Способ идентификации диэтиламина и изопропилового спирта в газовых смесях

Изобретение относится к аналитической химии органических соединений и может быть использовано для идентификации диэтиламина и изопропилового спирта в газовых смесях. Способ идентификации диэтиламина и изопропилового спирта в газовых смесях характеризуется тем, что в качестве тест-устройств для идентификации диэтиламина и изопропилового спирта используют массив из четырех пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов пчелиного воска (ПчВ), полиэтиленгликоль себацината (ПЭГС), полиэтиленгликоль фталата (ПЭГФ) и апиезона L (ApL) так, чтобы масса каждой пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин составила 15-20 мкг, которые затем помещают в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8» и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала. Затем в стеклянный пробоотборник объемом 50 см3 помещают 5,0 г анализируемого мелкоизмельченного образца, например, блочного пластикового изделия или изделия с тонкопленочным покрытием с площадью поверхности 100 см2, плотно закрывают пробоотборник полиуретановой пробкой, выдерживают при температуре 20±1°С в течение 15 мин для получения равновесной газовой фазы. Далее содержание диэтиламина и изопропилового спирта определяют по сигналам сенсоров, для чего в случае блочного пластикового изделия или изделия с тонкопленочным покрытием из пробоотборника отбирают шприцем через полиуретановую пробку 5 см3 равновесной газовой фазы или такой же объем в случае другой газовой смеси и инжектируют ее в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8», с помощью программного обеспечения, в котором заложена программа фиксирования максимальных сигналов всех сенсоров, фиксируют изменение частоты колебаний каждого пьезосенсора ΔF, Гц, в течение 60 с и рассчитывают отношение откликов сенсоров - параметры и . Делают вывод о присутствии диэтиламина в смеси, если параметр А1 составляет 0,13±0,03, и если в газовой смеси присутствует изопропиловый спирт, то параметр А2 составляет 2,0±0,4. Техническим результатом является разработка способа идентификации диэтиламина и изопропилового спирта в различных газовых смесях, позволяющего идентифицировать их без многостадийной подготовки пробы, обеспечивать высокую чувствительность, точность и экспрессность.

 

Изобретение относится к аналитической химии органических соединений и может быть использовано для идентификации диэтиламина и изопропилового спирта в газовых смесях.

Технической задачей изобретения является разработка способа идентификации диэтиламина и изопропилового спирта в различных газовых смесях, позволяющего идентифицировать их без многостадийной подготовки пробы, обеспечивать высокую чувствительность, точность и экспрессность.

Для решения технической задачи изобретения предложен способ идентификации диэтиламина и изопропилового спирта в газовых смесях, характеризующийся тем, что в качестве детектирующего устройства используют массив из четырех пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов тонких пленок пчелиного воска (ПчВ), полиэтиленгликоль себацината (ПЭГС), полиэтиленгликоль фталата (ПЭГФ) и апиезона L (ApL) так, чтобы масса каждой пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин составила 15-20 мкг, которые затем помещают в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8» и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала, затем в стеклянный пробоотборник объемом 50 см3 помещают 5,0 г анализируемого мелкоизмельченного образца, например, блочного пластикового изделия или изделия с тонкопленочным покрытием с площадью поверхности 100 см2, плотно закрывают пробоотборник полиуретановой пробкой, выдерживают при температуре 20±1°С в течение 15 мин для получения равновесной газовой фазы, содержание диэтиламина и изопропилового спирта определяют по сигналам сенсоров, для чего в случае блочного пластикового изделия или изделия с тонкопленочным покрытием из пробоотборника отбирают шприцем через полиуретановую пробку 5 см3 равновесной газовой фазы или такой же объем другой анализируемой газовой смеси и инжектируют ее в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8», с помощью программного обеспечения, в котором заложена программа фиксирования максимальных сигналов всех сенсоров, фиксируют изменение частоты колебаний каждого пьезосенсора ΔF, Гц, в течение 60 с и рассчитывают параметры А1 и А2, для чего определяют отношение откликов сенсоров: и , где ΔF(ПчВ), ΔF(ПЭГС), ΔF(ПЭГФ) и ΔF(ApL) - сигналы сенсоров с покрытиями из ПчВ, ПЭГС, ПЭГФ и ApL соответственно, делают вывод о присутствии диэтиламина в смеси, если параметр А1 составляет 0,13±0,03, и если в газовой смеси присутствует изопропиловый спирт, то параметр А2 составляет 2,0±0,4.

