Летательный аппарат

Изобретение относится к воздушно-космической технике. Летательный аппарат (ЛА) содержит жестко связанные корпус и цилиндр, размещенный в цилиндре поршень с выступом, а также два жестко связанных с корпусом стартовых реактивных двигателя и размещенные в конце цилиндра два амортизационных предохранительных упора. В корпусе выполнено углубление, в котором размещен взаимодействующий с поршнем амортизатор. ЛА содержит блок электропитания соленоида и цилиндрический соленоид, размещенный внутри отверстия в корпусе, жестко связанный с корпусом. Блок электропитания соленоида жестко связан с корпусом и имеет первый и второй выходы, соответственно соединенные с первым и вторым входами цилиндрического соленоида. Блок электропитания выдает электрические импульсы для втягивания выступа поршня внутрь соленоида до начала амортизации и отталкивания поршня и корпуса в противоположные стороны после амортизации. ЛА содержит блок управления с возможностью порционной выдачи топлива, жестко связанный с корпусом и имеющий гидравлическую связь с реактивными двигателями. Техническим результатом изобретения является увеличение грузоподъемности без потери требуемого ускорения ЛА. 1 ил.

 

Изобретение относится к воздущно-космической технике и может быть использовано при полетах в атмосфере и космосе. Известен летательный аппарат, описанный в патенте №2270143, автор Часовской А.А. Он содержит жестко связанный корпус и цилиндр, размещенный в цилиндре поршень, осуществляющий возвратно-поступательное движение, причем в корпусе выполнено углубление. Однако для ускорения аппарата необходимы газовые амортизаторы и реактивный двигатель поршня.

Известен летательный аппарат, изложенный в патенте №2451630, автор Часовской А.А.

Начальное движение аппарата осуществляется с помощью двух реактивных двигателей. В углублении корпуса размещен цилиндрический соленоид с механическим амортизатором в конце углубления. К амортизатору примыкает выступ поршня. При этом сам поршень с выступом осуществляет возвратно-поступательное движение внутри цилиндра. Позади цилиндра имеются амортизационные предохранительные упоры для предотвращения выхода поршня за пределы цилиндра. При поступлении электрических импульсов на первый и второй входы соленоида соответственно с первого и второго выходов блока электропитания соленоида, выступ поршня сжимает амортизатор.

После прекращения импульса, происходит амортизация и отталкивание в противоположном направлении, а поршня с выступом - в обратном. При появлении нового импульса снова осуществляется втягивание выступа поршня внутрь соленоида. По мере отталкивания осуществляется ускорение. Однако не всегда ускорение удовлетворяет предъявленным требованиям. С помощью предлагаемого устройства обеспечивается увеличение ускорения.

Достигается это введением блока управления с возможностью выдачи порций топлива, а также использованием блока электропитания, соленоидом с частотой импульсов, равной частоте порций топлива, поступающих в моменты начала движения поршня от блока управления с возможностью выдачи порций топлива, имеющего гидравлическую связь с реактивными двигателями.

На фиг 1 и в тексте приняты следующие обозначения.

1 - Корпус

2 - Блок управления с возможностью выдачи порции топлива

3 - Блок электропитания соленоида, выдающий импульсы с частотой порций топлива

4 - Углубление в корпусе

5 - Механический амортизатор

6 - Цилиндрический соленоид

7 - Реактивный двигатель

8 - Реактивный двигатель

9 - Поршень с выступом

10 - Цилиндр

11, 12 - амортизационные предохранительные упоры.

При этом корпус 1 жестко связан с блоком управления с возможностью выдачи порции топлива 2, имеющим гидравлическую связь с реактивными двигателями 7, 8, жестко связанными с амортизационными предохранительными упорами 11, 12 и с цилиндрическим соленоида 6, жестко связанным с механическим амортизатором 5, внутри углубления корпуса 4, имеющего внутри также поршень с выступом 9, жестко связанный с цилиндром 10.

Работа устройства осуществляется следующим образом.

