Радиальная упруго-демпферная опора ротора турбомашины

Изобретение относится к газотурбинным установкам авиационного и наземного применения, а именно к конструкции опор компрессора или турбины. Радиальная упругодемпферная опора ротора турбомашины содержит шариковый подшипник, а также последовательно установленные на цапфе ротора турбомашины со стороны рабочих колес ротора турбомашины лабиринтное уплотнение, контактное кольцо, с которым взаимодействует контактное графитовое уплотнение, и роликовый подшипник, наружное кольцо которого установлено в корпусе роликового подшипника. На торце цапфы ротора турбомашины установлено и жестко закреплено упорное кольцо, контактирующее с торцом внутреннего кольца роликового подшипника. Корпусы всех упомянутых уплотнений жестко соединены с корпусом опоры через упругий элемент типа «беличье колесо». Наружное кольцо шарикового подшипника установлено в корпусе шарикового подшипника, выполненного зацело с корпусом роликового подшипника с образованием общего корпуса подшипников, а внутреннее кольцо закреплено на наружном диаметре вспомогательной втулки. Вспомогательная втулка соединена с упорным кольцом посредством расположенных по окружности шарнирных V-образных механизмов, каждый из которых образован двумя качалками, соединенными друг с другом посредством шарнирного соединения. В месте соединения качалок установлен груз, расположенный на диаметре, меньшем, чем диаметр внутреннего кольца вспомогательной втулки, а свободные концы качалок соединены со вспомогательной втулкой и упорным кольцом посредством шарнирных соединений. Общий корпус подшипников установлен в упругом элементе типа «беличье колесо», причем между упругим элементом и расположенным непосредственно под ним участком общего корпуса подшипников образована кольцевая полость, в которой установлена осевая пружина. Общий корпус подшипников выполнен с возможностью осевого смещения, относительно упругого элемента, ограниченного с одной стороны торцом корпуса контактного графитового уплотнения, а с другой стороны торцом упругого элемента. Торец упругого элемента типа «беличье колесо» и ответная торцевая поверхность общего корпуса подшипников выполнены коническими относительно продольной оси опоры, где основание конуса расположено со стороны рабочих колес ротора турбомашины. Изобретение позволяет расширить диапазон работы турбомашины с низким уровнем вибраций. 2 ил.

 

Изобретение относится к газотурбинным установкам (ГТУ) авиационного и наземного применения, а именно к конструкции опор компрессора или турбины.

Наиболее близким техническим решением к заявленному является передняя опора компрессора газотурбинного двигателя, содержащая последовательно установленные на цапфе ротора турбомашины со стороны рабочих колес ротора турбомашины, по меньшей мере, одно лабиринтное уплотнение, контактное кольцо и взаимодействующее с ним графитовое кольцо, образующие контактное уплотнение, роликовый подшипник, наружное кольцо которого установлено в корпусе подшипника, при этом корпусы всех упомянутых уплотнений жестко соединены между собой, а с корпусом опоры корпуса уплотнений соединены через податливый элемент - беличье колесо (RU 2318136).

Такое конструктивное выполнение не позволяет изменять ее податливость во время работы турбомашины в целях исключения критических частот вращения ротора во всем диапазоне рабочих частот вращения для снижения динамических напряжений в роторе и опоре турбомашины. Как следствие, диапазон работы турбомашины с низким уровнем вибраций может быть недостаточно широким.

Техническим результатом, достигаемым при работе заявленного изобретения, является расширение диапазона работы турбомашины с низким уровнем вибраций.

