Способ количественной оценки начальных нарушений и неоднородности перфузии миокарда по данным однофотонно-эмиссионной компьютерной томографии

Изобретение относится к медицине, клинической кардиологии и может быть использовано для количественной оценки начальных нарушений и неоднородности перфузии миокарда по данным однофотонно-эмиссионной компьютерной томографии (ОФЭКТ). При этом определяют индекс тяжести нарушений перфузии σт и индекс неоднородности перфузии σн, отражающие нарушения перфузии всего миокарда левого желудочка (ЛЖ). Индексы рассчитывают как среднеквадратичные отклонения перфузии в сегментах по формуле:

где n - число сегментов, Р - значение относительной перфузии в сегменте (в %), М[Р] - математическое ожидание для Р и М[Р] для индекса тяжести σт - 100%, а для индекса неоднородности σн - среднее арифметическое значение относительной перфузии во всех сегментах (Рср). При значениях σт<20 и σн не более 6,1 перфузию миокарда считают нормальной. При значениях σт>20 и σн<6,1 или σт>25 и 6,1<σн<10 - судят о неравномерности перфузии с множественными участками снижения перфузии. При значениях σт<25 и 6,1<σн<10 или 20<σт<25 и σн>10 - судят о неравномерности перфузии с единичным участком снижения перфузии. При значениях σт>25 и σн>10 судят о наличии достоверных дефектов перфузии. Способ обеспечивает высокую чувствительность, точность количественной оценки начальных нарушений и неоднородности перфузии миокарда. 5 ил., 2 пр.

 

Изобретение относится к медицине, а именно к клинической кардиологии, и может быть использовано для количественной оценки начальных нарушений и неоднородности перфузии миокарда по данным однофотонно-эмиссионной компьютерной томографии.

Основным методом оценки перфузии миокарда в современной практической кардиологии является однофотонная эмиссионная томография (ОЭКТ). Этот метод прочно зарекомендовал себя для визуализации клеточной перфузии кардиомиоцитов, жизнеспособности и сократимости миокарда левого желудочка (ЛЖ), вне зависимости от наличия клинических проявлений заболеваний, связанных с повреждением миокарда. Метод основан на оценке распределения в миокарде введенного внутривенно радиофармпрепарата (РФП), которое происходит пропорционально коронарному кровотоку. Таким образом, метод предназначен для выявления стабильных и преходящих дефектов перфузии миокарда, которые могут возникать вследствие ишемии различного генеза, очагово-рубцового, воспалительного, дегенеративного повреждения левого желудочка. Основная клиническая задача перфузионной ОЭКТ миокарда - выявление стресс-индуцированной (преходящей) ишемии миокарда ЛЖ. Для решения этой задачи ОЭКТ проводят дважды - в покое и после нагрузочной пробы, после чего сопоставляют результаты обоих исследований. Высокая чувствительность ОЭКТ в выявлении стабильных и преходящих нарушений перфузии миокарда делает этот метод незаменимым для диагностики ишемической болезни сердца (ИБС), принятия решения о реваскуляризации и оценки ее эффективности. Показаны возможности перфузионной ОЭКТ в оценке улучшения перфузии миокарда на фоне гиполипидемической терапии у больных ИБС. Исследование клеточной перфузии миокарда при ОЭКТ дает достоверную прогностическую информацию о коронарных событиях у больных ИБС всех групп риска.

Перфузионная ОЭКТ миокарда изначально является полуколичественным методом, однако в последнее время интенсивно развиваются технологии количественной оценки дефектов перфузии. В ряде работ, в том числе на больших выборках (n=2203) показана возможность стратификации риска на основе подсчета количественных параметров перфузии, отражающих площадь и объем зон поражения миокарда при перфузионной ОЭКТ: SRS, SSS и SDS (Summed Rest, Stress, Difference Score). По результатам этих исследований, при увеличении SSS более 13 баллов у больных ИБС в течение двух лет, риск летального исхода достигает 2.9%, а при наличии инфаркта миокарда (ИМ) - 4.2%.

(Hsu C., Chen Y.W., Hao C.L, Chong J.T, Lee C.I, Tan H.T, Wu M.S, Wu J.C. Comparison of automated 4D-MSPECT and visual analysis for evaluating myocardial perfusion in coronary artery disease / Kaohsiung J Med Sci. 2008 Sep; 24(9):445-52.)

Однако важнейшим параметром по-прежнему остается площадь зоны преходящей ишемии (reversibility extent). Летальность при площади преходящей ишемии ЛЖ>20% пропорционально растет, достигая 6.5% в год. Более того, наличие перифокальной ишемии (вокруг зоны рубца после перенесенного ИМ) связано с более высоким риском кардиальной смерти, чем наличие зон ишемии, не связанных с рубцом.

(Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003; 107(23):2900-7.)

