Состав для ингибирования образования гидратов в углеводородсодержащем сырье

Изобретение относится к составам для ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих гидратообразующие агенты и воду, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов. Состав содержит кинетический ингибитор, термодинамический ингибитор и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, R2 - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, % мас.: кинетический ингибитор гидратообразования 2,0-8,0; термодинамический ингибитор гидратообразования 84,0-96,0; синергетическая добавка - остальное. Технический результат - повышение ингибирующей способности. 4 пр.

 

Изобретение относится к составам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов.

Образование газовых гидратов в промысловом оборудовании и трубопроводах - одна из важнейших технологических проблем, возникающая при добыче, транспортировке и переработке жидкого и газообразного углеводородного сырья.

В природном газе, газовом конденсате, нефти присутствуют соединения (CH4, C2H6, C3H8, изо-C4H10, н-C4H10, CO2, H2S), при определенных термобарических условиях в присутствии воды образующие газовые гидраты, которые, являясь твердыми кристаллическими веществами, отлагаются на стенках труб и оборудования, что приводит к резкому уменьшению пропускной способности добывающих скважин, технологических трубопроводов вплоть до их полной закупорки. Образование газогидратных пробок может привести к остановке процессов добычи, транспортировки, переработки углеводородного сырья и, как следствие, к значительным финансовым потерям.

Известно использование в качестве состава для ингибирования газовых гидратов в углеводородсодержащем сырье термодинамического ингибитора гидратообразования (ТИГ), в частности спирта (RU 2049957, 1998).

Однако из-за высоких рабочих концентраций термодинамических ингибиторов (до 60% мас..) применение такого состава сопряжено с высокими затратами и экологическими проблемами.

Известно использование в качестве состава для ингибирования гидратообразования в углеводородсодержащем сырье кинетического ингибитора гидратообразования (КИГ) (RU 2126513, 1999, RU 2134678, 1999, RU 2137740, 1999). Такого рода реагенты, не влияя на термодинамику, значительно влияют на кинетику процесса гидратообразования, увеличивая индукционный период данного процесса. Основными преимуществами кинетических ингибиторов гидратообразования, представляющих собой, как правило, водорастворимые полимеры, являются их невысокие рабочие концентрации (0,3-1% мас..) и низкая токсичность. Основной недостаток КИГ заключается в том, что они не могут использоваться в холодных климатических условиях при температурах ниже 0°C, так как низкие рабочие концентрации не обеспечивают существенной депрессии температуры замерзания воды. Для таких условий перспективным является подход, связанный с использованием комбинированных реагентов, сочетающих в себе достоинства кинетических ингибиторов гидратообразования и антифризных веществ.

Известен состав для ингибирования газовых гидратов в углеводородсодержащем сырье, который содержит по меньшей мере один кинетический ингибитор гидратоообразования и по меньшей мере один термодинамический ингибитор гидратообразования (CA 2506925, 2006).

При этом кинетический ингибитор гидратообразования, в частности, включает аминированные полиалкиленгликоли, представленные формулой R1R2N[(A)a-(B)b-(A)c-(CH2)d-CH(R)-NR1]nR2 (I), в которой: - каждый А независимо отобран из -CH2CH(CH3)O- или -CH(CH3)CH2O-; В представляет из себя -CH2CH2O-; a+b+c составляет от 1 до приблизительно 100; R представляет из себя -H или -CH3; - каждый R1 и R2 независимо выбраны из группы, состоящей из -Н, -CH3, -H2CH2OH и -CH(CH3)CH2O; d от 1 до приблизительно 6; n от 1 до приблизительно 4.

Недостатки указанного состава заключаются в высокой коррозионной активности используемых ТИГ (солей-электролитов), сложности синтеза КИГ, высоком расходе полимерного КИГ, относительно малой максимальной степени переохлаждения и недостаточном индукционном периоде гидратообразования.