Указанный технический результат достигается тем, что радиальная упругодемпферная опора ротора турбомашины, содержащая последовательно установленные на цапфе ротора турбомашины со стороны рабочих колес ротора турбомашины лабиринтное уплотнение, контактное кольцо, с которым взаимодействует контактное графитовое уплотнение, образующие контактное уплотнение, роликовый подшипник, наружное кольцо которого установлено в корпусе роликового подшипника, при этом на торце цапфы ротора турбомашины установлено и жестко закреплено на ней упорное кольцо, контактирующее с торцом внутреннего кольца роликового подшипника, с целью фиксации внутреннего кольца шарикового подшипника, контактного кольца и лабиринтного уплотнения в осевом направлении, а корпусы всех упомянутых уплотнений жестко соединены с корпусом опоры через упругий элемент типа «беличье колесо», при этом согласно настоящему изобретению заявленная опора дополнительно содержит шариковый подшипник, наружное кольцо которого установлено в корпусе шарикового подшипника, выполненного зацело с корпусом роликового подшипника с образованием общего корпуса подшипников, а внутреннее кольцо закреплено на наружном диаметре вспомогательной втулки, которая соединена с упорным кольцом посредством расположенных по окружности шарнирных V-образных механизмов, каждый из которых образован двумя качалками, соединенными друг с другом посредством шарнирного соединения, при этом в месте их соединения установлен груз, расположенный на диаметре, меньшем, чем диаметр внутреннего кольца вспомогательной втулки, а свободные концы качалок соединены со вспомогательной втулкой и упомянутым упорным кольцом соответственно посредством шарнирных соединений, при этом общий корпус подшипников установлен в упомянутом упругом элементе типа «беличье колесо», причем между упругим элементом и расположенным непосредственно под ним участком общего корпуса подшипников образована кольцевая полость, в которой установлена осевая пружина, а общий корпус подшипников выполнен с возможностью осевого смещения, относительно упругого элемента, ограниченного с одной стороны торцом корпуса контактного графитового уплотнения, а с другой стороны торцом упругого элемента, причем упомянутый торец упругого элемента и ответная торцевая поверхность общего корпуса подшипников выполнены коническими относительно продольной оси опоры, где основание конуса расположено со стороны рабочих колес ротора турбомашины.

Такое конструктивное решение позволяет изменять жесткостные характеристики заявленной опоры при изменении частоты вращения ротора турбомашины за счет создания (на высоких рабочих оборотах ротора) или разрыва (на низких рабочих оборотах ротора) контакта по коническим поверхностям между общим корпусом подшипников и упругим элементом типа «беличье колесо», осуществляемого путем осевого смещения общего корпуса подшипников до обеспечения или устранения его контакта по коническим поверхностям с торцом упругого элемента. Перемещение общего корпуса подшипников осуществляется за счет трансформации радиальной нагрузки от грузов через качалки в осевую нагрузку, воздействующую на общий корпус подшипников и смещающую его в осевом направлении через шариковый подшипник. На высоких рабочих оборотах ротора имеется контакт по коническим поверхностям между общим корпусом подшипников и упругим элементом, и радиальная нагрузка от ротора воспринимается непосредственно статором, минуя упругий элемент типа «беличье колесо», при этом жесткость опоры повышается, обеспечивая снижение уровня вибрационных напряжений в конструкции турбомашины за счет увеличения частоты проявления высокочастотного резонанса сверх частоты высоких рабочих оборотов ротора. На низких рабочих оборотах ротора отсутствует контакт по коническим поверхностям между общего корпуса подшипников и упругим элементом, и радиальная нагрузка от ротора воспринимается статором через упругий элемент типа «беличье колесо», обладающий повышенной податливостью, при этом жесткость опоры снижается, обеспечивая снижение уровня вибрационных напряжений в конструкции турбомашины за счет уменьшения частоты возникновения низкочастотного резонанса ниже частоты низких рабочих оборотов ротора.

На фиг. 1 представлен продольный разрез заявленной опоры в режиме с низкой жесткостью.

На фиг. 2 представлен продольный разрез заявленной опоры в режиме с высокой жесткостью.

Радиальная упругодемпферная опора ротора турбомашины содержит последовательно установленные на цапфе ротора турбомашины 1 со стороны рабочих колес ротора турбомашины лабиринтное уплотнение 2, контактное кольцо 3, с которым взаимодействует контактное графитовое уплотнение 4, роликовый подшипник 5, наружное кольцо 6 которого установлено в корпусе роликового подшипника 7, при этом на торце цапфы ротора турбомашины 1 установлено и жестко закреплено на ней упорное кольцо 8, контактирующее с торцом внутреннего кольца роликового подшипника 9, а корпусы 10, 11 всех упомянутых уплотнений 2 и 4 жестко соединены (посредством фланцевых соединений) с корпусом опоры 12 через упругий элемент типа «беличье колесо» 13.