Начальное движение аппарата осуществляется с помощью реактивных двигателей 7, 8, работающих в непрерывном режиме, в том числе после старта. При этом они гидравлически связаны с блоком управления с возможностью выдачи порций топлива 2, жестко связанного с корпусом 1, в углублении которого размещен цилиндрический соленоид 6 с механическим амортизатором 5 в конце углубления. К амортизатору примыкает выступ поршня 9, осуществляющий возвратно-поступательное движение внутри цилиндра 10. Позади цилиндра имеются амортизационные предохранительные упоры 11, 12, предотвращающие выход поршня за пределы цилиндра 10. При поступлении электрических импульсов на первый и второй вход соленоида соответственно с первого и второго выхода блока электропитания соленоида, выдающего импульсы с частотой порций топлива, выступ поршня 9 сжимает амортизатор. После прекращения импульса происходят амортизация и отталкивание корпуса 1 в прямом направлении, а поршня с выступом 9 - в обратном.

При этом с блока управления поступают порции топлива в момент начала движения поршня в реактивные двигатели 7, 8, которые выдают импульсы воспламененного топлива, и обеспечивается дополнительное отталкивание, что снижает энергозатраты при уменьшенном соленоиде, а следовательно, увеличивается скорость. По мере следующих друг за другом втягиваний выступа поршня 9 внутрь соленоида осуществляется ускорение корпуса 1, так как скорость в начале каждого последующего отталкивания будет превышать скорость в конце каждого предыдущего отталкивания. При этом в связи с ростом кинетической энергии тормозящий момент из-за движения поршня в обратную сторону не повлияет на замедление движения.

Таким образом, в предлагаемом устройстве сохраняется требуемое ускорение при увеличении массы, без увеличения электрической мощности соленоида.

Летательный аппарат, содержащий жестко связанный корпус и цилиндр, размещенный в цилиндре поршень с выступом, причем в корпусе выполнено углубление, в котором размещены взаимодействующие с выступом поршня амортизаторы, два жестко связанных с корпусом реактивных двигателя и размещенные в конце цилиндра два амортизационных предохранительных упора, цилиндрический соленоид, размещенный внутри углубления корпуса и жестко связанный с корпусом, блок электропитания соленоида, жестко связанный с корпусом и имеющий первый и второй выходы, соответственно соединенные с первым и вторым входами цилиндрического соленоида, и выдающий электрические импульсы для втягивания выступа с поршнем внутрь соленоида до начала амортизации и отталкивания поршня и корпуса в противоположные стороны после амортизации, отличающийся тем, что вводится блок управления с возможностью выдачи порций топлива, жестко связанный с корпусом и имеющий гидравлическую связь с двумя реактивными двигателями, а также используется блок электропитания соленоида, выдающий импульсы с частотой выдачи порций топлива, поступающего в моменты начала движения поршня от амортизатора.



 

Похожие патенты:

Изобретение относится к двигательным средствам летательных аппаратов (ЛА). ЛА содержит вспомогательные реактивные двигатели, амортизатор и блок управления, сообщенный с амортизатором.

Изобретение относится к космической технике и может быть использовано в полетах как в открытом космосе, так и в атмосфере. Летательный аппарат содержит два жестко связанных друг с другом реактивных двигателя, корпус и цилиндр.
Изобретение относится к космическим двигательным системам и может использоваться при создании в будущем орбитального заправочного комплекса (ОЗК). Способ включает доставку на ОЗК воды и получение из неё электролизом водорода и кислорода.
Изобретение относится к космическим двигательным системам и может использоваться при создании в будущем орбитального заправочного комплекса (ОЗК) или лунной базы.

Изобретение относится к ракетно-космической технике и может быть использовано в двигателях космических объектов (КО). Система отбора жидкости в ракетный двигатель КО содержит бак с нижним днищем с приямком, расходным клапаном с дополнительной полостью, заборное устройство, крепежные элементы.