Недостатком способов оценки нарушений перфузии с помощью указанных стандартных параметров количественной оценки перфузии (процентами распространенности и суммами баллов) является их неспособность количественно отразить более тонкие нарушения перфузии, которые, тем не менее, при визуальной оценке в большинстве случаев хорошо заметны. Такие начальные нарушения или неравномерность перфузии обычно описываются как "неоднородность, неравномерность, мозаичность перфузии" или как "возможное наличие мелкоочаговых фиброзных изменений". В таких случаях изменение перфузии миокарда на фоне терапии так же может быть заметным визуально. Однако значения указанных стандартных параметров у этих пациентов оказываются в рамках нормальных значений, что делает невозможным их использование в качестве способа оценки эффекта терапии.

Задачей изобретения является создание эффективного и более чувствительного способа количественной оценки начальных нарушений и неоднородности перфузии миокарда, позволяющего более четко разграничить норму и начальную патологию.

Технический результат изобретения заключается в повышении точности определения нарушений перфузии миокарда.

Это достигается тем, что в заявляемом способе количественной оценки начальных нарушений и неоднородности перфузии миокарда, включающем проведение однофотонно-эмиссионной компьютерной томографии, согласно изобретению, определяют индекс тяжести нарушений перфузии σт и индекс неоднородности перфузии σн, которые рассчитывают как среднеквадратичные отклонения перфузии в сегментах по формуле:

где n - число сегментов, Р - значение относительной перфузии в сегменте (в %), М[Р] - математическое ожидание для Р и М[Р] для индекса тяжести σт - 100%, а для индекса неоднородности σн - среднее арифметическое значение относительной перфузии во всех сегментах (Рср) и при значениях σт<20 и σн не более 6,1 перфузию миокарда считают нормальной; при значениях σт>20 и σн<6,1 или σт>25 и 6,1<σн<10 - судят о неравномерности перфузии с множественными участками снижения перфузии; при значениях σт<25 и 6,1<σн<10 или 20<σт<25 и σн>10 - судят о неравномерности перфузии с единичным участком снижения перфузии; при значениях σт>25 и σн>10 судят о наличии достоверных дефектов перфузии.

Способ осуществляется следующим образом.

Для определения у пациента изменения перфузии миокарда проводят однофотонную эмиссионную томографию (ОЭКТ). Параметры записи и обработки данных проводят по стандартной методике: вводимая активность - 370 МБк, запись изображений сердца - через 60 мин после введения радиофармпрепарата (РФП), угол между детекторами ОЭК-томографа - 90°, фотопик - 140.5 КэВ, ширина окна дискриминатора - 20%, угол вращения детекторов - 180°, число проекций - 32 (16×2), матрица - 64×64 пикселов, увеличение - ×1.46, разрешение - 6.3 мм, время записи одной проекции - 30 секунд, число импульсов на одну проекцию - не менее 70 тыс. Параметры низкодозовой КТ для коррекции поглощения излучения: напряжение на трубке - 120 кВ, сила тока - 5 мА, время оборота трубки - 60 сек, разрешение - 2 мм. Реконструкцию проекций с получением томографических срезов проводят с помощью программы AutoSPECT и итеративного алгоритма Philips Astonish (число итераций - 3, субнаборов - 8, сглаживание отключено), количественную оценку перфузии - в пакете Cedar-Sinai AutoQUANT QPS/QGS v.7.2. В результате получают полярные карты перфузии ЛЖ (с коррекцией поглощения - АС и без коррекции - nАС).

Предлагаемые два новых параметра - индекс тяжести нарушений перфузии (σт) и индекс неоднородности перфузии (σн), рассчитывают как среднеквадратичные отклонения перфузии в сегментах относительно их математического ожидания (оно различно для σт и σн):

где n - число сегментов, Р - значение относительной перфузии в сегменте (в %), М[Р] - математическое ожидание для Р. М[Р] для индекса тяжести σт - 100%, для индекса неоднородности σн - среднее арифметическое значение относительной перфузии во всех сегментах (Рср).

Для индекса тяжести σт в качестве М[Р] используют значение 100%, то есть σт будет увеличиваться пропорционально общей тяжести нарушений перфузии, а при идеально равномерной перфузии (100% во всех сегментах) σт=0. Для индекса неоднородности σн в качестве М[Р] используют среднее арифметическое значение относительной перфузии во всех сегментах (Рср), то есть σн будет увеличиваться при большом разбросе относительной перфузии в сегментах, т.е. при наличии единичных, но глубоких нарушений перфузии (которые скорее соответствуют ПИКС), а уменьшаться не только в норме, но и при ситуациях, которые принято описывать как "неоднородность перфузии", т.е. при наличии множества мелких участков гипоперфузии.

При значениях σт<20 и σн не более 6,1 перфузию миокарда считают нормальной; при значениях σт>20 и σн<6,1 или σт>25 и 6,1<σн<10 - судят о неравномерности перфузии с множественными участками снижения перфузии; при значениях σт<25 и 6,1<σн<10 или 20<σт<25 и σн>10 - судят о неравномерности перфузии с единичным участком снижения перфузии; при значениях σт>25 и σн>10 судят о наличии достоверных дефектов перфузии.

Примеры осуществления способа представлены подробным описанием и сопутствующими чертежами.

