Способ серийного производства газотурбинных двигателей

Изобретение относится к области турбомашиностроения, а именно к способам оценки стабильности серийного производства газотурбинных двигателей.Технический результат изобретения - возможность оценки стабильности серийного производства газотурбинных двигателей на этапе приемосдаточных испытаний. Указанный технический результат достигается тем, что для оценки стабильности серийного производства газотурбинных двигателей выбирают один физико-механический параметр на одном режиме для каждого из двигателей, далее определяют среднее арифметическое значение выбранного параметра на выбранном режиме Pcpj, далее вычисляют несмещенную дисперсию выбранного параметра на выбранном режиме Sj2, затем проверяют соответствие эмпирического распределения параметра нормальному закону распределения, для чего вычисляют выборочный коэффициент ассиметрии А и выборочный коэффициент эксцесса Е, а также величины dA, dE, характеризующие соответствие эмпирического распределения параметра двигателя нормальному закону распределения, затем проверяют соблюдение неравенств dA>0, dE>0 и Pcpj-2,5·Sj<Pij<Pcpj+2,5·Sj, при этом в случае соблюдения вышеприведенных неравенств эмпирическое распределение значений выбранного параметра Ρ на выбранном режиме j считают нормальным, а производство стабильным. В случае несоблюдения вышеприведенных неравенств проверяют технологию производства, сборки и испытаний двигателя на наличие отклонений, выявляют и устраняют причину несоответствия и повторно производят оценку стабильности производства настоящим способом.

 

Изобретение относится к области турбомашиностроения, а именно к способам оценки стабильности серийного производства газотурбинных двигателей.

В качестве наиболее близкого аналога (прототипа) выбран способ серийного производства газотурбинных двигателей, при котором при приемосдаточных испытаниях n-го количества двигателей измеряют физико-механические параметры на различных режимах каждого из двигателей (RU 2555940 С2).

При реализации известного способа не предусмотрена возможность оценки стабильности серийного производства газотурбинных двигателей, а, следовательно, нет возможности контролировать качество изготовления, сборки и испытаний партии двигателей в целом.

Техническим результатом, достигаемым при использовании настоящего изобретения, является возможность оценки стабильности серийного производства газотурбинных двигателей на этапе приемосдаточных испытаний.

Указанный технический результат достигается тем, что в известном способе серийного производства газотурбинных двигателей, при котором изготавливают и собирают партию двигателей, а при приемосдаточных испытаниях n-го количества двигателей измеряют физико-механические параметры на различных режимах каждого из двигателей, согласно настоящему изобретению для оценки стабильности серийного производства газотурбинных двигателей выбирают один физико-механический параметр на одном режиме для каждого из двигателей, далее определяют среднее арифметическое значение выбранного параметра на выбранном режиме Pcpj по формуле:

где

n - число двигателей;

i - номер двигателя;

j - выбранный режим;

Pij - значение параметра i-го двигателя на j-м режиме;

далее вычисляют несмещенную дисперсию выбранного параметра на выбранном режиме Sj2 по формуле:

,

затем проверяют соответствие эмпирического распределения параметра нормальному закону распределения, для чего вычисляют выборочный коэффициент ассиметрии А в соответствии с формулой:

,

и выборочный коэффициент эксцесса Е в соответствии с формулой:

,

а также величины dA, dE, характеризующие соответствие эмпирического распределения параметра двигателя нормальному закону распределения:

dA=3·Sa-|A|,

dE=5·Se-|E|,

где Sa, Se - среднеквадратичные отклонения асимметрии и эксцесса, определяемые по формулам:

,

,

затем проверяют соблюдение неравенств dA>0, dE>0 и

Pcpj-2,5·Sj<Pij<Pcpj+2,5·Sj,

при этом в случае соблюдения вышеприведенных неравенств эмпирическое распределение значений выбранного параметра Ρ на выбранном режиме j считают нормальным, а производство - стабильным.

В случае несоблюдения вышеприведенных неравенств проверяют технологию производства, сборки и испытаний двигателя на наличие отклонений, выявляют и устраняют причину несоответствия и повторно производят оценку стабильности производства настоящим способом.

Возможность оценки стабильности на этапе серийного производства газотурбинных двигателей, а именно во время приемо-сдаточных испытаний, позволяет обеспечить контроль качества изготовления и сборки двигателя, при необходимости внести корректировки в технологию производства двигателей и не допустить бракованные двигатели в эксплуатацию.