Более близким к изобретению является состав, используемый при проведении способа ингибирования образования гидратов углеводородов, включающий закачку данного состава в прискважинную зону или в участок трубопровода. Указанный состав содержит водный раствор полимера из группы, включающей: сополимер пирролидона или капролактама, терполимер на основе N-винил-2-пирролидона, диметиламиноэтилметакрилат, гидроксиэтилцеллюлозу, поливинипирролидон, поливинилкарбоксилат, полиакрилат, поливинилкапролактам, акриламидометилпропансульфонат, полиакриламид, гипан, полиоксипро в масле полимера из группы, включающей: полиакриламид, карбоксиметилцеллюлозу, эфир оксиэтилцеллюлозы, полиметакрилат, поливинилацетат или поливиниловый спирт или их сополимеры, и дополнительно - карбамидоформальдегидный концентрат КФК и гидрофобизирующую добавку при следующем соотношении компонентов, мас. %: указанные водный раствор или эмульсия 0,05-5,0, КФК 0,1-5,0, гидрофобизирующая добавка 0,1-5,0, вода остальное. При этом перед закачкой указанной композиции дополнительно закачивают оторочку КФК в количестве 0,1-5,0 мас. % от мас.ы указанного состава и осуществляют выдержку не менее 3-5 ч. Дополнительно указанный состав может содержать соляную или уксусную кислоту, или смесь их, или смесь соляной кислоты и концентрата низкомолекулярных кислот, или фосфорную или ортофосфорную кислоту в количестве 0,05-0,20 мас. % (RU 2504642, 2014).

Недостатки указанного состава заключаются в том, что он при ингибировании гидратообразования не обеспечивает достаточную степень снижения (депрессии) температуры кристаллизации льда, что не позволяет применять указанный состав при температурах ниже 0°C, не обеспечивает также необходимую степень переохлаждения при образовании гидратов. Кроме того, использование данного состава приводит к недостаточно высокому индукционному периоду гидратообразования.

Таким образом, известный состав недостаточно эффективен.

Задача изобретения заключается в повышении эффективности состава для ингибирования образования гидратов в углеводородсодержащем сырье.

Поставленная задача достигается описываемым составом ингибирования образования гидратов в углеводородсодержащем сырье, включающим воду и гидратообразующие компоненты, содержащим кинетический ингибитор гидратообразования, термодинамический ингибитор гидратообразования и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, a R2 - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, % мас.:

кинетический ингибитор гидратообразования 2,0-8,0
термодинамический ингибитор гидратообразования 84,0-96,0
синергетическая добавка остальное до 100

Достигаемый технический результат заключается в более высокой, по сравнению с известным составом, ингибирующей способности описываемого состава.

Так, описываемый состав может быть использован для ингибирования образования газовых гидратов при степени переохлаждения до 30°C с индукционным периодом, достигающим 40 часов и выше, в том числе при пониженных температурах <0°C (известный способ обеспечивает ингибирование при более высоких температурах при степени переохлаждения не выше 12,6°C с индукционным периодом в диапазоне 17-36,8 часов). Используемые в составе компоненты ингибируют начальное образование (нуклеацию) газовых гидратов, замедляют образование или рост кристаллов гидратов, предотвращают агломерацию кристаллов гидратов меньшего размера в более крупные.

В качестве углеводородсодержащего сырья возможно использовать такое, как, например, нефтяные водосодержащие эмульсии, указанные эмульсии, содержащие углеводородный газ, газовый конденсат, сырье, содержащее гидратообразующий газ, воду, а также другое углеводородсодержащее сырье, содержащее воду и гидратообразующие компоненты, характерное, в частности, для процессов добычи, переработки и транспортировки углеводородного сырья.