Также заявленная опора содержит шариковый подшипник 14, наружное кольцо 15 которого установлено в корпусе шарикового подшипника 16, выполненного зацело с корпусом роликового подшипника 7 с образованием общего корпуса подшипников, а внутреннее кольцо шарикового подшипника 17 закреплено на наружном диаметре вспомогательной втулки 18, которая соединена с закрепленным на торце цапфы ротора турбомашины 1 упорным кольцом 8 посредством расположенных по окружности шарнирных V-образных механизмов, каждый из которых образован двумя качалками 19, соединенными друг с другом посредством шарнирного соединения 20, при этом в месте их соединения установлен груз (не показан), расположенный на диаметре, меньшем, чем диаметр внутреннего кольца вспомогательной втулки 18, а свободные концы качалок 19 соединены со вспомогательной втулкой 18 и упорным кольцом 8 соответственно посредством шарнирных соединений 21, 22, при этом упомянутый общий корпус подшипников установлен в упомянутом упругом элементе типа «беличье колесо» 13, причем между упругим элементом типа «беличье колесо» 13 и расположенным непосредственно под ним участком общего корпуса подшипников образована кольцевая полость 23, в которой установлена осевая пружина 24, а общий корпус подшипников выполнен с возможностью осевого смещения, относительно упругого элемента типа «беличье колесо» 13, причем осевое смещение общего корпуса подшипников ограничено с одной стороны торцом корпуса контактного графитового уплотнения 11, а с другой стороны торцом упругого элемента типа «беличье колесо» 13, причем упомянутый торец упругого элемента типа «беличье колесо» 13 и ответная торцевая поверхность общего корпуса подшипников выполнены коническими относительно продольной оси поры, где основание конуса расположено со стороны рабочих колес ротора турбомашины.

При работе турбомашины с малыми оборотами ротора центробежная сила от грузиков слишком мала и не может противодействовать через шарнирные V-образные механизмы и шариковый подшипник 14 осевой силе пружины 24. При этом общий корпус подшипников смещен до упора в корпус контактного графитового уплотнения 11 и радиальные усилия от ротора передаются на корпус опоры 12 и статор через упругий элемент типа "беличье колесо" 13. В указанном режиме работы жесткость опоры становится минимальной, при которой частота резонансных колебаний ротора становится ниже частоты его рабочих оборотов. Вследствие устранения резонанса на рабочих оборотах ротора вибрационные нагрузки в роторе и опоре сводятся к минимуму.

При работе турбомашины с высокими оборотами ротора центробежная сила от грузов превышает усилие от пружины 24. При этом общий корпус подшипников смещается до упора в коническую поверхность упругого элемента типа «беличье колесо» 13 и радиальные усилия от ротора передаются на корпус опоры 12 и статор через стык конических поверхностей, не задействуя упругий элемент типа «беличье колесо» 13. В указанном режиме работы жесткость опоры становится максимальной, при которой частота резонансных колебаний ротора становится выше частоты его рабочих оборотов. Вследствие устранения резонанса на рабочих оборотах ротора вибрационные нагрузки в роторе и опоре сводятся к минимуму.