Технический результат изобретения заключается в экспрессности, точности, упрощении стадии подготовки пробы, упрощении аппаратного оснащения и снижении затрат на анализ.

Способ идентификации диэтиламина и изопропилового спирта в газовых смесях осуществляют следующим образом.

Для идентификации диэтиламина и изопропилового спирта в газовых смесях используют массив из четырех пьезосенсоров. На электроды пьезокварцевых резонаторов, используемых в качестве тест-устройств, наносят из индивидуальных растворов пчелиный воск (ПчВ), полиэтиленгликоль себацинат (ПЭГС), полиэтиленгликоль фталат (ПЭГФ) и апиезон L (ApL) так, чтобы масса каждой пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин составила 15-20 мкг. Подготовленные пьезокварцевые резонаторы с пленкой помещают в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8» и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала, затем инжектируют 5 см3 анализируемой газовой смеси в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8», с помощью программного обеспечения, в котором заложена программа фиксирования максимальных сигналов всех сенсоров, фиксируют изменение частоты колебаний каждого пьезосенсора ΔF, Гц, в течение 60 с и рассчитывают параметры А1 и А2, для чего определяют отношение откликов сенсоров: и , где ΔF(ПчВ), ΔF(ПЭГС), ΔF(ПЭГФ) и ΔF(ApL) - сигналы сенсоров с покрытиями из ПчВ, ПЭГС, ПЭГФ и ApL соответственно. Делают вывод о присутствии диэтиламина в смеси, если параметр А1 составляет 0,13±0,03, и если в газовой смеси присутствует изопропиловый спирт, то параметр А2 составляет 2,0±0,4.

Все измерения проводят в закрытой ячейке детектирования многоканального анализатора газов с инжекторным вводом пробы «МАГ-8» в статических условиях.

Способ поясняется следующими примерами.

Пример 1

Для исследования берут образец обоев с тонкопленочным покрытием из поливинилхлорида.

На обезжиренные этиловым спиртом электроды пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц наносят микрошприцем из индивидуальных растворов пчелиный воск (ПчВ), полиэтиленгликоль себацинат (ПЭГС), полиэтиленгликоль фталат (ПЭГФ) и апиезон L (ApL) и удаляют свободный растворитель в сушильном шкафу в течение 20 мин при температуре 45°С. Масса каждой пленки после сушки и охлаждения составляет около 15 мкг. Подготовленные резонаторы с пленкой помещают в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8» и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала, фиксируют исходный («нулевой») отклик сенсоров - частоту колебания. Дрейф «нулевой» линии после сушки составляет ±2 Гц/мин. Для исследования берут образец обоев с тонкопленочным покрытием из поливинилхлорида площадью 100 см2, помещают образец в стеклянный пробоотборник и плотно закрывают полиуретановой пробкой, выдерживают при температуре 20±1°С в течение 15 мин. Затем отбирают шприцем через полиуретановую пробку по 5 см3 равновесной газовой фазы над образцом и инжектируют ее в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8», с помощью программного обеспечения, в котором заложена программа фиксирования максимальных сигналов всех сенсоров, фиксируют изменение частоты колебаний каждого пьезосенсора ΔF, Гц, в течение 60 с и рассчитывают параметры А1 и А2, для чего определяют отношение откликов сенсоров: и , где ΔF(ПчВ), ΔF(ПЭГС), ΔF(ПЭГФ) и ΔF(ApL) - сигналы сенсоров с покрытиями из ПчВ, ПЭГС, ПЭГФ и ApL соответственно.

Параметры А1 и А2 для тестируемого образца обоев с тонкопленочным покрытием из поливинилхлорида составляют 0,15±0,01 и 1,95±0,38 соответственно, что свидетельствует о присутствии в равновесной газовой фазе над обоями с тонкопленочным покрытием из поливинилхлорида диэтиламина и изопропилового спирта.

Пример 2

Для тестирования берут образец фенолформальдегидной пластмассы.

Подготовка пробы аналогично примеру 1, но для исследования берут образец мелкоизмельченной фенолформальдегидной пластмассы массой 5,0 г. Дальнейшие действия аналогичны примеру 1.

Параметры А1 и А2 для тестируемого образца фенолформальдегидной пластмассы составляют 0,05±0,01 и 0,8±0,3, что свидетельствует об отсутствии диэтиламина и изопропилового спирта в равновесной газовой фазе.

Способ осуществим.