Предлагаемый способ производства газотурбинных двигателей реализуется следующим образом.

Пример 1.

1. Изготавливаем и собираем партию из 10 двигателей любым известным способом.

2. При проведении приемосдаточных испытаний измеряем один из физико-механических параметров на одном режиме для каждого из двигателей, например частоту вращения ротора высокого давления на максимальном режиме для каждого двигателя nВД1=100,6%, nВД2=100,1%, nВД3=99,4%, nВД4=101,1%, nВД5=99,2%, nВД6=99,5%, nВД7=99,4%, nВД8=100,0%, nВД9=99,9%, nВД10=98,1%.

3. Вычисляем среднее арифметическое значение частоты вращения ротора высокого давления на максимальном режиме nВДср=99,7%.

4. Вычисляем несмещенную дисперсию частоты вращения ротора высокого давления на максимальном режиме S2=0,6674.

5. Вычисляем выборочный коэффициент ассиметрии А=-0,1979 и выборочный коэффициент эксцесса Е=-0,3445.

6. Вычисляем среднеквадратичные отклонения ассиметрии Sa=0,579 и эксцесса Se=0,755.

7. Вычисляем величины dA=1,540 и dE=3,429.

8. Проверяем соблюдение неравенств 97,7%<nВД<101,8%, dA>0 и dE>0

9. В связи с тем, что параметры удовлетворяют вышеуказанным неравенствам, эмпирическое распределение значений частоты вращения ротора высокого давления на максимальном режиме считаем нормальным, а производство - стабильным. Следовательно, партию двигателей можно отправлять в эксплуатацию.

Пример 2.

1. Изготавливаем и собираем партию из 8 двигателей любым известным способом.

2. При проведении приемосдаточных испытаний измеряем один из физико-механических параметров на одном режиме для каждого из двигателей, например расход воздуха через двигатель на режиме полного форсажа для каждого двигателя GB1=122,3 кг/с, GB2=122,5 кг/с, GB3=122,4 кг/с, GB4=118,4 кг/с, GB5=122,5 кг/с, GB6=121,9 кг/с, GB7=122,3 кг/с, GB8=121,5% кг/с.

3. Вычисляем среднее арифметическое значение расхода воздуха на режиме полного форсажа GBcp=121,7 кг/с.

4. Вычисляем несмещенную дисперсию расхода воздуха на режиме полного форсажа S2=1,922.

5. Вычисляем выборочный коэффициент ассиметрии А=-1,884 и выборочный коэффициент эксцесса Е=1,7705.

6. Вычисляем среднеквадратичные отклонения ассиметрии Sa=0,603 и эксцесса Se=0,705.

7. Вычисляем величины dA=-0,075 и dE=5,296.

8. Проверяем соблюдение неравенств 116,9 кг/с<GB<126,5 кг/с, dA>0 и dE>0.

9. В связи с тем, что dA<0, эмпирическое распределение значений расхода воздуха не соответствует нормальному закону, а производство является нестабильным. Следовательно, для партии двигателей требуется проверить технологию производства, сборки и испытаний двигателя на наличие отклонений, выявляют и устраняют причину несоответствия и повторно производят оценку стабильности производства настоящим способом.

Способ серийного производства газотурбинных двигателей, при котором изготавливают и собирают партию двигателей, а при приемосдаточных испытаниях n-го количества двигателей измеряют физико-механические параметры на различных режимах каждого из двигателей, отличающийся тем, что для оценки стабильности серийного производства газотурбинных двигателей выбирают один физико-механический параметр на одном режиме для каждого из двигателей, далее определяют среднее арифметическое значение выбранного параметра на выбранном режиме Pcpj по формуле:
где
n - число двигателей;
i - номер двигателя;
j - выбранный режим;
Pij - значение параметра i-го двигателя на j-м режиме;
далее вычисляют несмещенную дисперсию выбранного параметра на выбранном режиме Sj2 по формуле:

затем проверяют соответствие эмпирического распределения параметра нормальному закону распределения, для чего вычисляют выборочный коэффициент ассиметрии А в соответствии с формулой:

и выборочный коэффициент эксцесса Е в соответствии с формулой:

а также величины dA, dE, характеризующие соответствие эмпирического распределения параметра двигателя нормальному закону распределения:
dA=3*Sa-|A|,
dE=5*Se-|E|,
где Sa, Se - среднеквадратичные отклонения асимметрии и эксцесса, определяемые по формулам:


затем проверяют соблюдение неравенств dA>0, dE>0 и
Pcpj-2,5*Sj<Pij<Pcpj+2,5*Sj,
при этом в случае соблюдения вышеприведенных неравенств эмпирическое распределение значений выбранного параметра Р на выбранном режиме j считают нормальным, а производство - стабильным, а в случае несоблюдения вышеприведенных неравенств проверяют технологию производства, сборки и испытаний двигателя на наличие отклонений, выявляют и устраняют причину несоответствия и повторно производят оценку стабильности производства настоящим способом.