Радиальная упругодемпферная опора ротора турбомашины, содержащая последовательно установленные на цапфе ротора турбомашины со стороны рабочих колес ротора турбомашины лабиринтное уплотнение, контактное кольцо, с которым взаимодействует контактное графитовое уплотнение, роликовый подшипник, наружное кольцо которого установлено в корпусе роликового подшипника, при этом на торце цапфы ротора турбомашины установлено и жестко закреплено упорное кольцо, контактирующее с торцом внутреннего кольца роликового подшипника, а корпусы всех упомянутых уплотнений жестко соединены с корпусом опоры через упругий элемент типа «беличье колесо», отличающаяся тем, что содержит шариковый подшипник, наружное кольцо которого установлено в корпусе шарикового подшипника, выполненного зацело с корпусом роликового подшипника с образованием общего корпуса подшипников, а внутреннее кольцо закреплено на наружном диаметре вспомогательной втулки, которая соединена с упомянутым упорным кольцом посредством расположенных по окружности шарнирных V-образных механизмов, каждый из которых образован двумя качалками, соединенными друг с другом посредством шарнирного соединения, при этом в месте их соединения установлен груз, расположенный на диаметре, меньшем, чем диаметр внутреннего кольца вспомогательной втулки, а свободные концы качалок соединены со вспомогательной втулкой и упомянутым упорным кольцом соответственно посредством шарнирных соединений, при этом общий корпус подшипников установлен в упомянутом упругом элементе типа «беличье колесо», причем между упругим элементом и расположенным непосредственно под ним участком общего корпуса подшипников образована кольцевая полость, в которой установлена осевая пружина, а общий корпус подшипников выполнен с возможностью осевого смещения, относительно упругого элемента, ограниченного с одной стороны торцом корпуса контактного графитового уплотнения, а с другой стороны торцом упругого элемента, причем упомянутый торец упругого элемента типа «беличье колесо» и ответная торцевая поверхность общего корпуса подшипников выполнены коническими относительно продольной оси опоры, где основание конуса расположено со стороны рабочих колес ротора турбомашины.



 

Похожие патенты:

Изобретение относится к газотурбинным установкам авиационного и наземного применения, а именно к конструкции опор компрессора или турбины. Радиальная упругодемпферная опора ротора турбомашины содержит шариковый подшипник, а также последовательно установленные на цапфе ротора турбомашины со стороны рабочих колес ротора турбомашины лабиринтное уплотнение, контактное кольцо, с которым взаимодействует контактное графитовое уплотнение, и роликовый подшипник, наружное кольцо которого установлено в корпусе роликового подшипника.

Изобретение относится к области энергомашиностроения и теплоэнергетики и может быть использовано при разработке паротурбинных энергоустановок. Валопровод турбоагрегата содержит скрепленные между собой соединительными муфтами и установленные на подшипниковых опорах роторы многоцилиндровой паровой турбины и электрогенератора.

Изобретение относится к энергетике. Опора компрессора низкого давления турбомашины, содержащая промежуточный вал, в котором установлена цапфа ротора компрессора и соединена с ним в окружном направлении посредством шлицевого соединения, а в осевом направлении посредством стяжной трубы, последовательно установленные на промежуточном валу шариковый подшипник, графитовое уплотнение, лабиринтное уплотнение, причём уплотнения и внутреннее кольцо шарикового подшипника зафиксированы относительно промежуточного вала в осевом направлении посредством упорного торца и гайки.

Изобретение относится к энергетике. Радиальная межвальная опора ротора турбомашины содержит двухрядный роликовый подшипник, включающий наружное кольцо, установленное в валу шестерни центральной конической передачи, два внутренних кольца, установленные на валу турбины, наружные рабочие поверхности которых выполнены коническими относительно продольной оси опоры, дистанционное кольцо, установленное между внутренними кольцами, два сепаратора, контактирующие друг с другом по торцам и зафиксированные относительно друг друга от проворота, в которых соответственно установлены два ряда конических роликов, причем основания меньшего диаметра конических роликов из разных рядов направлены в противолежащие стороны, при этом в месте стыка торцов сепараторов со стороны их внутреннего диаметра выполнена клинообразная кольцевая канавка, в которой установлено разрезное кольцо, выполненное в поперечном разрезе в виде треугольника, основание которого является его внутренней поверхностью, причем между разрезным кольцом и дистанционным кольцом образован радиальный зазор.

Изобретение относится к соединительному модулю (18), расположенному между приводным валом (8) вентилятора авиационного двигателя и подшипником (12b) качения, при этом модуль включает в себя внутренний конструктивный элемент (26), прикрепленный к валу (8) и имеющий ограждающий элемент (32), и наружный конструктивный элемент (46), который прикреплен к подшипнику (12b) и опирается в радиальном направлении на средства (42), установленные на внутреннем конструктивном элементе (26), и ограничивает дорожку (48) качения, которая является комплементарной по отношению к ограждающему элементу (32) для образования вместе с ним шарового соединения (50), удерживаемого в заблокированном состоянии посредством блокирующего приспособления (34), установленного на внутреннем конструктивном элементе и выступающего в радиальном направлении наружу от ограждающего элемента (32), при этом средства, образующие механический предохранитель (37), образуют соединение между приспособлением и ограждающим элементом (32), так что шаровое соединение разблокируется после разрушения данных средств.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин.