Как видно из примеров, предложенный способ идентификации диэтиламина и изопропилового спирта в газовых смесях с применением массива из четырех пьезосенсоров дает возможность идентифицировать диэтиламин и изопропиловый спирт.

Способ характеризуется экспрессностью, надежностью, минимальным количеством стадий и затрат на реактивы, легко осуществим, применим для идентификации диэтиламина и изопропилового спирта в газовых смесях.

Изменение природы сорбента, способа формирования пленки модификатора, температуры и времени при сушке, а также ее массы не позволяет сформировать однородное тонкопленочное покрытие на поверхности пьезокварцевого преобразователя и, как следствие, приводит к снижению чувствительности и высокой погрешности идентификации диэтиламина и изопропилового спирта в газовых смесях.

Способ идентификации диэтиламина и изопропилового спирта в газовых смесях характеризуется:

- минимальным количеством стадий;

- минимальными затратами на реактивы;

- высокой чувствительностью;

- экспрессностью (не более часа);

- точностью (погрешность анализа 5%);

- надежностью.

Способ идентификации диэтиламина и изопропилового спирта в газовых смесях с применением массива из четырех пьезосенсоров, характеризующийся тем, что в качестве детектирующего устройства используют пьезокварцевые резонаторы с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов пчелиного воска (ПчВ), полиэтиленгликоль себацината (ПЭГС), полиэтиленгликоль фталата (ПЭГФ) и апиезона L (ApL) так, чтобы масса каждой пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин составила 15-20 мкг, которые помещают в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8» и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала, затем в стеклянный пробоотборник объемом 50 см3 помещают 5,0 г анализируемого мелкоизмельченного образца, например, блочного пластикового изделия или изделия с тонкопленочным покрытием с площадью поверхности 100 см2, плотно закрывают пробоотборник полиуретановой пробкой, выдерживают при температуре 20±1°С в течение 15 мин для получения равновесной газовой фазы, содержание диэтиламина и изопропилового спирта далее определяют по сигналам сенсоров, для чего в случае блочного пластикового изделия или изделия с тонкопленочным покрытием из пробоотборника отбирают шприцем через полиуретановую пробку 5 см3 равновесной газовой фазы или такой же объем в случае другой газовой смеси и инжектируют ее в закрытую ячейку детектирования многоканального анализатора газов «МАГ-8», с помощью программного обеспечения, в котором заложена программа фиксирования максимальных сигналов всех сенсоров, фиксируют изменение частоты колебаний каждого пьезосенсора ΔF, Гц, в течение 60 с и рассчитывают отношение откликов сенсоров - параметры и , делают вывод о присутствии диэтиламина в смеси, если параметр А1 составляет 0,13±0,03, и если в газовой смеси присутствует изопропиловый спирт, то параметр А2 составляет 2,0±0,4.



 

Похожие патенты:

Группа изобретений относится к определению массовой доли ацетальдегида, выделяющегося в полиэтилентерефталате (ПЭТ) или его композитах. Способ определения массовой доли ацетальдегида в ПЭТ или его композитах включает запаивание пробы в стеклянные ампулы диаметром 5-6 мм на воздухе или путем вакуумирования, помещение ампул в термостат при температуре 120±2°С и выдерживание в течение 2 ч, последующее помещение ампул в термостатированную ячейку с ударным механизмом, продуваемую инертным газом и нагреваемую до температуры 20-80°С, с последующим вскрытием ампул с помощью ударного механизма и оценкой содержания ацетальдегида методом газовой хроматографии.

Настоящее изобретение относится к биохимии, в частности к лигандам для аффинной хроматографии на основе различных доменов белка A (SpA) Staphylococcus. Лиганд содержит либо несколько доменов C, либо несколько доменов B, либо несколько доменов Z белка SpA.
Изобретение относится к аналитической химии, а именно к способам определения карбоновых кислот в водных растворах глиоксаля. В процессе синтеза глиоксаля образуются примеси гликолевой и глиоксалевой кислот, которые мешают дальнейшему его использованию, так как наряду с последним вступают в реакции конденсации, сильно загрязняя продукты на основе глиоксаля.

Изобретение относится к области аналитической химии и может быть использовано для определения содержания ЛХС (летучих хлорорганических соединений): четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях.

Потоковый газовый хроматограф предназначен для определения качественного и количественного состава различных газов, например природного газа на технологических потоках предприятий газовой, нефтеперерабатывающей и других отраслей промышленности.

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды.

Изобретение относится к аналитической химии, конкретно к неподвижным фазам для разделения веществ методом капиллярной газовой хроматографии, и может быть использовано в анализе различных классов химических веществ.