Фиг. 1 - пример полярной карты перфузии ЛЖ. Числа (Р) отражают относительную перфузию (в %) в данном сегменте, где: А - карта без коррекции поглощения (nAC); Б - карта с коррекцией поглощения (АС); В - карта перфузии, составленная из максимальных значений относительной перфузии (Р) в соответствующих сегментах обоих исходных изображений (эти значения обведены на изображениях А и Б). Зачеркнутые сегменты исключены из анализа.

Фиг. 2 - значения новых параметров σт и σн в исследуемых группах.

Фиг. 3 - значения стандартных параметров Rest Extent и SRS в исследуемых группах.

Фиг. 4 - примеры σт и σн в исследуемых группах, где: А - идеальная (теоретическая) картина распределения РФП; Б - норма (группа 1); В - единичная неравномерность (группа 2); Г - мозаичное распределение РФП (группа 3); Д - достоверный дефект перфузии (группа 4).

Фиг. 5 - снижение перфузии в процентах.

В ретроспективное исследование, посвященное определению диагностических возможностей индекса тяжести нарушений перфузии σт и индекса неоднородности перфузии σн, было включено 80 пациентов, которым была выполнена перфузионная ОЭКТ миокарда с 99mTc-МИБИ по протоколу покой/нагрузка, с КТ-коррекцией поглощения излучения.

Отбирались пациенты, у которых на момент проведения ОЭКТ миокарда не было симптомов ИБС, результаты нагрузочной ЭКГ-пробы были отрицательными, по данным ОЭКТ не было выявлено признаков крупноочагово-рубцовых повреждений миокарда и/или преходящей ишемии миокарда. Для количественного анализа использовались только томосцинтиграммы в покое. Параметры записи и обработки данных у всех пациентов были идентичны: вводимая активность - 370 МБк, запись изображений сердца - через 60 мин после введения РФП, угол между детекторами ОЭК-томографа - 90°, фотопик - 140.5 КэВ, ширина окна дискриминатора - 20%, угол вращения детекторов - 180°, число проекций - 32 (16×2), матрица - 64×64 пикселов, увеличение - ×1.46, разрешение - 6.3 мм, время записи одной проекции - 30 секунд, число импульсов на одну проекцию - не менее 70 тыс. Параметры низкодозовой КТ для коррекции поглощения излучения: напряжение на трубке - 120 кВ, сила тока - 5 мА, время оборота трубки - 60 сек, разрешение - 2 мм. Реконструкцию проекций с получением томографических срезов проводили с помощью программы AutoSPECT и итеративного алгоритма Philips Astonish (число итераций - 3, субнаборов - 8, сглаживание отключено), количественную оценку перфузии - в пакете Cedar-Sinai AutoQUANT QPS/QGS v.7.2. В результате получали полярные карты перфузии ЛЖ (с коррекцией поглощения - АС и без коррекции - nАС).

Пациенты, включенные в исследование, были разделены на 4 группы, сформированные согласно визуальной картине перфузии миокарда. Группу 1 составили 20 здоровых добровольцев - лиц с низким риском ИБС и визуально нормальной перфузией миокарда. У 40 пациентов распределение РФП было визуально неравномерным, из них группу 2 составили 20 пациентов с единичной зоной начальной гипоперфузии, группу 3 - 20 пациентов с несколькими такими зонами. Группу 4 составили 20 пациентов с мелкоочаговыми нарушениями перфузии, которые визуально трактовались как достоверные.

Количественная оценка нарушений перфузии проводилась после картирования ЛЖ на 17 стандартных сегментов и включала расчет как стандартных, так и разработанных новых параметров. Стандартные параметры вычислялись автоматически средствами программы QPS и включали:

- значения относительной перфузии в каждом сегменте, в % от пиксела с максимальной интенсивностью сигнала (принятого за 100%) (Фиг. 1). Эти значения относительной перфузии в каждом сегменте градуировались по балльной шкале: от 0 (нормальная перфузия) до 4 (отсутствие перфузии), соответственно разработанным производителем и встроенным в QPS нормализованным картам ("базам нормы"). Сумма полученных баллов по всем 17 сегментам для исследования в покое - это SRS (Summed Rest Score);

- распространенность дефектов перфузии в покое (Rest Extent) в % от площади ЛЖ. Зона снижения перфузии трактуется как дефект, если это снижение превышает 2.5 среднеквадратичных отклонения от нормы.

Проводили ОЭКТ миокарда с КТ-коррекцией, при этом получали два набора перфузионных томосцинтиграмм - с коррекцией (АС) и без нее (пАС). Известно, что эти два набора в большинстве случаев имеют заметные визуальные и количественные различия. Так, для нескорректированных томосцинтиграмм характерны ложные дефекты перфузии по нижней стенке, для скорректированных - по верхушечным сегментам, поэтому при визуальном анализе изображений всегда оцениваются оба набора. Для формализации этого подхода, в качестве Ρ для каждого сегмента использовали максимальное из двух чисел (на АС и nAC-изображениях) в этом сегменте (Фиг. 1).

При этом значения SRS и Rest Extent использовали только из АС-изображений. Теоретическим обоснованием такого решения могут служить данные о том, что эти значения на nAC-изображениях занижены, в связи с тем, что при их расчете используются недостаточно точные базы нормы, не учитывающие поглощение излучения.

