масла для выведения воска проводят через хлопчатобумажную ткань на фильтр-прессе при давлении 1,0÷2,0 атм и масло фасуют в бутылки с защитой азотом. Изобретение позволяет повысить качество масла, более эффективно выделить из него фосфолипиды, в том числе негидратируемые, снизить проокислительную способность и вывести воск. 2 табл., 4 пр.

Изобретение относится к масложировой промышленности и может быть использовано в переработке растительных масел. На первом этапе проводят анализ исходного прессового подсолнечного масла. В качестве гидратирующего агента вместо технической водопроводной воды применяют деминерализованный конденсат водяного пара 3-5% от массы масла в виде водного раствора минеральной соли хлорида натрия, подвергнутый электрохимической активации в диафрагменном электролизере с получением кислого анолита с pH 4 и щелочного католита с pH 9-10. Активатором гидратации служит лимонная кислота в виде 0,1% концентрации водного раствора, гидратацию проводят в 2 ступени последовательно сначала кислотным анолитом с pH 4 с добавлением лимонной кислоты, затем щелочным католитом с pH 9-10, перед отделением фосфолипидной эмульсии проводят отстой не менее 8 ч, отделение гидрофуза, сушка масла при необходимости. После этого масло нагревают до 60°C и в него добавляют в предварительно расплавленном состоянии 2% воска от массы масла. Масло размешивают и охлаждают до +10°C. В масле начинает происходить процесс кристаллизации воска. Общее время кристаллизации должно быть не менее 10 ч, причем после 3-4-ч масло медленно нагревают до 18-20°C. Завершающим этапом данного способа является фильтрование подготовленного масла через х/б ткань на фильтр-прессе при давлении 1,0-2,0 атм в зависимости от состояния масла и фильтрованной ткани. После фильтрации масло фасуют в бутылки с защитой азотом. Изобретение позволяет повысить качество масла, более эффективное выделить из него фосфолипиды, в том числе негидратируемые, и снизить проокислительную способность. 2 табл., 4 пр.

Изобретение относится к масложировой промышленности. Способ нейтрализации кислотности жиров и масел c получением микронутриентов, продукта жирных кислот и с извлечением рафинированных масел, включает: подачу предварительно обработанного потока масла в вакуумно-паровую секцию отгонки, отгоняющую летучие фазы; подачу отогнанных летучих фаз на стадию высокотемпературной конденсации или на комбинацию высокотемпературной и среднетемпературной стадии конденсации с получением конденсированной фазы (A) и паровой фазы (E); отправку конденсированной фазы (A) на процесс вакуумной дистилляции и отправку паровой фазы (E) на стадию низкотемпературной конденсации; воздействие на конденсированную фазу (A) процесса вакуумной дистилляции и получение высокотемпературного дистиллята и потока летучих веществ; подачу паровой фазы (E) из стадии высокотемпературной конденсации вместе с потоком летучих веществ (C) из процесса вакуумной дистилляции на стадию низкотемпературной конденсации с получением потока неконденсируемых газов и низкотемпературного дистиллята, предоставление потоку неконденсируемых газов возможности удерживаться в вакуумной системе и извлечение из вакуумно-паровой секции отгонки потока рафинированного масла. Изобретение позволяет повысить содержание токоферолов при осуществлении нейтрализации масел до 21,4-30,6%. 13 з.п. ф-лы, 12 ил., 5 табл., 3 пр.

Изобретение относится к способу получения компонентов для (i) получения добавки, подобной дизельному топливу, или для (ii) получения топлива, подобного дизельному, из сырого таллового масла, включающему следующие этапы: обеспечение сырого таллового масла; экстракцию липофильных компонентов, присутствующих в указанном сыром талловом масле, органическим растворителем с получением органического экстракта, содержащего указанные липофильные компоненты; промывку полученного органического экстракта серной кислотой с концентрацией по меньшей мере 90% масс. с получением промытого кислотой органического экстракта; и промывку промытого кислотой органического экстракта водой с получением компонентов для получения добавки, подобной дизельному топливу, или для получения топлива, подобного дизельному. Изобретение также относится к способу получения топлива, подобного дизельному. Получено топливо, сравнимое в плане максимальной эффективности двигателя и даже заметно улучшенное в сравнении с товарным дизельным топливом. 5 н. и 20 з.п. ф-лы, 6 табл., 2 пр.

Изобретение относится к масложировой промышленности. Способ включает экстракцию гомогенизированных яичных желтков смесью изопропилового спирта и хлористого метилена в объемном отношении к желтковой массе (2-5):1, причем объемное соотношение изопропилового спирта к хлористому метилену 1:(2-3). Время экстракции составляет от 1 до 2-х часов, температура экстрагирования 20-40°C. Экстракт выдерживают при температуре 4-6°C в течение 2-4 часов и выпавший белый аморфный осадок отфильтровывают. Изобретение позволяет получить простой и эффективный способ получения яичного масла со степенью извлечения не менее 94% с максимальным сохранением биологической ценности, устойчивого к окислительным процессам в течение не менее шести месяцев без добавления консервантов при температуре хранения не выше 4°C. 2 з.п. ф-лы, 2 табл., 7 пр.

Изобретение относится к масложировой промышленности. Способ ферментативного дегуммирования триглицеридов или снижения содержания масла в камеди растительного масла, которая собирается при дегуммировании масла, который содержит следующие этапы: а) приведение триглицеридов или камеди растительного масла, которая собирается при дегуммировании масла, в контакт с композицией, которая содержит по меньшей мере один расщепляющий гликозиды фермент, выбранный из амилаз, амилоглюкозидаз, изоамилаз, глюкоамилаз, глюкозидаз, галактозидаз, глюканаз, пуллуланаз, арабиназ, ламинараназ, пектолиаз, маннаназ, декстраназ, пектиназ, целлюлаз, целлобиаз и ксиланаз, причем по меньшей мере один расщепляющий гликозиды фермент не демонстрирует никакой фосфолипазной и никакой ацилтрансферазной активности и композиция не содержит ни фосфолипазы, ни ацилтрансферазы; и b1) в случае триглицеридов в качестве исходного материала: отделение камедей от триглицеридов; или b2) в случае камеди растительного масла в качестве исходного материала: разделение на водную, содержащую лецитин, фазу и фазу, содержащую масло. Изобретение позволяет увеличить выход масла, обеспечить извлечение лецитина с высоким выходом и без химического изменения лецитина. 8 з.п. ф-лы, 7 табл., 3 пр.
Наверх