Описываемый состав вводят в исходное сырье в количестве 2,5 -50,0% мас. от воды, содержащейся в указанном сырье. Ввод состава в указанном количестве в углеводородное сырье, включающее воду и гидратообразующие компоненты, обеспечивает оптимальное содержание компонентов состава и воды, составляющее: кинетический ингибитор гидратообразования 0,1-2,0% мас., термодинамический ингибитор гидратообразования 5,0-40,0% мас., синергетическая добавка 0,1-2,0% мас., вода - остальное, до 100% мас. Конкретное соотношение определяется природой компонентов композиции и термобарическими условиями на нефтегазовом объекте.

В описываемом составе для ингибирования образования гидратов в качестве кинетического ингибитора гидратообразования используют водорастворимые полимеры, такие, в частности, как поли-N-виниллактамы, замещенные полиакриламиды, сверхразветвленные полиэфирамиды, поливиниловый спирт и его производные и другие высокомолекулярные соединения, обладающие свойствами КИГ. В качестве термодинамического ингибитора гидратообразования возможно использовать, в частности, метанол, этанол, моно-, ди-, триэтиленгликоль, пропиленгликоль, глицерин, низкомолекулярные простые эфиры моно-, ди- и триэтиленгликоля, пропиленгликоля, мочевину или их смесь. В качестве синергетической добавки используют четвертичные аммониевые соли (например, галогениды тетрабутиламмония, галогениды цетилтриметиламмония, галогениды цетилдиметиламмония, галогениды додецилдиметиламмония, галогениды дидодецилдиметиламмония), моно- и диалкиловые эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, в частности, с числом углеродных атомов больше 3, a R2 - алкильный радикал, в частности, с числом углеродных атомов больше 3 (например, монобутиловый эфир этиленгликоля, дибутиловый эфир этиленгликоля), оксиэтилированные жирные спирты (например, Синтанол АЛМ-10, Surfynol 485), оксипропилированные жирные спирты, полиэтиленоксид (с молекулярной ой, в частности, 200-8000), полипропиленоксид (с молекулярной массой, в частности, 200-8000), сополимеры этиленоксида и пропиленоксида (например, со средней молекулярной массой 5000) или смесь указанных веществ.

Использование такого комбинированного состава позволяет повысить достоинства указанных классов ингибиторов и, как следствие, повысить эффективность ингибирования гидратообразования. С одной стороны, использование антигидратных реагентов позволяет значительно снизить расход термодинамического ингибитора гидратообразования. С другой, используемые антигидратные реагенты могут быть использованы для образования гидратов в технологических процессах при температуре <0°C благодаря тому, что входящий в состав термодинамический ингибитор одновременно является антифризным веществом и поэтому значительно понижает температуру кристаллизации льда. Предотвращение образования льда наряду с ингибированием гидратообразования является обязательным условием, ограничивающим спектр используемых ингибиторов в условиях пониженных температур. Использование кинетического ингибитора без применения других компонентов неэффективно при температурах <0°C, так как вследствие низких рабочих концентраций последний не обеспечивает существенной депрессии температуры кристаллизации льда. Наличие в составе синергетической добавки в указанных количествах предопределяет повышение его ингибирующей способности, позволяет снизить концентрацию и, следовательно, расход дорогостоящего полимерного КИГ. Кроме того, наличие в составе поверхностно-активных соединений (четвертичные аммониевые соли, эфиры моно-, ди- и триэтиленгликоля, оксиэтилированные и оксипропилированные жирные спирты, сополимеры этиленоксида и пропиленоксида) придает описываемому составу антиагломерантные свойства.

Описываемый состав для ингибирования образования гидратов получают следующим образом.

Вышеуказанный состав готовят путем смешивания расчетных количеств компонентов в отдельной емкости. Для получения используемого состава кинетический ингибитор гидратообразования растворяют в термодинамическом ингибиторе гидратообразования при температуре 20-30°C и интенсивном перемешивании. Затем в смесь при перемешивании добавляют синергетическую добавку. Готовый состав вводят в углеводородсодержащее сырье, содержащее воду и гидратообразующие компоненты различным образом, в частности непосредственно в сырье, закачивают в прискважинную зону или в участок трубопровода.