Предлагаемые два новых параметра - индекс тяжести нарушений перфузии (σт) и индекс неоднородности перфузии (σн), рассчитывались как среднеквадратичные отклонения перфузии в сегментах относительно их математического ожидания (оно различно для σт и σн):

где n - число сегментов, Р - значение относительной перфузии в сегменте (в %), М[Р] - математическое ожидание для Р. М[Р] для индекса тяжести σт - 100%, для индекса неоднородности σн - среднее арифметическое значение относительной перфузии во всех сегментах (Рср).

Стандартная обработка проводится при картировании полярной карты на 17 сегментов (n=17), однако, в данном исследовании были исключены из статистического обсчета базальные сегменты перегородочной стенки - сегменты 2 и 3 (см. Фиг. 1). Это связано с тем, что ЛЖ не имеет идеально сферической формы, и при автоматическом его обведении в большинстве случаев в указанных сегментах находится не только миокард, но часть хуже перфузируемого фиброзного кольца. В результате в этих сегментах программа часто указывает заниженные значения Р, что имитирует рубцовое повреждение и искажает статистические расчеты (Фиг. 1). Таким образом, для изображения 1В с учетом двух исключенных сегментов (n=15), σт и σн вычислялись следующим образом:

Распределения исследуемых значений были нормальными по критерию Шапиро-Уилка во всех сравниваемых группах, поэтому данные анализировались параметрическими методами: средние представлены в виде "среднее арифметическое±стандартное отклонение", при сравнении средних независимых групп использовали непарный t-критерий, различия в группах считались достоверными при р<0.05.

Результаты исследования приведены на Фиг. 2 и 3.

Как видно на Фиг. 2, новые параметры σт и σн достоверно различались во всех парах из исследуемых четырех групп, кроме пары 2-3 для σт и пары 1-3 для σн. Это означает, что σт позволяет разграничивать группы нормы, неравномерности и достоверных нарушений перфузии. При этом от достоверно не отличается в двух группах с различным типом неравномерности перфузии, однако в этих же группах достоверно различается показатель σн. В то же время, как следует из значений, показанных на Фиг. 3, Rest Extent и SRS достоверно различаются только между группой нормы и достоверных нарушений, не позволяя количественно разграничить группы нормы и неравномерной перфузии. Нужно отметить, что ни в одном случае из групп 2 и 3 SRS не превышал пороговое значение в 6 единиц, то есть при визуальной неоднородности перфузии, согласно параметру SRS, она должна быть трактована как нормальная, что с клинической точки зрения неверно.

На Фиг. 4 приведены наиболее типичные примеры распределения РФП в ЛЖ, которые послужили критерием отбора пациентов в ту или иную группу. Видно, что σт отражает общую тяжесть нарушений перфузии, a σн - неравномерность, "разброс" относительной перфузии по сегментам. В идеальном случае (абсолютно равномерной перфузии) σт и σн будут равны 0 Фиг. 4А). В норме, однако, существует небольшая неравномерность перфузии (Фиг. 4Б), не превышающая определенного порога (вероятно, не более 20% для σт и 6% для σн). Распределение РФП, которое трактуется как "неравномерное" и которое обычно трактуется либо как вариант нормы, либо как наличие начальных, недостоверных нарушений перфузии, включает в себя два наиболее общих варианта. В первом варианте (группа 3) отмечаются единичные локализованные зоны несколько сниженной перфузии (Фиг. 4 В), которые характеризуются более высоким значением σн. Второй вариант (группа 4) называют "мозаичным" (Фиг. 4Г), со значением σн, близким к норме, но более высоким значением σт. При достоверных же дефектах перфузии (Фиг. 4Д), σт и σн будут значительно повышены, но для подобных и более тяжелых дефектов уже пригодны стандартные параметры.

Пример 1

Пациент с начальными проявлениями ишемической болезни сердца и невыраженными дефектами перфузии миокарда ЛЖ верхушечной и перегородочной локализации. Рассчитали значения σт и σн, согласно предложенному способу.

Параметры σт и σн вычисляли следующим образом:

Значения σт=26, σн=9,3 - соответствуют наличию множественных дефектов (в данном случае - верхушечной и перегородочной локализации).

Пример 2

Пациент с низким риском ИБС и нормальной перфузией миокарда. Рассчитали значения σт и σн согласно предложенному способу.

Значения σт=17.1, σн=6,1 соответствуют нормальной перфузии миокарда.

Таким образом, использование параметров σт и σн при оценке перфузии миокарда имеет следующие преимущества:

1) они позволяют естественным образом описывать значения относительной перфузии в процентах - базового параметра, лежащего в самой основе полуколичественной оценки перфузионных сцинтиграмм;

2) являются непрерывными числами, что позволяет применять к ним сравнительные тесты, в то время как суммы баллов (SRS, SSS и SDS) - это порядковые числа, к которым применение сравнительных тестов, строго говоря, некорректно;

3) эти параметры, в отличие от стандартных, можно применить к любой комбинации сегментов, что может быть полезным для расчетов по стенкам ЛЖ или бассейнам определенных КА;

4. эти параметры являются более чувствительными, они позволяют количественно охарактеризовать изменения перфузии, которым ранее можно было дать лишь визуальное описание.