Изобретение относится к области турбомашиностроения, а именно к конструкции межвальных опор роторов турбомашин. Опора ротора турбомашины содержит роликовый подшипник и посадочное кольцо под внутреннее кольцо роликового подшипника.

Направляющее и уплотняющее устройство, предназначенное для установки в отверстии корпуса, сквозь которое проходит вал в турбомашине, содержит узел из углеволокна.

Изобретение относится к области турбомашиностроения, а именно к конструкции упругих опор роторов турбомашин. Упругая опора ротора турбомашины содержит установленный на валу радиальный подшипник, наружное кольцо которого соединено с корпусом, в котором выполнены прорези с образованием между ними балочек, сориентированных в радиальном направлении относительно продольной оси опоры, условно разделяющих корпус на внутреннюю и наружную части.

Газотурбинный двигатель содержит опору центрального узла, узел зубчатой передачи и гибкую опору. Опора центрального узла образует внутреннюю кольцевую стенку для осевого контура, содержащую первое монтажное средство.

Турбоустановка содержит компрессор (102), содержащий модуль (114), выполненный с возможностью введения скольжением в наружный кожух (112) и извлечения из него. Турбоустановка дополнительно содержит электрический двигатель (104), содержащий вал (108), выполненный с возможностью присоединения к валу (106) компрессора. Через неподвижную часть (126) компрессора или двигателя от первого магнитного подшипника ко второму магнитному подшипнику проходит кабелепровод (124, 212). Кабелепровод содержит электрические кабели (132), выполненные внутри кабелепровода (124, 212) и проходящие от первого конца (124a) кабелепровода (124) к его второму концу (124b), и электрические кабели (125, 151), присоединяющие первый или второй магнитные подшипники к внешнему разъему (130) через электрические кабели (132) кабелепровода (124). Достигается сокращение времени монтажа и демонтажа установки. 4 н. и 11 з.п. ф-лы, 10 ил.

Турбомашина, содержащая, по меньшей мере, один вал и, по меньшей мере, один подшипник, направляющий во вращении упомянутый вал вокруг оси турбомашины; подшипник, содержащий первое внутренне расположенное в радиальном направлении кольцо и второе внешне расположенное в радиальном направлении кольцо, между которыми размещены подвижные элементы; турбомашина, в которой первое кольцо установлено плавающим на упомянутом валу посредством демпфирующего тонкого жидкого слоя. Технический результат изобретения - повышение надежности путем исключения деформации вала, на котором расположен подшипник. 2 н. и 7 з.п. ф-лы, 10 ил.

Предлагаемое изобретение относится к турбиностроению и может быть использовано в конструкции газотурбинных установок, в частности в элементах опор и опорных подшипников. Опора турбины высокого давления содержит наружный корпус, последовательно соединенные внутреннее кольцо, корпус подшипника и роликоподшипник, взаимодействующий с ротором турбины, сопловые лопатки, спицы, фиксирующие гайки и втулки. Спицы закреплены одним концом на наружном корпусе, а другим концом на внутреннем кольце. Втулки выполнены в виде стакана с отверстием под спицы в днище. Втулки закреплены на внутреннем кольце, а на спицах выполнены буртики. Каждая спица установлена в отверстие в днище стакана и снабжена двумя парами шайб со сферическими поверхностями. Одна пара шайб установлена на спицу между буртиком спицы и одной стороной днища стакана, а другая между другой стороной днища стакана и фиксирующей гайкой. Изобретение позволяет повысить ресурс турбины высокого давления газотурбинной установки. 2 ил.