Изобретение иллюстрируется нижеприведенными примерами, не ограничивающими его использование.

Применение состава иллюстрируется на примере использования в качестве исходного углеводородсодержащего сырья модельной смеси, состоящий из газовой смеси 95,66% CH4 + 4,34% C3H8 и воды.

Пример 1

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют сополимер N-винилкапролактама и N-винилпирролидона (соотношение звеньев 1:1, средневесовая молекулярная масса 3000) в количестве 2,5% мас., в качестве термодинамического ингибитора гидратообразования - моноэтиленгликоль в количестве 94% мас., в качестве синергетической добавки - монобутиловый эфир этиленгликоля в количестве 3,5% мас. При этом кинетический ингибитор растворяют в моноэтиленгликоле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют монобутиловый эфир этиленгликоля и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 27% от массы воды, содержащейся в исходном сырье. После добавления композиции полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 8°C. 250 см3 полученного раствора помещают в автоклав объемом 500 см3. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°С/ч. Образование гидрата начинается при температуре минус 7,7°C, что соответствует степени переохлаждения 21,4°C (равновесная температура 13,7°C для неингибированной системы).

Индукционный период гидратообразования измеряют следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают гидратообразующим газом с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до минус 3°C и термостатируют. В автоклав подают газовую смесь до давления 3,58 МПа. Процесс гидратообразования начинается через 38,6 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 38,6 часов.

Пример 2

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют сополимер N-винилкапролактама и N-винилпирролидона (соотношение звеньев 1:1, средневесовая молекулярная масса 3000) в количестве 5,0% мас., в качестве термодинамического ингибитора гидратообразования - метанол в количестве 90% мас., в качестве синергетической добавки - бромид тетрабутиламмония в количестве 5,0% мас. При этом кинетический ингибитор растворяют в метаноле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют бромид тетрабутиламмония и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 11% мас. от количества воды, содержащейся в исходном сырье. После добавления композиции полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 8°C. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°C/ч. Образование гидрата начинается при температуре минус 7,5°C, что соответствует степени переохлаждения 21,2°C (равновесная температура 13,7°C для неингибированной системы).

Индукционный период гидратообразования измеряют следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают гидратообразующим газом с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до минус 3°C и термостатируют. В автоклав подают газовую смесь до давления 3,58 МПа. Процесс гидратообразования начинается через 37,1 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 37,1 часа.

Пример 3

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют поли(N-винилкапролактам) (средневесовая молекулярная масса 3000) в количестве 8,0% мас., в качестве термодинамического ингибитора гидратообразования - этанол в количестве 84% мас., в качестве синергетической добавки - оксиэтилированный жирный спирт Синтанол АЛМ-10 4,0% мас. и бромид цетилтриметиламмония 4% мас. При этом кинетический ингибитор растворяют в этаноле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют Синтанол АЛМ-10, бромид цетилтриметиламмония и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 8,0% мас. от количества воды, содержащейся в исходном сырье. После добавления полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 4,5°C. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°C/ч. Образование гидрата начинается при температуре минус 4,1°C, что соответствует степени переохлаждения 18,0°C (равновесная температура 13,9°C для неингибированной системы).

Индукционный период гидратообразования измеряли следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходным сырьем с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до 0°C и термостатируют. В автоклав подают газовую смесь до давления 3,65 МПа. Процесс гидратообразования начинается через 40,1 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 40,1 часов.

Пример 4

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют поли(N-винилкапролактам) (средневесовая молекулярная масса 3000) в количестве 4,8% мас., в качестве термодинамического ингибитора гидратообразования - метанол в количестве 90,2% мас., в качестве синергетической добавки - лапрол (полипропиленоксид) 5,0% мас. При этом кинетический ингибитор растворяют в метаноле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют лапрол и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 26,7% мас. от количества воды, содержащейся в исходном сырье. После добавления полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 19°C. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°C/ч. Образование гидрата начинается при температуре минус 15,1°C, что соответствует степени переохлаждения 28,5°С (равновесная температура 13,4°С для неингибированной системы).