Способ количественной оценки начальных нарушений и неоднородности перфузии миокарда, включающий проведение однофотонно-эмиссионной компьютерной томографии, отличающийся тем, что определяют индекс тяжести нарушений перфузии σт и индекс неоднородности перфузии σн, отражающие нарушения перфузии всего миокарда левого желудочка (ЛЖ), при этом указанные индексы рассчитывают как среднеквадратичные отклонения перфузии в сегментах по формуле:

где n - число сегментов, Р - значение относительной перфузии в сегменте (в %), М[Р] - математическое ожидание для Р и М[Р] для индекса тяжести σт - 100%, а для индекса неоднородности σн - среднее арифметическое значение относительной перфузии во всех сегментах (Рср) и при значениях σт<20 и σн не более 6,1 перфузию миокарда считают нормальной; при значениях σт>20 и σн<6,1 или σт>25 и 6,1<σн<10 - судят о неравномерности перфузии с множественными участками снижения перфузии; при значениях σт<25 и 6,1<σн<10 или 20<σт<25 и σн>10 - судят о неравномерности перфузии с единичным участком снижения перфузии; при значениях σт>25 и σн>10 судят о наличии достоверных дефектов перфузии.



 

Похожие патенты:

Изобретение относится к медицине, лучевой диагностике и может применяться в рамках персонализации в планировании хирургического приема у больных с периферическими объемными образованиями легких (ООЛ).

Изобретение относится к медицине, ортопедии, травматологии и может использоваться для оценки эффективности лечения больных с повреждением тазового кольца. Выполняют компьютерную томографию и на изображении среза первоначально в горизонтальной плоскости измеряют длины отрезков на трех уровнях: уровне верхушек крыльев подвздошных костей (ВКПК), центров головок бедренных костей (ЦГБК) и уровне симфиза (УС).

Изобретения относятся к медицинской технике, а именно к средствам для формирования изображений. Устройство для формирования изображений объекта, обеспечивающее осуществление способа формирования изображений, содержит представляющий изображение блок для предоставления первого изображения объекта и второго изображения объекта, причем первое изображение имеет более низкий уровень шума, чем второе изображение, предоставляющий окно дисплея блок для предоставления окна дисплея, причем окно дисплея отражает диапазон значений изображения, представляемого на дисплее, и объединяющий блок для формирования объединенного изображения посредством объединения первого изображения и второго изображения в зависимости от ширины окна предоставляемого окна дисплея.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования вероятности риска развития недостаточности анастомозов в послеоперационном периоде у больных раком пищевода.
Изобретение относится к медицине, неврологии и лучевой диагностике и может быть использовано для прогнозирования исхода ишемического инсульта головного мозга. При нарушении сознания на 3-и сутки от начала заболевания по шкале комы Глазго 8 баллов и менее осуществляют КТ-перфузию с количественным определением кровотока в стволе головного мозга на уровне большого затылочного отверстия и цветовое дуплексное сканирование интракраниальных отделов позвоночных артерий.

Группа изобретений относится к медицинской технике, а именно к системам визуализации. Система визуализации содержит поворотный гантри кольцевой формы и стационарный гантри, при этом стационарный гантри включает в себя основание гантри, наклонную раму кольцевой формы и систему наклона, при этом система наклона содержит одно упругое звено, имеющее первый конец, прикрепленный к основанию гантри, и второй противоположный конец, прикрепленный к наклонной раме, при этом одно упругое звено включает в себя два упругих звена, расположенных под углом друг к другу.

Группа изобретений относится к медицинской технике, а именно к средствам детектирования излучения. Устройство детектирования содержит источник излучения генерации конического пучка излучения для прохождения через область, представляющую интерес, в зоне обследования, детектор с однородной поверхностью детектирования для генерации значений детектирования, указывающих пучок излучения после прохождения области, представляющей интерес, блок перемещения источника излучения и области, представляющей интерес, относительно друг друга по спиральной траектории вокруг оси (R) вращения, фильтр пучка излучения для генерации первой и второй областей пучка излучения, имеющих разные энергетические спектры.

Изобретение относится к медицине, а именно к акушерству и гинекологии, сосудистой хирургии. Выполняют ангиографию с помощью рентгеноконтраста урографина или ультрависта во время эмболизации маточных артерий, со скоростью введения контраста 1 мл/с, объемом 4-6 мл и одновременной покадровой съемкой со скоростью 2-4 кадра в секунду.

Изобретения относятся к медицинской технике, а именно к формированию изображения с помощью множества модулей. Многомодульная система формирования изображения содержит гентри, включающий в себя первый и второй модули формирования изображения, соответственно имеющие первый и второй туннели, и опору для субъекта, при этом гентри выполнен с возможностью попеременно перемещаться в первое и второе положение и при этом первый и второй модули выполнены с возможностью сканирования головы субъекта.