 

Похожие патенты:

Наземная информационно-диагностическая система для безопасной эксплуатации авиационного газотурбинного двигателя, содержащая электронную систему управления по меньшей мере два датчика внешних воздействующих факторов, установленных на по меньшей мере одной электронной системе управления во время проведения технического обслуживания, со своими устройствами согласования и аппаратно-программными интерфейсами, блоком памяти и блоком расчета уровня работоспособности.

Изобретение относится к способам технической диагностики ослабления посадки элементов редуктора двигателя по вибрационным параметрам при его испытаниях или в эксплуатации и может найти применение при его доводке, а также для создания систем диагностики двигателя.

Изобретение относится к области двигателестроения и энергомашиностроения и может найти применение при доводке газотурбинных двигателей, а также для создания систем диагностики колебаний.

Изобретение относится к устройству контроля деградации материала и защитных покрытий турбинных лопаток газотурбинных двигателей. Устройство содержит теплоизолятор, установленный на корпусе, крышку со стяжным стержнем и термопарами, электронагреватель, расположенный во внутреннем пространстве устройства, например, вокруг стяжного стержня, испытываемый образец представляет собой полый цилиндр из материала турбинных лопаток, установленный в устройстве между теплоизолятором и крышкой со стяжным стержнем, стяжной стержень проходит во внутреннем пространстве устройства по его оси, причем конец стяжного стержня выступает из корпуса устройства и имеет резьбу, крышка, испытываемый образец, теплоизолятор, корпус стягиваются посредством стяжного стержня с помощью гайки, термопары расположены в крышке на ее поверхности, прижимающей испытываемый образец, и соединены с усилителем сигнала термопар, который в свою очередь соединен с устройством контроля и управления.

Описаны способ и система для испытания компрессора. Для проведения испытания методом подобия выбирают заменитель для HFC-134a.

Изобретение относится к области испытания и технического диагностирования машин, в частности к способу определения эффективной мощности двигателей внутреннего сгорания.

Изобретение относится к техническому обслуживанию вертолетных двигателей. Технический результат - предоставление системы назначения технического обслуживания, которая принимает во внимание множество составляющих уже примененного технического обслуживания, полетные условия эксплуатации и конкретную конфигурацию двигателя, чтобы определить операции по техническому обслуживанию для вертолетного двигателя.

Изобретение относится к конструкциям экспериментальных стендов для испытания струйных насосов (СН), работающих в составе погружных установок для добычи нефти, содержащих электродвигатель, гидрозащиту, электроцентробежный насос и газосепаратор.

Изобретение относится к машиностроению, в частности к определению при испытаниях коэффициента расхода газа через сопловой аппарат турбины, и может быть использовано в двухконтурных газотурбинных двигателях.

Изобретение относится к области диагностирования технического состояния систем управления авиационными газотурбинными двигателями. Способ безопасной эксплуатации авиационного газотурбинного двигателя включает сравнение фактического значения параметра технического состояния элементов конструкции двигателя во время эксплуатации с его предельно допустимым значением и последующее определение остаточного ресурса элементов конструкции двигателя по результатам этого сравнения.

Изобретение касается способа и системы мониторинга измерительной схемы (3), предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю (13) летательного аппарата, при этом система содержит средства обработки (21), выполненные с возможностью построения индикатора состояния упомянутой измерительной схемы, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений. 3 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к системам бортовой диагностики для распознавания ухудшения характеристик компонента из-за умышленного повреждения и способу реагирования на состояния, выявленные в бортовом диагностическом блоке моторного транспортного средства, и сигнализирования об ухудшении характеристик компонента моторного транспортного средства. Способ включает в себя выполнение первого ответного действия, если условия сигнализируют об ухудшении характеристик компонента, обусловленном умышленным повреждением, и выполнение второго ответного действия, если условия сигнализируют об ухудшении характеристик компонента, не обусловленном умышленным повреждением. Предложен также бортовой диагностический блок. Достигается выявление умышленного повреждения в компонентах контроля отработавших газов в течение одиночного цикла вождения. 2 н. и 4 з.п. ф-лы, 6 ил.