Изобретение относится к области авиационного двигателестроения, а именно к системам разгрузки опор роторов компрессоров низкого давления газотурбинного двигателя, в том числе и в составе летательного аппарата. Компрессор низкого давления газотурбинного двигателя содержит ротор, передняя и задняя цапфы которого установлены в передней и задней опорах статора соответственно, шарикоподшипник, вспомогательную втулку, шарнирные V-образные механизмы и упорное кольцо. Наружное кольцо шарикоподшипника установлено в его корпусе, соединенном с корпусом передней опоры посредством разъемного соединения, а внутреннее кольцо шарикоподшипника установлено на наружном диаметре вспомогательной втулки. На торце передней цапфы ротора установлено упорное кольцо, соединенное с вспомогательной втулкой посредством расположенных по окружности относительно продольной оси компрессора шарнирных V-образных механизмов. Каждый V-образный механизм образован двумя качалками, соединенными друг с другом посредством шарнирного соединения, при этом в месте их соединения установлен груз, расположенный на диаметре меньшем, чем диаметр внутреннего кольца вспомогательной втулки. Свободные концы качалок соединены со вспомогательной втулкой и упорным кольцом соответственно посредством шарнирных соединений. Изобретение позволяет повысить надежности работы компрессора низкого давления газотурбинного двигателя. 1 ил.

Изобретение относится к области техники турбовальных двигателей, более конкретно к опоре (14) для, по меньшей мере, одного подшипника для горячей части турбовального двигателя. Опора содержит, по меньшей мере, одну центральную ступицу (15), объединяющую в себе наружное гнездо подшипника для непосредственного вставления подшипника (13), кольцевой сегмент (16) кожуха вокруг центральной ступицы (15) и множество радиальных плеч (17), соединяющих упомянутую центральную ступицу (15) с упомянутым кольцевым сегментом (16) кожуха. Радиальные плечи (17) наклонены в осевом направлении и в тангенциальном направлении и объединены как единое целое с центральной ступицей (15) и с кольцевым сегментом (16) кожуха. Позволяет получить высокую степень радиальной жесткости и жесткости на изгиб, даже под воздействием высоких температур, в это же время, тем не менее, обеспечивая хороший срок службы и достигая этого с большой простотой. 2 н. и 12 з.п. ф-лы, 6 ил.

Двухконтурный турбореактивный двигатель содержит цилиндрический канал холодного потока, на продольных концах которого расположены корпус, окружающий вентилятор турбореактивного двигателя, и опорное кольцо, соединенное с выпускным корпусом. Опорное кольцо установлено при помощи тяг, прикрепленных к цилиндрической наружной обечайке выпускного корпуса при помощи точек крепления. Точки крепления выпускного корпуса представляют собой вилки, проушины которых проходят радиально от наружной обечайки и расположены по существу в осевом направлении посередине обечайки. Отверстия вилок ориентированы по направлению образующих наружной обечайки. Точки крепления тяг на опорном кольце канала холодного потока расположены в осевом направлении выше по потоку от вилок наружной обечайки выпускного корпуса. Изобретение позволяет упростить конструкцию крепления опорного кольца к выпускному корпусу и обеспечить возможность их относительных перемещений. 7 з.п. ф-лы, 5 ил.

Устройство приводного вала газотурбинного двигателя содержит приводной вал, круглый корпус, круглый обод, окружающий корпус, полую радиальную опору и опорный подшипник вала, установленный между первичным валом и манжетой. Радиальная опора соединяет корпус с ободом и пересекается приводным валом, проходящим в корпус. Радиальная опора соединена с корпусом и не выполнена с ним как одно целое. Радиальная опора содержит бобышку, снабженную каналом. Бобышка и манжета соединены путем зацепления друг в друга. Приводной вал проходит сквозь бобышку и манжету. Прокладка обеспечивает герметичность между манжетой и бобышкой, и подшипник установлен в манжете. В приводном вале образован масляный канал, причем просверленные отверстия пересекают вал от масляного канала до подшипника. Другие изобретения группы относятся к газотурбинному двигателю, содержащему указанное выше устройство, а также воздушному судну с таким двигателем. Группа изобретений позволяет раздельно изготавливать радиальную опору и корпус, а также повысить точность установки подшипника 3 н. и 9 з.п. ф-лы, 10 ил.