Индукционный период гидратообразования измеряли следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходным сырьем с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до минус 10°С и термостатируют. В автоклав подают газовую смесь до давления 3,55 МПа. Процесс гидратообразования начинается через 45,3 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 45,3 часа.

Использование описываемого состава, содержащего иные вышеперечисленные вещества в иных концентрациях, входящих в указанный выше интервал, приводит к аналогичным результатам.

Из приведенных данных следует, что описываемый состав обладает более высокой ингибирующей способностью, чем известный.

Состав для ингибирования образования гидратов в углеводородсодержащем сырье, включающем воду и гидратообразующие компоненты, содержащий кинетический ингибитор гидратообразования, термодинамический ингибитор гидратообразования и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, R2 - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, % мас.:

кинетический ингибитор гидратообразования 2,0-8,0
термодинамический ингибитор гидратообразования 84,0-96,0
синергетическая добавка остальное до 100



 

Похожие патенты:

Настоящее изобретение относится к способам снижения потерь буровой жидкости и других жидкостей для подземного ремонта скважин в подземной формации во время бурения или сооружения буровых скважин в указанной формации.
Изобретение относится к нефтяной промышленности и может быть использовано для проведения ремонтно-изоляционных работ в нефтяных и газовых скважинах. Техническим результатом изобретения является повышения долговечности и надежности слоя тампонажного материала, образовавшегося после отверждения на поверхности стенок обрабатываемой скважины.

Изобретение относится к операциям обработки скважин с использованием реагентов. Композит для обработки скважин, содержащий реагент для обработки скважин и обожженный пористый оксид металла, где пористость и проницаемость обожженного пористого оксида металла является такой, что реагент для обработки скважин адсорбируется во внутрипоровых пространствах пористого оксида металла, и кроме того: площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г, диаметр частиц 0,1 3 мм и объем пор указанного оксида металла от 0,01 до 0,10 см3/г.
Изобретение относится к способу цементирования, включающему: введение в ствол скважины способной к схватыванию композиции, содержащей размолотый невспученный перлит, портландцемент, перемолотый с пумицитом, и воду; и предоставление возможности способной к схватыванию композиции схватиться.

Изобретение относится к нефтедобывающей промышленности, в частности к составам, используемым в качестве технологических жидкостей для заканчивания и ремонта нефтяных и газовых скважин, и может быть использовано в условиях аномально высоких пластовых давлений для глушения и консервации скважин, для ликвидации межколонных давлений путем гидрозатвора при цементировании с недоподнятием цемента до устья для создания противодавления.

Изобретение относится к бурению нефтяных и газовых скважин, преимущественно к бурению в условиях высоких температур, неустойчивых глинистых пород и при вскрытии продуктивных пластов.

Предложение относится к нефтедобывающей промышленности, в частности, к ремонтно-изоляционным работ в скважинах с применением тампонажных составов. Технический результат предложенного изобретения заключается в повышение эффективности ремонтно-изоляционных работ в скважине за счет использования тампонажного состава с более высокой герметизирующей способностью.

Изобретение относится к нефтяной и газовой промышленности. Технический результат - повышение эффективности предотвращения выпадения солей в течение длительного времени эксплуатации скважины за счет снижения межфазного натяжения на границе «нефть - ингибирующий раствор» и образования прочных силикатных пленок, включающих в себя ингибитор, на поверхности породообразующих минералов.