Группа изобретений относится к компьютерной томографии с контрастным усилением. Способ формирования изображения содержит этапы, на которых контролируют цикл движения субъекта, определяют местоположение изучаемой ткани с учетом цикла движения, при этом изучаемая ткань движется согласованно с циклом движения, позиционируют субъект в зоне для исследования так, чтобы весь изучаемый объем изучаемой ткани оставался в зоне для исследования во время сканирования, причем позиционирование включает сканирование с низкой дозой или предварительное сканирование, которое локализует положения всего изучаемого объема за цикл движения, и создают изображение изучаемой ткани субъекта.

Изобретение относится к медицине, а именно к лучевой диагностике, и может быть использовано для определения вероятности развития остеопоротических переломов позвонков у женщин постменопаузального периода. Оценивают минеральную плотность трабекулярной и кортикальной кости II-IV поясничных позвонков. Определяют индексы билатеральной асимметрии минеральной плотности трабекулярной и кортикальной кости. Вероятный риск перелома (P) рассчитывают по формуле. При значении Р больше 0,5 определяют высокий риск переломов. При Р от 0,5 до 0,371 - риск переломов определяют как средний. Если Р менее 0,371 - риск переломов низкий. Способ позволяет точно и информативно провести прогнозирование вероятности развития остеопоротических переломов позвонков у женщин в постменопаузальном периоде за счет комплексного исследования минеральной плотности трабекулярной, кортикальной кости и индексов билатеральной асимметрии минеральной плотности поясничных позвонков. 3 пр.

Группа изобретений относится к медицинской технике, а именно к средствам электромагнитной томографии. Способ электромагнитной томографии частей тела живого человека с использованием носимого сканера в корпусе содержит установку носимого и переносного сканера таким образом, чтобы сканер облегал часть тела живого человека во время перемещения человека из одного места в другое, причем носимый и переносной сканер имеет полую конструкцию, стенки которой содержат множество «окошек» для электромагнитного излучения, определение информации о положении носимого корпуса сканера по отношению к внешней системе координат, создание электромагнитного поля, внешнего по отношению к носимому сканеру, которое проходит в носимый корпус сканера и выходит из него через окошки для электромагнитного излучения, независимо открывание или закрывание окошек для электромагнитного излучения для контроля, проходит ли через них электромагнитное излучение, при этом этап независимого открытия или закрытия «окошек» для электромагнитного излучения осуществляется с помощью соответствующего микрошлюза, которым оборудовано каждое «окошко», измерение электромагнитного поля после того, как оно было рассеяно/изменилось в результате влияния части тела живого человека, и создание электромагнитного томографического изображения на основании созданного и измеренного электромагнитного поля с использованием информации об установленном положении и включении информации о положении каждого из множества окошек для электромагнитного излучения. Второй вариант способа электромагнитной томографии содержит установку на живом челевеке носимого сканера, стенки которого содержат множество «окошек» для электромагнитного излучения, определение информации о положении носимого корпуса сканера по отношению к внешней раме, независимо открывание или закрывание окошек для электромагнитного излучения с помощью соответствующего микрошлюза, которым оборудовано каждое «окошко», для контроля, проходит ли через них электромагнитное излучение, создание электромагнитного поля, внешнего по отношению к носимому сканеру, которое проходит в носимый корпус сканера и выходит из него через одно или более окошек для электромагнитного излучения, измерение электромагнитного поля после того, как оно было рассеяно/изменилось в результате влияния части тела живого человека, и создание электромагнитного томографического изображения на основании созданного и измеренного электромагнитного поля с использованием информации об установленном положении и включении информации о положении каждого из множества окошек для электромагнитного излучения. Использование изобретений позволяет расширить ассортимент средств для электромагнитной томографии. 2 н. и 28 з.п. ф-лы, 14 ил.

Группа изобретений относится к медицинской технике, а именно к системам компьютерной визуализации перфузии. Система содержит компьютерный томографический сканер, пульт, который управляет сканером на основании протокола сканирования, средство оценки данных, которое определяет, указывает ли уровень контраста в данных изображения, по существу, отсутствие контраста, накопление контраста или вымывание контраста, и пульт управляет сканером. Способ визуализации перфузии заключается в получении данных с первой частотой дискретизации до определения накопления контраста и получение данных со второй частотой дискретизации, которая больше, чем первая частота дискретизации, во время накопления контраста. Использование изобретений позволяет снизить накопление дозы облучения. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к медицине, лучевой диагностике с использованием однофотонной эмиссионной компьютерной томографии (ОФЭКТ). Определяют реабилитационный потенциал (РП) у пациента с нарушением уровня сознания, для чего проводят оценку состояния мозгового кровотока - перфузии головного мозга: вначале осуществляют внутривенное введение 99mТс-гексаметилпропиленаминоксима (99mTc-ГМПАО) в дозе 4,5-5 МБк на кг массы тела пациента, определяют методом ОФЭКТ корковую перфузию в передних, средних, задних отделах лобных долей, теменных, височных, затылочных долях обоих полушарий головного мозга и в каждом из полушарий мозжечка. Затем рассчитывают ОКП для каждой из указанных зон головного мозга, используя в качестве референтной зоны полушарие мозжечка с той же стороны, что и исследуемая зона головного мозга, и осуществляют визуальную, аудиальную, сенсорную и когнитивную нагрузку и/или фармакологическую нагрузку, в качестве которой внутривенно вводят любое лекарственное вещество, влияющее на изменение мозгового кровотока и/или мозговой активности. На фоне проводимой нагрузки внутривенно вводят дозу упомянутого РФП из расчета 9-10 МБк/кг массы тела пациента и повторно осуществляют ОФЭКТ, определяя корковую перфузию. Снова рассчитывают ОКП для каждой из исследуемых зон головного мозга и сопоставляют полученные значения регионарной перфузии в каждой из этих зон в состоянии покоя и на фоне нагрузки. При увеличении ОКП зоны мозга более чем на 10% делают заключение о наличии функциональных резервов этой зоны и высоком РП, при отсутствии увеличения ОКП зоны или увеличении ее менее чем на 10%, делают вывод о сниженном РП. Способ обеспечивает определение сохранности различных зон коры головного мозга, четкую верификацию диагноза для правильного подбора лечебных и реабилитационных мероприятий. 2 ил.