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод с теплообменником, хомуты, коническую обечайку, гайку, стрежень с резьбой и площадкой, заборное устройство с корпусом в виде расположенных друг над другом и соединённых ребрами верхнего плоского кольца с внутренней кромкой, выполненной в виде утолщения с лабиринтными кольцевыми выступами, и нижнего кольца с центральными отверстиями или корпусом с большим конусом, переходящим в малый конус с расходным фланцем, накопителем капиллярного типа с капиллярной сеткой, теплообменником, тарелью в виде плоского кольца, конической обечайкой, дозирующим устройством, капиллярной сеткой, крепежными элементами, расходным клапаном, несущим диском с периферийными и центральным отверстиями и радиальными окнами, полой осью с верхней чашей с прорезами и нижней чашей с прорезями и площадкой.

Изобретение относится к авиакосмической технике и может быть использовано в летательных аппаратах (ЛА). ЛА содержит корпус, два жестко связанных с корпусом реактивных двигателя, блок управления, малоудлиненный расширенный амортизатор с прямоугольным основанием, увеличенные по вертикали два пружинных клапана с закругленными оконечностями, две плоские пластины.

Изобретение относится к электроракетным двигательным системам космических аппаратов (RF). Система содержит несколько независимо управляемых двигателей, например, ионных ускорителей (TW1, TW2, TW3).

Группа изобретений относится к авиационно-космической технике и может быть использована для осуществления полетов в атмосфере и космическом пространстве, при взлёте с Земли и возвращении на неё.

Изобретение относится к космической технике и может быть использовано в бесконтактной транспортировке космических объектов (КО) на разных орбитах. Выводят на исходную расчетную орбиту космический аппарат (КА) с ионной пушкой с газоразрядной камерой с плоским индуктором для возбуждения индукционного высокочастотного электрического разряда, двигательной установкой в виде электрического ракетного двигателя (ЭРД), шарнирным механизмом со штангами и шарнирами или виде карданного шарнира для перемещения ЭРД в плоскости, ортогональной оси, проходящей через центр масс КА в направлении вектора тяги ионной пушки, сближают и ориентируют КА относительно транспортируемого КО с помощью изменения направления вектора тяги и точки приложения вектора тяги перемещаемого ЭРД, измеряют координаты транспортируемого КО и расстояние между КА и транспортируемым КО, воздействуют на поверхность транспортируемого КО квазинейтральным ионным пучком с помощью ионной пушки, производят динамическую компенсацию возмущающих сил и моментов, действующих на КА, производят динамическую ориентацию КА относительно транспортируемого КО, перемещают транспортируемый КО на орбиту захоронения, осуществляют перемещение КА по спиральной траектории на орбиту следующего транспортируемого КО.

Изобретение относится к ракетным двигательным средствам для орбитальных маневров и/или спуска космических аппаратов (КА) на Землю. Предлагаемое устройство в значительной степени автономно и соединяется с КА перед его запуском. Оно содержит ракетный (в т.ч. гибридный или гелиевый) двигатель и средства регулирования его положения (вектора тяги) относительно КА. Устройство функционально связано с бортовым и/или дистанционным средствами управления. Двигатель включается после приема сигналов на снятие КА (20′) с орбиты (2) и спуска на Землю (1), либо на перемещение КА (20") с орбиты (3) на заданную орбиту (4). Технический результат изобретения состоит в повышении эффективности (в т.ч. надёжности) обеспечения вышеописанных операций КА. 16 з.п. ф-лы, 22 ил.