Описаны системы и способы оценки эффективности секции паровой турбины. Упомянутые системы и способы включают определение набора данных измерений, получаемых непосредственно от набора датчиков на паровой турбине, определение набора вычисленных данных, связанных с измерениями, которые не могут быть получены непосредственно от упомянутого набора датчиков, и оценку эффективности упомянутой секции с использованием упомянутого набора данных измерений и упомянутого набора вычисленных данных. В описанных способах для оценки эффективности паровых турбин, когда недоступны необходимые физические датчики, используют физические модели в сочетании с методами нелинейной фильтрации. Упомянутые модели описывают поведение различных компонентов электростанции, включая секции паровой турбины, впускные и перепускные трубы, точки слияния потоков, впускные и регулировочные клапаны. Технический результат изобретения - повышение эффективной выработки энергии и снижение эксплуатационных затрат.3 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД, включающем вакуумную камеру 1 со стапелем 2 для установки ЖРД 3 с соплом, имеющим радиационно-охлаждаемый насадок (РОН) 4, газодинамическую трубу 5 с эжектором 6, отсечной клапан 7 в канале газодинамической трубы (ГДТ), охлаждаемые экраны 8 на внутренних стенках вакуумной камеры 1, вакуумную систему 9, магистраль с пускоотсечным клапаном 10, сообщающую полость газодинамической трубы 5 между РОН 4 и отсечным клапаном 7 с вакуумной системой 9. На стыке среза РОН 4 с ГДТ 5 выполнен компенсатор температурного расширения в виде, состоящего из рассчитанной на радиальное температурное расширение РОН 4 тонкостенной цилиндрической или усеченно-конической мембраны 11 из жаростойкой стали, герметично соединенной посредством сварки со стенкой РОН 4 на его срезе и, с другой стороны, - через цилиндрическую стальную проставку 12 с окружающим ГДТ 5, рассчитанным на осевое температурное расширение РОН 4, тонкостенным сильфоном 13 с фланцем 14, который герметично (через уплотнение 15) соединен с фланцем 16 на охлаждаемой внешней стенке тракта охлаждения газодинамической трубы 5, при этом полость ГДТ от РОН 4 до отсечного клапана в канале ГДТ 5 подключена к системе вакуумирования 9 через пускоотсечной клапан 10. Изобретение обеспечивает повышение функциональных возможностей в части обеспечения наиболее полной имитации условий теплообмена, соответствующих объективным условиям при огневых испытаниях ЖРД и ДУ космического назначения. 2 ил.

Изобретение относится к способу и системе диагностики силовой установки с двумя многоступенчатыми турбокомпрессорами. Способ диагностики силовой установки, оборудованной, по меньшей мере, одним турбокомпрессором (2) низкого давления и, по меньшей мере, одним турбокомпрессором (8) высокого давления, при этом турбокомпрессоры являются многоступенчатыми и питают двигатель внутреннего сгорания, а указанной силовой установкой оборудовано автотранспортное средство, согласно изобретению, содержит следующие этапы, на которых определяют режим работы силовой установки, определяют мощность турбины высокого давления (13) в зависимости от первой совокупности данных и в зависимости от режима работы, определяют мощность турбины высокого давления (13) в зависимости от второй совокупности данных, определяют критерий неисправности как соотношение между мощностью турбины высокого давления (13) в зависимости от первой совокупности данных и мощностью турбины высокого давления (13) в зависимости от второй совокупности данных, и сравнивают критерий неисправности с сохраненными в памяти значениями, чтобы определить, существует ли неисправность. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Система двигателя (10) внутреннего сгорания содержит датчик (30) давления в цилиндре, датчик (42) угла поворота коленчатого вала, уплотнительный участок и электронный блок управления (40). Средство вычисления величины тепловыделения, средство вычисления первого отношения и средство определения неисправности уплотнения реализуются электронным блоком управления (40). Датчик (30) давления в цилиндре включает в себя корпус цилиндрической формы, элемент восприятия давления, который размещен на одном конце этого корпуса и выполнен с возможностью восприятия давления в цилиндре, и элемент измерения давления, расположенный внутри корпуса. Элемент измерения давления выполнен с возможностью генерирования выходного сигнала в соответствии с приложенной сжимающей нагрузкой. Датчик (42) угла поворота коленчатого вала измеряет угол поворота коленчатого вала. Уплотнительный участок уплотняет пространство между наружной поверхностью корпуса датчика (30) давления в цилиндре и поверхностью стенки камеры сгорания (14), которая окружает корпус. Средство вычисления величины тепловыделения предназначено для расчета величины тепловыделения в цилиндре, то есть количества тепла, выделенного при сгорании, на основе данных о давлении в цилиндре, которые представляют собой данные, относящиеся к давлению в цилиндре, измеренному с помощью датчика (30) давления в цилиндре. Средство вычисления первого отношения предназначено для вычисления первого отношения, которое представляет собой отношение величины уменьшения величины тепловыделения по отношению к увеличению угла поворота коленчатого вала в период такта расширения от угла поворота коленчатого вала, при котором величина тепловыделения, рассчитываемого средством вычисления величины тепловыделения, демонстрирует максимальное значение, до момента открытия выпускного клапана. Средство определения неисправности уплотнения предназначено для определения наличия или отсутствия неисправности в работе уплотнения уплотнительного участка на основе первого отношения и частоты вращения двигателя. Технический результат заключается в предотвращении ошибки измерения давления в цилиндре. 11 з.п. ф-лы, 27 ил.