Изобретение относится к формированию медицинских изображений. Техническим результатом является повышение точности реконструкции изображений. Способ содержит этапы, на которых: собирают данные проекций объекта; задают поле обзора с воксельной сеткой в трансаксиальном направлении; определяют максимальные трансаксиальные размеры объекта; формируют расширенное поле обзора посредством продолжения воксельной сетки поля обзора на одну расширенную область снаружи поля обзора; и итерационно реконструируют собранные данные проекций; определение максимальных трансаксиальных размеров объекта содержит этапы, на которых: задают воксельную сетку с крупным шагом в поле обзора, которое заведомо больше, чем трансаксиальные предельные размеры объекта; реконструируют большое поле обзора с получением представляемого изображения с крупным шагом, представляемое изображение с крупным шагом имеет разрешение ниже, чем реконструированное представляемое изображение; и определяют трансаксиальные предельные размеры объекта по представляемому изображению с крупным шагом. 3 н. и 9 з.п. ф-лы, 10 ил.

Изобретение относится к области медицины, а именно к области челюстно-лицевой хирургии и ортодонтии. Для моделирования костно-реконструктивных операций при лечении новообразований челюстных костей в детском возрасте выполняют КТ исследование черепа с последующей реконструкцией в 3D программах и создают объемную модель черепа, выявляют новообразование, рассчитывают основные параметрические данные новообразования и виртуально его удаляют на полученной модели, затем виртуально восполняют дефект или изъян, после чего прототипируют реконструктивные модели челюстей или эндопротез с помощью 3D принтера. До виртуального удаления новообразования проводят 3D цефалометрию, на полученной 3D модели черепа вручную расставляют цефалометрические ориентиры под максимальным увеличением разрешения экрана, используя одновременно различные проекции, perspective, right, left, top, front и варьируя прозрачность изображения от 0 до 100%, определяют 48 цефалометрических параметров, с учетом которых проводят виртуальное восполнение дефекта или изъяна с последующей виртуальной корректировкой челюстных костей при проведении этапного ортодонтическо-хирургического лечения. Способ позволяет моделировать и прогнозировать этапное хирургическо-ортодонтическое и ортопедическое лечение у ребенка до завершения его роста, а также снизить вероятность проведения незапланированных этапных операций. 21 ил., 4 табл., 1 пр.