Настоящее изобретение относится к вязкоупругим текучим средам, загущенным кислым композициям, а также к способам их использования. Водная вязкоупругая текучая среда для обработки подземного пласта, содержащая по меньшей мере одну композицию гелеобразующего вещества, где указанная композиция гелеобразующего вещества содержит по меньшей мере одно вязкоупругое поверхностно-активное вещество приведенной общей формулы, и систему растворителей, которая содержит воду, одноатомный спирт и двухатомный или многоатомный спирт, при массовом соотношении указанного одноатомного спирта и указанного двухатомного или многоатомного спирта от 1,0 до 2,2.

Настоящее изобретение относится к использованию неионогенного поверхностно-активного вещества - НПАВ, растворимого в диоксиде углерода, для интенсифицированной нефтедобычи.

Настоящее изобретение относится к получению расклинивающего агента, используемого при добыче углеводородов. Способ создания расклинивающего агента с частицами требуемых размеров, получаемого из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащий стадии: отделение воды от шлама с образованием потока мокрых твердых частиц и потока жидкости, смешивание потока мокрых твердых частиц с твердыми частицами с образованием загружаемого материала, расплавление загружаемого материала с получением материала расплавленного расклинивающего агента, резкое охлаждение расплавленного материала, измельчение охлажденного материала расклинивающего агента, сортировка частиц измельченного материала по размерам и смешивание частиц измельченного материала, не соответствующих установленным размерам, с загружаемым материалом. Система создания расклинивающего агента с частицами требуемого размера, получаемого из шлама, извлеченного из скважины для добычи углеводородов, подвергнутой гидроразрыву, содержащая элементы: средства отделения воды от шлама, средства для смешивания потока мокрых твердых частиц с твердыми частицами, средства для расплавления загружаемого материала, средства для резкого охлаждения расплавленного материала, средства для измельчения охлажденного материала, средства сортировки измельченного материала до получения частиц требуемого размера и средства для смешивания измельченного материала, размеры частиц которого не соответствуют установленным, с загружаемым материалом. Система для использования при выполнении операций по гидроразрыву, содержащая: первый сепаратор, содержащий патрубок для забора шлама и патрубок для выпуска шлама с первым содержанием воды, второй сепаратор, содержащий патрубок для забора шлама, расположенный так, чтобы в него мог поступать шлам из патрубка для выпуска шлама из первого сепаратора, и патрубок для выпуска потока мокрых твердых частиц со вторым - более низким - содержанием воды, печь для получения расплавленного расклинивающего агента, расположенная так, чтобы в нее мог поступать шлам из патрубка для выпуска потока мокрых твердых частиц из второго сепаратора, и снабженная выпускным отверстием, охладитель, расположенный так, чтобы в него мог поступать расплавленный расклинивающий агент из печи, дробилка, расположенная так, чтобы в нее мог поступать охлажденный расклинивающий агент из охладителя, мельница, расположенная так, чтобы в нее мог поступать дробленый расклинивающий агент из дробилки, первое сито, расположенное так, чтобы на него мог поступать размолотый материал из мельницы, и второе сито, расположенное так, чтобы на него мог поступать материал, пропущенный первым ситом. Изобретение развито в зависимых пунктах. Технический результат - обеспечение общественной безопасности при гидроразрыве пластов. 3 н. и 26 з.п. ф-лы, 10 ил.

Изобретение относится к бурению нефтяных и газовых скважин, а именно к безглинистым биополимерным буровым растворам, применяемым для вскрытия продуктивных пластов горизонтальных скважин и скважин с большим углом отклонения, представленных карбонатными и терригенными (песчаниками) коллекторами, а также для восстановления скважин бурением вторых стволов в различных гидрогеологических условиях. Технический результат - сохранение фильтрационно-емкостных свойств продуктивных коллекторов, снижение затрат пластовой энергии на движение флюидов с использованием биоразлагаемых полимеров и легко удалимых кольматантов. Буровой раствор на полимерной основе для строительства скважин содержит, мас.%: биополимер ксантанового типа марки xanthan gum FCC IV 0,15-0,22; модифицированный крахмал марки МК-Ф1 или МК-Б 1,8-2,5; кальцинированную и/или каустическую соду 0,1-0,2; карбонат кальция 3-10; хлорид калия или углекислый калий, или формиат натрия, или хлорид натрия 3-23; поверхностно-активное вещество ОП-10 0,1-0,2; воду - остальное. 3 табл., 1 пр.