Изобретение относится к области газового анализа и может быть использовано для градуировки газоанализаторов и газовых хроматографов и получения градуировочных газовых смесей при анализе объектов окружающей среды, природного и попутного нефтяного газа в различных отраслях промышленности.

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют.

Изобретение относится к сельскому хозяйству и может быть использовано для определения остаточных количеств биоорганического соединения (д.в. поли-NN-диметил-3,4 метилпиролидиния галогенида (хлорида)) с ярко выраженными бактерицидными и фунгипротекторными свойствами в растительных объектах (яблоки, груши, айва, сливы, персики).

Изобретение относится к химической промышленности и может быть использовано, в частности, для исследования каталитических газохимических процессов. Установка для исследования каталитических газохимических процессов включает в себя каталитический реактор, газовый хроматограф, средства контроля давления, выполненные в виде первого и второго манометров, средство регулирования давления, выполненное в виде регулятора давления, средство для контроля температуры, выполненное в виде, по меньшей мере, одного датчика температуры, запорно-регулирующую арматуру, выполненную в виде вентилей. Установка дополнительно содержит блок подачи газа, систему нагрева и охлаждения каталитического реактора, сепаратор с системой циркуляции захоложенной воды, компрессор, ресиверы высокого и низкого давления, фильтр, вакуумный насос, первый и второй переключатели потока газа, редуктор, выход которого соединен с газовым хроматографом, а также регуляторы расхода газа. Техническим результатом является обеспечение возможности подбора эффективного катализатора, поиска оптимальных условий процесса преобразования компонентов синтез-газа в газообразные и жидкие углеводороды, что позволяет усовершенствовать существующие процессы и разработать новые. 1 ил.

Изобретение относится к области хроматографии и может быть использовано для анализа и исследования лекарственных препаратов на основе амлодипина и валсартана, обладающих схожестью химической структуры и сорбционных свойств. Способ хроматографического разделения твердой комбинированной лекарственной формы, содержащей амлодипин и валсартан, методом обращенно-фазовой ВЭЖХ с использованием ультрафиолетового спектрофотометрического детектора. Причем анализ проводят на хроматографической колонке Luna С18 (2) размером 150×4,6 мм, заполненной октадецилсилил силигагелем с размером частиц 5 мкм, в градиентном режиме, при котором при разделении происходит сорбция компонентов лекарственной формы на колонке Luna С18 (2) 150×4,6 мм, 5 мкм. При этом в качестве органического модификатора используют триэтиламин, являющийся ионпарной добавкой к подвижной фазе в количестве 1%, а в качестве растворителя пробы используют метанол и смесь из подвижных фаз А и В. Температура термостатирования колонки составляет 30°С, детектирование осуществляется при длине волны 237 нм, поток подвижной фазы 1 мл/мин. Техническим результатом является возможность за короткое время хроматографирования получить достаточное разрешение между пиками веществ и высокое число теоретических тарелок для обоих компонентов, что позволяет произвести корректный количественный расчет данных действующих веществ в анализируемой пробе. 2 ил.

Изобретение относится к области масс-спектрометрии. Особенностями способа являются вертикальная ориентация мениска жидкости в пространстве, из вершины которого происходит эмиссия заряженных частиц в неоднородном постоянном электрическом поле и организации встречного потока фонового газа при нормальных условиях. Встречный поток фонового газа при нормальных условиях устраняет излишки не распыленного раствора (жидкости), образующиеся на внешней стороне капилляра, из области распыления, не влияя на стабильность распыления и монодисперсность заряженных частиц. Режим стабильной эмиссии заряженных частиц (ионный ток) существует только при условии, что расстояние от торца капилляра, по которому поступает раствор, до противоэлектрода составляет 6-9 мм, длина внутреннего капилляра, выступающего из внешнего, составляет 3-4 внешних диаметра внутреннего капилляра, внутренний диаметр внешнего коаксиального капилляра в два раза больше внешнего диаметра внутреннего капилляра. При этом режим распыления имеет устойчивый характер в течение десятков минут. Регулируемые параметры распыления - величина электрического напряжения, подаваемого на противоэлектрод, и поток отбираемого газа из коаксиального канала между капиллярами, после настройки на стабильный режим имеют гистерезис и при необходимости могут быть уменьшены без потери эффекта. Технический результат - возможность получения воспроизводимого долговременного стабильного тока заряженных частиц электрораспылением в широком диапазоне объемных скоростей растворов анализируемых веществ при нормальных условиях и соответственно стабильного ионного тока анализируемых веществ, поступающих в анализатор. 8 ил.