Изобретение относится к области турбомашиностроения, а именно к высокооборотным роторам турбомашин, и может быть использовано в области ракетостроения в турбонасосных агрегатах жидкостных ракетных двигателей. Упруго-демпферная опора ротора (1) содержит корпус (2) опоры, по крайней мере, один подшипник качения (3), втулку (4), установленную по наружному кольцу подшипника (3), с внешней поверхности, которой установлен пакет (5) гофрированных пластин со сквозным продольным пазом, фиксатор (7) пакета (5). Сквозные пазы каждой пластины или группы пластин пакета (5) смещены относительно друг друга по окружности. На торце пакета (5) выполнен дополнительный паз, совмещенный с фиксатором. Технический результат: повышение точности центрирования ротора в корпусе турбомашины, снижение виброактивности ротора и радиальных динамических нагрузок, действующих на опоры. 1 з.п. ф-лы, 2 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к конструкции радиально-упорной опоры ротора компрессора. Радиально-упорная опора ротора газотурбинного двигателя содержит радиально-упорный шарикоподшипник и дополнительный радиально-упорный шарикоподшипник, внутренние кольца которых установлены на валу. Оба внутренних кольца радиально-упорных шарикоподшипников выполнены разъемными и зафиксированы на валу в осевом и окружном направлениях. Между близлежащими торцами внутренних колец установлено регулировочное кольцо. Наружное кольцо дополнительного радиально-упорного шарикоподшипника установлено в обойме, на внутренней поверхности которой со стороны компрессора выполнен бурт, контактирующий по торцам с наружным кольцом дополнительного радиально-упорного шарикоподшипника. Оба радиально-упорных шарикоподшипника заключены в общем корпусе, причем наружное кольцо радиально-упорного шарикоподшипника зафиксировано относительно последнего в осевом направлении посредством бурта, выполненного со стороны его внутренней поверхности и гайки соответственно. Между близлежащими торцами бурта и наружного кольца дополнительного радиально-упорного шарикоподшипника установлена осевая пружина. Общий корпус радиально-упорных шарикоподшипников установлен в корпусе опоры, выполненном разборным, и выполнен с возможностью смещения вдоль продольной оси опоры, ограниченного стенками корпуса опоры. Между стенкой корпуса опоры и близлежащими торцами общего корпуса радиально-упорных шарикоподшипников и обоймы образована кольцевая полость. В кольцевой полости по окружности установлены элементы, ограниченные в радиальном направлении общим корпусом радиально-упорных шарикоподшипников и осевым кольцевым выступом соответственно, выполненным на одной из стенок корпуса опоры. Обращенная к стенке корпуса опоры поверхность каждого из указанных элементов выполнена сферической, а на противолежащей поверхности выполнены два выступа, торцы которых контактируют с торцами общего корпуса радиально-упорных шарикоподшипников и обоймы соответственно. Изобретение позволяет повысить надежность работы компрессора за счет снижения суммарной осевой нагрузки на заднюю шарикоподшипниковую опору ротора при работе газотурбинного двигателя. 1 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин. Упругодемпферная опора ротора турбомашины содержит радиальный подшипник качения, установленный на валу, статорный элемент, жестко закрепленный на наружном кольце подшипника корпус, образующий со статорным элементом демпфирующую полость, внутри которой расположено упругое кольцо, а также графитовое уплотнение и вторичное лабиринтное уплотнение, содержащее крышку лабиринтных уплотнений. Упругодемпферная опора содержит установленную на статорном элементе фиксирующую крышку; при этом упругое кольцо закреплено с возможностью смещения в демпфирующей полости совместно с корпусом подшипника, графитовым уплотнением и крышкой лабиринтов в радиальном и осевом направлениях в пределах допустимых зазоров и ограничены фиксирующей крышкой от осевого смещения с одной стороны и статорным элементом - с другой стороны. Наружное кольцо подшипника, упругое кольцо, графитовое уплотнение и крышка лабиринтного уплотнения жестко установлены на корпусе подшипника. Изобретение позволяет снизить зазор между статорной и роторной частями, что приводит к снижению потерь в лабиринтных уплотнениях. 1 з.п. ф-лы, 1 ил.
Наверх