Группа изобретений относится к буровой промышленности. Технический результат - эффективное ингибирование нестабильного состояния глины. В способе снижения реакционной способности глин и сланцевой породы при проведении буровых работ используют буровой раствор на водной основе, содержащий агент ингибирования гидратации сланцевой породы, выбранный из группы, состоящей из: 2-этокси-1-аминоэтана, 2-пропокси-1-аминоэтана, 2-бутокси-1-аминоэтана, 1-этокси-2-аминопропана, 1-пропокси-2-аминопропана или 1-бутокси-2-аминопропана, причем агент ингибирования гидратации сланцевой породы присутствует в концентрации, достаточной для снижения реакционной способности глины или сланцевой породы, от 2,85 кг/м3. 2 н. и 4 з.п. ф-лы, 2 табл.

Использование: изобретение относится к способам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов. Сущность: углеводородсодержащее сырье, включающее воду и гидратообразующие компоненты, обрабатывают ингибитором, в качестве которого используют композицию, содержащую кинетический ингибитор, термодинамический ингибитор и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, R2 - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, мас. %: кинетический ингибитор гидратообразования 2,0-8,0; термодинамический ингибитор гидратообразования 84,0-96,0; синергетическая добавка - остальное, до 100. Достигаемый технический результат заключается в более высокой, по сравнению с известным способом, ингибирующей способности описываемого способа. 4 пр.

Изобретение относится к добыче нефти и газа. Технический результат - нетоксичность, биоразлагаемость ингибитора глинистых сланцев. Гиперразветвленный полилизин применяют в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа и в глубоких скважинах, особенно в качестве ингибитора глинистых сланцев в основанных на воде буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт, степень разветвления полилизина составляет от 10 до 99.9%, предпочтительно от 20 до 99%, более предпочтительно от 20 до 95%, молекулярная масса полилизина находится в диапазоне 500-10000 г/моль, предпочтительно в диапазоне 750-7500 г/моль, более предпочтительно в диапазоне 750-5000 г/моль, и особенно в диапазоне 750-1500 г/моль. 4 з.п. ф-лы, 1 ил., 4 табл., 6 пр.

Изобретение относится к нефтегазодобывающей промышленности, в частности при глушении нефтяных и газовых скважин. Технический результат изобретения заключается в разработке вязкоупругого состава для глушения нефтяных и газовых скважин, обеспечивающего сохранение фильтрационно-емкостных свойств пород-коллекторов, который способствует повышению эффективности глушения нефтяных и газовых скважин. Вязкоупругий состав для глушения нефтяных и газовых скважин содержит торф, щелочной модификатор, ингибитор, пеногаситель, полимер, утяжелитель и воду. Дополнительно содержит утяжелитель - барит, а в качестве понизителя водоотдачи и флоккулянта - карбоксиметилцеллюлозу (КМЦ) при следующем соотношении компонентов, %: торф 5-7, калийносодержащий щелочной модификатор 0,5-1,5, хлористый калий 1-3, полимер КМЦ 0,8-1,5, пеногаситель МАС-200М 1-3, утяжелитель 10-50, вода - остальное. 4 табл.