Изобретение относится к области пищевой промышленности, а именно к спиртовому производству, и может быть использовано для количественного определения мальтозы, глюкозы, фруктозы в полупродуктах спиртового производства. Способ определения мальтозы, глюкозы, фруктозы в полупродуктах спиртового производства предусматривает хроматографическое разделение определяемых углеводов с использованием жидкостного хроматографа с рефрактометрическим детектором на хроматографической аналитической колонке RHM-Monosaccharide Phenomenex Н+, заполненной сорбентом, смолой с 8% со степенью сшивки, в водородной ионной форме (300×7,8 мм, размер частиц 8 мкм). При этом скорость потока подвижной фазы (дистиллированная вода) 0,6 см3/мин, давление 2,3 МПа, максимальная температура в колонке 80°С и качественное и количественное определение мальтозы, глюкозы, фруктозы по полученной хроматограмме. Подготовка пробы представляет собой центрифугирование в течение 7 мин при 13000 об/мин. Техническим результатом является уменьшение времени анализа, повышение чувствительности, а также упрощение анализа. 2 табл.

Изобретение относится к биологии и токсикологической химии, а именно к способам определения 2,6-бис-[бис-(бета-оксиэтил)-амино]-4,8-ди-N-пиперидино-пиримидо(5,4-d)пиримидина в биологическом материале, и может быть использовано в практике санэпидстанций, химико-токсикологических, экспертно-криминалистических и ветеринарных лабораторий. Способ осуществляется следующим образом: биологический материал, содержащий 2,6-бис-[бис-(β-оксиэтил)-амино]-4,8-ди-N-пиперидино-пиримидо(5,4-d)пиримидин, двукратно настаивают с ацетоном, каждый раз в течение 30 минут, полученные извлечения объединяют, объединенное извлечение фильтруют. Затем фильтрат испаряют до получения сухого остатка, остаток неоднократно обрабатывают ацетоном, ацетоновые извлечения отделяют и объединяют. Далее растворитель из объединенного извлечения испаряют, остаток растворяют в хлороформе, экстрагируют 0,1 н. раствором хлороводородной кислоты, хлороформный слой отбрасывают, полученный кислотный экстракт промывают органическим растворителем, которым является смесь эфира и гексана в соотношении 1:1 по объему, слой органического растворителя отбрасывают и водный слой подщелачивают 10% раствором гидроксида натрия до рН 8-10, насыщают хлоридом натрия. Затем экстрагируют этилацетатом, полученный экстракт отделяют, обезвоживают, экстрагент испаряют, остаток растворяют в смеси ацетонитрила и 1 н. раствора серной кислоты, взятых в соотношении 9:1 по объему, хроматографируют в макроколонке с сорбентом «Силасорб С-18» с размером частиц 15 мкм, используя подвижную фазу, включающую ацетонитрил и 1 н. раствор серной кислоты в соотношении 9:1 по объему, фракции элюата, содержащие анализируемое вещество, объединяют и определяют анализируемое вещество физико-химическим методом, которым является ВЭЖХ. Далее хроматографируют элюат в колонке сорбента Zorbax SB С8, термостатируемой при 40°C, с использованием подвижной фазы ацетонитрил - 0,025 М раствор дигидрофосфата калия в соотношении 3:2 по объему и детектора на основе фотодиодной матрицы. Техническим результатом является повышение чувствительности. 3 табл., 2 пр.

Изобретение относится к области химической промышленности. Установка состоит из блока гидрирования, блока гидрооблагораживания, блока фракционирования и блока циркуляции водорода. Блок гидрирования включает в себя последовательно соединенные первый воздушный холодильник, первый каталитический реактор, второй воздушный холодильник и первый сепаратор. Блок гидрооблагораживания включает в себя связанные друг с другом первый рекуперативный теплообменник, второй каталитический реактор, первую печь для нагрева газожидкостной смеси, третий воздушный холодильник, второй и третий сепараторы. Блок фракционирования включает в себя второй, третий и четвертый рекуперативные теплообменники, установленные последовательно, вторую печь, основную ректификационную колонну, первую и вторую боковые ректификационные колонны, четвертый сепаратор, четвертый, пятый и шестой воздушные холодильники. Блок циркуляции водорода включает в себя последовательно связанные пятый сепаратор, первый водородный компрессор, седьмой воздушный холодильник, блок короткоцикловой адсорбционной очистки водорода (КЦА), второй водородный компрессор и восьмой воздушный холодильник. Обеспечивается повышение эффективности облагораживания синтетических нефтяных фракций за счет обеспечения возможности подбора оптимальных условий процесса облагораживания, что способствует усовершенствованию существующих процессов и, при необходимости, разработке новых. 5 ил.