Изобретение относится к ракетной технике и может быть применено для многоразовых возвращаемых ракетно-космических систем, способных совершать пилотируемый полет в атмосфере. Возвращаемая ступень ракеты-носителя, содержащая фюзеляж, баки окислителя и горючего, крылья и по меньшей мере один жидкостный ракетный двигатель, согласно изобретению к фюзеляжу прикреплены четыре боковых блока, в которых установлены газотурбинные двигатели и баки окислителя, все газотурбинные двигатели имеют сопло с управляемым вектором тяги, основную камеру сгорания и газогенератор, соединенный с основной камерой сгорания, в верхней части боковых блоков выполнены воздухозаборники. Газотурбинный двигатель содержит перед основной камерой сгорания кольцевой коллектор, с которым соединен газовод, а полость кольцевого коллектора сообщается с воздушным трактом отверстиями или патрубками. Кольцевой коллектор выполнен перфорированным и установлен внутри воздушного тракта. Основная камера сгорания и газогенератор содержат по меньшей мере по одному запальному устройству. Газогенератор соединен трубопроводами окислителя и горючего с турбонасосным агрегатом, имеющим насосы горючего, окислителя и турбину. Возвращаемая ступень ракеты-носителя содержит блоки сопел крена, установленные на боковых блоках и соединенные трубопроводами с газоводом одного или нескольких жидкостных ракетных двигателей. Изобретение обеспечивает улучшение стартовых характеристик ракеты-носителя и упрощение системы управления по углам тангажа, рыскания и крена. 7 з.п. ф-лы, 19 ил.

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор, подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру. В установку введен подключенный к управляемому источнику тока электрохимический компрессор водорода, вход которого пневматически соединен с газовой полостью газожидкостного сепаратора, а выход - с баллоном для хранения водорода и штуцером наддува резервуара с водой пневмомагистралями с клапанами, причем на второй из них установлен также редуктор давления, при этом электрохимический компрессор водорода имеет байпасную разгрузочную пневмомагистраль с клапаном, соединяющую выход компрессора с его входом. Изобретение обеспечивает повышение ресурса и надежности импульсной реактивной двигательной установки космического аппарата. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к орбитальной заправке космических аппаратов (КА), например искусственных спутников. Система дозаправки содержит обслуживаемый (14) и обслуживающий (12) КА со средствами транспортировки топлива из баков КА (12) в баки КА (14). Она также содержит клапанный инструмент (30) для соединения и отсоединения заправочного трубопровода (25) с отверстием (23) для горючего и с отверстием (27) для окислителя на соответствующих баках КА (12). Имеется механизм (16) позиционирования инструмента (рука-манипулятор, например, с двумя степенями свободы) с концевым исполнительным элементом (18). С помощью матрицы (26) датчиков определяются смещения между инструментом и отверстиями (23) и (27). Механизм (16) может захватывать, кроме (30), и другие инструменты, которые хранятся в контейнере (20). Система может быть автономной и/или дистанционно управляться оператором, находящимся в космосе или на Земле. Техническим результатом группы изобретений является обеспечение роботизированной (дистанционно контролируемой) дозаправки заранее не подготовленных спутников. 4 н. и 86 з.п. ф-лы, 12 ил.

Изобретение относится к способам приведения в движение тел в различных средах, в т.ч. в космосе. В способе применены базовые устройства (БУ) с внутренними отражающими поверхностями пирамидальной или конической формы. В результате разницы в воздействии виртуальных частиц (фотонов) на внешние и указанные внутренние поверхности БУ ожидается появление движущей силы (благодаря эффекту Казимира). Данные БУ могут объединяться в сборки, располагаемые и ориентируемые в пространстве так, чтобы создавать как поступательное, так и вращательное движения тел. Технический результат изобретения направлен на создание вариантов универсального движителя простой конструкции, основанного на эффекте Казимира. 5 з.п. ф-лы, 9 ил.

Изобретение относится к средствам управления движением космических аппаратов, а именно к электрическим (плазменным) ракетным двигателям для коррекции орбиты искусственного, преимущественно низкоорбитального спутника планеты с атмосферой. Ракетный двигатель небольшой мощности имеет в качестве рабочего тела проволоку из металла высокой плотности. Проволока размещена на внутренней поверхности корпуса спутника, обеспечивая вместе с его оболочкой необходимую жесткость конструкции на этапе выведения спутника. Техническим результатом изобретения является создание искусственного спутника с длительным сроком эксплуатации на орбите и оптимальными массовыми характеристиками. 2 ил.