Группа изобретений относится медицинской технике, в частности к способам и устройствам визуализации на основе рентгеновской стереоскопии, и может быть использовано в кардиохирургии для объемной визуализации внутренних камер сердца, сосудов, хирургического эндокардиального инструмента и карт электрической активности миокарда при лечении аритмий сердца методом катетерной аблации. Способ визуализации заключается в том, что совмещают с заданными весовыми коэффициентами и визуализируют с помощью стереомониторной системы стереопары рентгеновских изображений области обследования, которые получают при просвечивании области обследования с двух направлений, соответствующих углам стереоскопического зрения, со стереопарами изображений, которые получают путем рендеринга 3D-объектов, принадлежащих той же области обследования для направлений, соответствующих углам просвечивания рентгеновскими лучами. При этом 3D-объекты получают непосредственно в процессе обследования и выполнения кардиохирургической операции в виде трехмерных поверхностей, соответствующих внутренним поверхностям камер сердца и сосудов, принадлежащих области обследования, для чего в камеры сердца и сосуды вводят хирургические инструменты, представляющие собой эндокардиальные электроды, проводят манипуляцию электродами внутри камер сердца и сосудов и одновременно получают стереопары рентгеновских изображений области обследования, на которых присутствуют теневые отметки позиций электродов, по которым вычисляют и запоминают трехмерные координаты множества позиций электродов в различных положениях. По запомненному множеству позиций создают трехмерную поверхность исследуемого органа, на которой визуализируют параметры электрограмм, для этого каждой запомненной позиции сопоставляют электрограмму, зарегистрированную электродом в соответствующей позиции. Устройство визуализации содержит рентгеновский блок, позволяющий создавать стереопары рентгеновских изображений области обследования, блок рендеринга 3D-объектов, блок совмещения рентгеновских стереопар со стереопарами блока рендеринга 3D-объектов, создающий в виде взвешенной суммы два совмещенных изображения для передачи и визуализации с помощью стереомониторного устройства. Дополнительно установлены блок синтеза 3D-объектов в виде трехмерных поверхностей органов, блок определения трехмерных координат эндокардиальных электродов и блок регистрации электрограмм, соединенный с эндокардиальными электродами, размещаемыми во внутреннем пространстве органов, принадлежащих области обследования. Использование изобретений позволяет повысить точность и сократить время на выполнение манипуляций при наведении хирургического инструмента на мишень для абляции в условиях, когда нет возможности прямого визуального наблюдения как инструмента, так и области аритмии в миокарде. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, радиологии и может использоваться для диагностики и хирургического лечения функциональных расстройств и новообразований головного мозга. Фиксируют на черепе маркеры посредством конструкции, состоящей из локализатора с маркерами и прикрепленного к нему лотка с оттиском зубов, закрепляемой на верхней челюсти пациента при проведении томографического исследования. Получают мультимодальные томографические изображения. При этом в качестве маркеров используют мономодальные маркеры с индивидуальной для каждой модальности геометрией расположения маркеров на локализаторе. Маркеры каждой модальности крепят на соответствующий локализатор и проводят исследование на томографах соответствующей маркерам модальности, получая серии изображений головного мозга с маркерами. Последовательно определяют координаты маркеров локализатора соответствующей модальности и строят координатную систему (СК) локализатора первой модальности во внутренней СК томографа первой модальности и далее - каждого локализатора в СК томографа каждой из следующих модальностей. Затем поочередно фиксируют локализаторы используемых модальностей на измерительном устройстве, определяя координаты маркеров локализаторов в СК измерительного устройства. Строят СК локализаторов в СК измерительного устройства. Совмещают томографические изображения, определяя координаты выбранной точки изображения внутримозгового пространства пациента, полученного с помощью томографа первой модальности, вначале в СК локализатора первой модальности с последующим преобразованием координат этой точки из СК локализатора первой модальности в СК измерительного устройства, а затем - в СК локализатора следующей модальности и далее - в СК томографа соответствующей модальности. Способ обеспечивает повышение точности совмещения томографических изображений, полученных более чем в двух модальностях, за счет универсальности СК измерительного устройства, позволяющей проводить преобразование координат точек для неограниченного количества локализаторов с индивидуальными СК и мономодальными маркерами, оптимально подобранными для каждого томографического метода – для наилучшей контрастности изображения, при атравматичности, неинвазивности фиксации маркеров. 6 ил., 1 пр.

Изобретение относится к медицине, кардиологии, лучевой диагностике и может быть использовано для диагностики висцерального ожирения. Выполняют компьютерную томографию при симметричном относительно средней линии тела горизонтальном положении пациента с получением компьютерно-томографических изображений двух поперечных срезов туловища толщиной 7 мм на уровне между II и III поясничными позвонками и между IV и V поясничными позвонками (уровни LII-III и LIV-V). Определяют на каждом срезе площади висцеральной жировой ткани при выделении области брюшной полости по брюшной фасции, а по задней поверхности – исключая мышцы спины. Далее рассчитывают сумму площадей висцеральной жировой ткани на уровне LII-III и LIV-V. При значениях показателя суммы площадей висцеральной жировой ткани на двух уровнях 223 см2 и выше диагностируют висцеральное ожирение. Способ обеспечивает высокую точность, доступность, простоту и быстроту диагностики висцерального ожирения. 1 ил., 2 пр., 4 табл.

Изобретение относится к медицине, радионуклидной диагностике, может найти применение в кардиологии и кардиохирургии. Проводят топическую диагностику воспаления в сердце путем выполнения однофотонной эмиссионной компьютерной томографии (ОФЭКТ) через 18-20 ч после внутривенного введения радиофармпрепарата. Причем перед томографией на тело пациента в 3 межреберье слева по срединно-ключичной линии наносят поверхностную радиоизотопную метку. Затем на нее наклеивают в качестве рентгеноконтрастной метки одноразовый ЭКГ-электрод. Запись ОФЭКТ осуществляют одновременно в 27 проекциях, время сканирования составляет от 400 до 600 сек в зависимости от веса тела пациента. По окончании ОФЭКТ, не меняя положения тела пациента и высоты томографического стола, выполняют рентгеновскую компьютерную томографию грудной клетки высокого разрешения, с толщиной среза 1,25 мм на гибридном ОЭКТ/КТ томографе. Далее по меткам выполняют совмещение сцинтиграфических и рентгеновских томографических изображений путем точного наложения друг на друга радиоизотопной и рентгеноконтрастной меток во фронтальных, сагиттальных и поперечных срезах, определяя наличие и местоположение воспалительного очага в сердце. Способ обеспечивает высокую чувствительность и точность определения наличия и местонахождения воспалительных очагов в сердце, с исключением погрешностей при наложении изображений при визуализации всех камер сердца, сокращение времени исследования, уменьшение лучевой нагрузки на пациента. 3 ил., 2 пр.
Наверх