Изобретение относится к пищевой промышленности, в частности к способам определения жирнокислотного состава молочного жира. Для этого применяют способ подготовки проб молока методом газовой хроматографии, включающий в себя подготовку исследуемого образца. Для подготовки берут 15-45 г исследуемого молока с массовой долей жира 2-6%, добавляют 20 см3 органического растворителя, перемешивают 3-5 мин на магнитной мешалке, затем добавляют 0,1-0,2 мл 45-55% раствора лимонной кислоты и повторно перемешивают 3-6 мин. Затем смесь центрифугируют 5-7 мин с относительным ускорением 3350-4560 RCF. В качестве органического растворителя могут использовать гексан, гептан, изооктан или их смесь. Выделенный органический экстракт используют для приготовления метиловых эфиров жирных кислот и их исследования методом газовой хроматографии. Изобретение обеспечивает сокращение времени пробоподготовки, уменьшение количества расходуемого растворителя более чем в 7 раз, удешевление процесса проведения анализа, а также минимальное количество оборудования. 5 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к аналитическому приборостроению, а именно к способам организации средств для определения величины адсорбции адсорбтива дисперсными и пористыми материалами, устройствам для определения величины адсорбции адсорбтива дисперсными и пористыми материалами, способам определения величины адсорбции адсорбтива дисперсными и пористыми материалами динамическим методом тепловой десорбции. Заявленное изобретение для определения величины адсорбции адсорбтива дисперсными и пористыми материалами содержит узел охлаждения, измерительную ампулу, которая выполнена с возможностью расположения в узле охлаждения, корпус, в котором размещены регулятор расхода адсорбтива, первый регулятор расхода гелия, первый ДТП, который содержит измерительную и сравнительную ячейки. При этом сформирована первая линия потока, которая выполнена с возможностью пропускания потока смеси газов адсорбтива и гелия, с возможностью подключения к ней измерительной ампулы, и содержащей, по ходу потока адсорбтива, регулятор адсорбтива, по ходу потока гелия, регулятор расхода гелия, по ходу потока смеси газов адсорбтива и гелия, первый ДТП, который выполнен содержащим сравнительную и измерительную ячейки. Дополнительно оно содержит расположенные в корпусе второй регулятор расхода гелия, первый переключатель потоков, второй переключатель потоков, второй ДТП, который выполнен содержащим измерительную и сравнительную ячейки, первую линию задержки, вторую линию задержки, третью линию задержки, четвертую линию задержки. Кроме того, оно дополнительно содержит сравнительную ампулу, которая выполнена с возможностью расположения в узле охлаждения, с возможностью подключения ко второму переключателю потоков, и имеющей форму и объем, идентичные форме и объему измерительной ампулы; вставки с малой адсорбционной поверхностью, которые выполнены с возможностью расположения в измерительной и сравнительной ампулах; устройство калибровки ДТП. При этом измерительная ампула выполнена с возможностью подключения к первому переключателю потоков, кроме того, сформирована вторая линия потока, которая выполнена с возможностью пропускания потока гелия и в которой по ходу движению потока гелия герметично соединены между собой второй регулятор расхода гелия, сравнительная ячейка второго ДТП, первый переключатель потоков, вторая линия задержки, второй переключатель потоков, устройство калибровки ДТП, четвертая линия задержки, измерительная ячейка второго ДТП; а первая линия потока дополнительно выполнена с возможностью подключения сравнительной ампулы. При этом между сравнительной ячейкой первого ДТП и измерительной ячейкой первого ДТП, по движению потока смеси газов адсорбтива и гелия, расположены и герметично соединены между собой первый переключатель потоков, первая линия задержки, второй переключатель потоков, третья линия задержки. Технический результат - расширение арсенала средств данного назначения, возможность измерять количество адсорбтива при проведении десорбции в потоке гелия при максимальной чувствительности ДТП во всем возможном диапазоне парциальных давлений адсорбтива, возможность обеспечивать минимальную погрешность в определении величины адсорбции, увеличение достоверности результатов исследуемых текстурных характеристик. 3 н. и 20 з.п. ф-лы, 2 ил..
Наверх