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации. В предложенном способе диагностики измеряют уровень вибрации в информативных точках корпуса машины в информативной полосе частот, фиксируют выбросы вибрации, длительность интервалов между выбросами, строят тренды изменения длительности интервалов и их отношений, сравнивают полученные значения с критическими границами, и по результатам сравнения судят о состоянии деталей машины. Согласно изобретению наблюдают изменение тренда вибрации на протяжении всего жизненного цикла машины; селектируют выбросы вибрации во времени; строят тренды длительности интервалов между выбросами вибрации и их отношений; запоминают стадии повреждения деталей машины. Изобретение направлено на предотвращение аварий машин в условиях непрерывной эксплуатации. 2 з.п. ф-лы, 16 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя. Перед испытаниями предварительно выполняют опытный образец диска, соответствующий диску ротора стартера, содержащего обод с лопатками и подободочную часть с утонением в виде двусторонней кольцевой канавки и расположенных равномерно через 120° дополнительных радиальных канавок. Затем уменьшают кольцевое утонение опытного образца диска до меньшей величины, размещают опытный образец диска внутри корпуса и раскручивают до частоты вращения, при которой происходит разрушение. После разрушения опытного образца диска последовательно определяют уровни кинетической энергии для цилиндрических сечений, заданных соответствующими концентричными радиусами, строят график зависимости кинетической энергии от радиуса и по ней определяют величину кинетической энергии для критического сечения. Затем сравнивают величины полученных значений энергий, выбирают максимальное значение кинетической энергии, по ее величине определяют угловую скорость вращения сертификационных испытаний, а по величине последней определяют толщину утонения подободочной части опытного образца диска для сертификационных испытаний. Изобретение позволяет обеспечить гарантированное разрушение диска при выбираемой частоте вращения с допустимым уровнем кинетической энергии по заданному цилиндрическому сечению. 6 ил.

Изобретение относится к устройствам для диагностики систем топливоподачи двигателей внутреннего сгорания (ДВС). Комплекс и реализуемый посредством него способ диагностики предназначены для быстрой, точной, экологически и пожаробезопасной бортовой диагностики на месте и в движении системы подачи бензина (СПБ) автомобильного ДВС, оснащенного системой впрыска бензина при низком давлении. Он включает штатные средства системы бортовой диагностики OBD-II автомобиля, дополнительные средства, диагностический сканер и ПО, совместимое с OBD-II, которое формирует и хранит в памяти электронного блока управления ДВС диагностические коды неисправностей (ДКН) компонентов СПБ, а также осуществляет обработку и визуализацию информации в виде цифр и совмещенных графиков в реальном времени текущих значений параметров СПБ. Способ диагностики заключается в том, что на основании результатов анализа полученной информации о ДКН и параметрах СПБ определяют достоверный диагноз СПБ и локализуют дефект, что является необходимым условием своевременной нормализации функционирования ДВС и токсичности отработавших газов. 2 н.п. ф-лы, 24 ил.

Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин. Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин снабжено источником давления газа, подключенным к смесительному ресиверу через регулятор расхода газовой смеси, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего. Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру. 4 з.п. ф-лы, 4 ил.
Наверх