Группа изобретений относится к двигательным системам транспортных средств, использующим внешние ресурсы космической среды. Система включает в себя компрессоры (6, 8, 10) для засасывания и сжатия атмосферного газа, первый (2) и второй (4) баки-хранилища сжиженного (например, в теплообменнике (12)) газа. Баки (2) и (4) через впускные трубопроводы (14а, 14b) сообщаются с компрессорами. Бак (4) имеет нагреватель (20) для преобразования сжиженного газа в газ высокого давления и сообщается, через регулирующий клапан (24) и трубопровод (22), с баком (2). Из последнего жидкость вытесняется через выпускной трубопровод (36). Получаемое жидкое топливо может применяться как в космических летательных аппаратах, так и в средствах для исследования поверхности планеты с атмосферой. Техническим результатом группы изобретений является расширение возможностей, в т.ч. увеличения длительности осуществления космических исследовательских программ. 3 н. и 26 з.п. ф-лы, 8 ил.

Изобретение относится преимущественно к космическим аппаратам (КА) с малыми космическими модулями (КМ) для оптико-электронного наблюдения Земли. КМ включает в себя призматический силовой корпус блочного типа. На торцевой панели установлена одноразовая (для гашения остаточной угловой скорости КА с КМ) газореактивная двигательная установка. На части боковых панелей, свободной от приборов, установлены тяговые модули со стационарными электроракетными двигателями и блоками газораспределения. Все панели выполнены многослойными сотовыми. Каждый тяговый модуль установлен на кронштейнах, регулируемых относительно центра масс КА с КМ. Техническим результатом изобретения является уменьшение массы топлива на борту КМ за счёт обеспечения возможности применения ракетных двигателей с более высоким удельным импульсом. 5 ил.

Изобретение относится к космической технике. Блок двигателей малой тяги разгонного блока содержит корпус коробчатой формы, два закрепленных на нижнем основании корпуса двигателя стабилизации, двигатель стабилизации, закрепленный на одной из боковых стенок корпуса, и кронштейн. Каждый из двигателей стабилизации включает корпус камеры сгорания и присоединенный к корпусу камеры сгорания клапан управления подачей топлива. Блок двигателей малой тяги снабжен проставками и тепловыми шинами. Каждая из тепловых шин содержит пакет наложенных друг на друга теплопроводящих полос с законцовками. Каждый из двигателей стабилизации закреплен на корпусе через одну из проставок, дно каждой из которых соединено с корпусом камеры сгорания двигателя стабилизации, а наружное опорное кольцо закреплено на корпусе блока. Верхнее основание корпуса на большей части выполнено в виде радиатора терморегулирования. Техническим результатом изобретения является уменьшение теплового воздействия двигателей стабилизации при их работе на топливные баки разгонного блока. 12 з.п. ф-лы, 19 ил.

Изобретение относится к конструкции и компоновке космических аппаратов. Модуль содержит корпус с размещенными внутри блоками служебной аппаратуры, аккумуляторную батарею, антенну радиосвязи (12), радиаторы-охладители (6, 9) и поворотные панели (8) солнечных батарей. Двигательная установка включает в себя четыре блока (4) двигателей ориентации и стабилизации, два сферических топливных бака (3) и шар-баллон (11) со сжатым газом. Имеются средства крепления модуля к полезной нагрузке и последней ступени ракеты-носителя. Корпус, в форме восьмигранной призмы, выполнен из продольных стоек в виде таврошвеллера, верхних (17) и аналогичных нижних поперечных силовых элементов с профилем в форме уголка. На противоположных гранях призмы закреплены основаниями два пирамидальных пилона (5), на которых сверху установлены два из четырёх двигательных блоков (4). Пролеты между стойками перекрыты боковыми панелями (23-27, 35). Техническим результатом изобретения являются: снижение массы и габаритов модуля, повышение его прочности при восприятии радиальных усилий от полезной нагрузки, увеличение запаса топлива на его борту (до 300…400 кг). 16 з.п. ф-лы, 21 ил.
Наверх