Изобретение относится к нефтегазовой промышленности, в частности к области в условиях соленосных отложений с присутствием сероводорода, а именно к сероводородостойким тампонажным растворам, используемым для крепления обсадных колонн, установки отсекающих мостов и создании флюидоупорных изоляционных покрышек. Технический результат - расширение технологических возможностей тампонажного раствора и области его применения путем повышения флюидоупорности и долговечности тампонажного камня при контакте с водой, нефтью, углекислым газом в условиях проявлений сероводорода. Тампонажный раствор включает хлористый кальций, хлористый барий, рассол хлористого магния, воду, микродур, суперпластификатор С-3, нитрилтриметиленфосфоновую кислоту (НТФ), силикат натрия, этилсиликат-40, поверхностно-активное вещество (ПАВ) - сульфанол, при следующем соотношении компонентов, масс.%.: хлористый кальций - 5,57-3,97, хлористый барий - 10,49-7,46, рассол хлористого магния (плотностью 1,32 г/см3) - 12,11-8,62, вода - 52,10-37,07, микродур - 10,14-36,06, суперпластификатор С-3 - 0,51-0,36, НТФ - 0,26-0,19, силикат натрия - 5,78-4,11, этилсиликат-40 - 2,53-1,80, ПАВ - сульфанол - 0,51-0,36. 1 табл.

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности воздействия на пласт путем значительного снижения скорости реакции кислотного состава с породой пласта, увеличение охвата пласта обработкой, увеличение текущей нефтеотдачи пласта, исключение загрязнения призабойной зоны пласта. Состав для кислотной обработки призабойной зоны пласта включает, мас.%: ингибированную соляную кислоту 5,0-65,0; полимер ксантан 0,05-0,5; поверхностно-активное вещество - оксиэтилированный алкилфенол 0,05-1,0; стабилизатор железа - уксуснокислый аммоний 1,0-6,0; сульфаминовую кислоту 1,0-10,0; воду - остальное. 1 табл., 2 пр.

Изобретение относится к области нефтедобывающей промышленности, в частности к способам ограничения водопритока в скважину с использованием жидкого стекла, и может быть использовано для изоляции краевой или нагнетаемой системой поддержания пластового давления воды, а также ликвидации конуса обводнения. Технический результат изобретения заключается в повышении эффективности и увеличении продолжительности эффекта от ремонтно-изоляционных работ путем блокирования путей водопритока протяженным гидроизоляционным экраном, стойким к перепадам давления. Способ ремонтно-изоляционных работ в скважине включает закачивание в изолируемый интервал жидкого стекла и регулятора гелеобразования. Закачку осуществляют последовательно циклами, количество которых зависит от приемистости изолируемого интервала. В качестве жидкого стекла используют водный раствор жидкого стекла, разбавленного пресной водой в соотношении 1:2, в качестве регулятора гелеобразования используют водный раствор хлористого кальция концентрацией 30-35% и плотностью 1282-1337 кг/м3 или пластовую воду хлор-кальциевого типа, доведенную до плотности 1282-1337 кг/м3 добавлением порошка хлористого кальция, при следующем соотношении компонентов, об.ч.: водный раствор жидкого стекла 5,7-6,0, водный раствор хлористого кальция концентрацией 30-35% и плотностью 1282-1337 кг/м3 или пластовая вода хлор-кальциевого типа, доведенная до плотности 1282-1337 кг/м3 добавлением порошка хлористого кальция, 0,9-1,3. 2 табл.
Настоящее изобретение относится к схватываемой композиции с увеличенным временем сохранения прокачиваемости, содержащей гидравлический цемент, цементную пыль, воду, добавку, замедляющую схватывание, и ускоритель схватывания цемента; при этом схватываемая композиция свободна от микросфер и сохраняет удобное для перекачивания насосом текучее состояние в течение, по меньшей мере, около одного дня; при этом ускоритель схватывания цемента присутствует в составе схватываемой композиции с увеличенным временем сохранения прокачиваемости в количестве от примерно 0,1 до примерно 4 вес.%, причем ускоритель схватывания цемента содержит по меньшей мере две добавки, выбранные из группы, в которую входят хлорид кальция, формиат цинка и ацетат кальция. 9 з.п. ф-лы, 27 табл.
Наверх