Объектив бинокулярного микроскопа лампы щелевой

Объектив содержит последовательно установленные вдоль оптической оси первый и второй асферические отрицательные мениски и асферическую двояковыпуклую линзу. Первый мениск имеет первую обращенную к плоскости предмета асферическую вогнутую поверхность и вторую выпуклую сферическую поверхность. Второй мениск имеет первую обращенную к плоскости предмета сферическую выпуклую поверхность и вторую асферическую вогнутую поверхность. Двояковыпуклая линза имеет первую асферическую и вторую сферическую поверхности. Все линзы изготовлены из различных марок стекла. Коэффициент дисперсии νC первой и второй линз 25<νC<35, что в 2÷2,5 раза меньше коэффициента дисперсии материала третьей линзы. Выполняются соотношения: , , , где , , , - фокусные расстояния объектива, первой, второй и третьей линз. Световой диаметр Dсв1 первой линзы объектива и общая длина объектива Lоб находятся в соотношении 0,85<Lоб/Dсв1<0,9. Технический результат - повышение уровня аберрационной коррекции при условии неизменности основных параметров объектива. 1 ил., 1 табл.

 

Изобретение относится к области оптического приборостроения, а именно к объективам бинокулярных микроскопов, и может быть использовано в таких офтальмологических приборах, как лампы щелевые.

Известна лампа щелевая серии SL-P [SL-P, 2006, Загорский оптико-механический завод, ТУ 9442-027-07516244-2006], которая предназначена для визуального биомикроскопического исследования переднего и заднего отделов глаза. Данное устройство содержит блок осветителя, служащий для освещения глазного дна пациента при наблюдении, наблюдательный прибор - бинокулярный микроскоп, блок передачи изображения участка глаза на внешнее устройство. Бинокулярный микроскоп лампы щелевой представляет собой оптико-механическую систему, состоящую из объектива, галилеевских телескопических трубок и бинокулярной приставки. Объектив бинокулярного микроскопа лампы щелевой является однокомпонентной оптической системой, предназначенной для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, точностью воспроизведения по форме и цвету объекта исследования и выполненный в виде одного компонента, содержащего последовательно расположенные вдоль оптической оси по ходу лучей отрицательный мениск, обращенный выпуклой поверхностью к плоскости предмета, и склеенную с отрицательным мениском положительную двояковыпуклую линзу. Фокусное расстояние объектива бинокулярного микроскопа на длине волны λ=546 нм составляет относительное отверстие объектива К недостаткам оптической системы объектива бинокулярного микроскопа лампы щелевой серии SL-P, так же, как и любого устройства объектива, содержащего оптические элементы, имеющие только сферические поверхности, относятся низкий уровень качества изображения, обусловленный наличием различных видов аберраций. Так в объективе бинокулярного микроскопа лампы щелевой серии SL-P отрицательный мениск, обращенный выпуклостью к предметной плоскости, вносит значительную по величине отрицательную сферическую аберрацию, положительную кому, дисторсию и небольшой по величине астигматизм, а положительная двояковыпуклая линза вносит значительную по величине положительную сферическую аберрацию, отрицательную кому, частично корригируя сферическую аберрацию и кому, но вносит значительный астигматизм и дисторсию.

Задачей заявленного изобретения является создание объектива бинокулярного микроскопа лампы щелевой с улучшенным качеством изображения, а именно обладающего высоким уровнем аберрационной коррекции при условии неизменности основных параметров объектива: фокусного расстояния, относительного отверстия объектива.

Техническим решением поставленной задачи является объектив бинокулярного микроскопа лампы щелевой, содержащий расположенные последовательно вдоль оптической оси объектива по ходу распространения лучей асферический отрицательный мениск, обращенный вогнутой поверхностью к плоскости предмета, асферический отрицательный мениск, обращенный выпуклой поверхностью к плоскости предмета, и асферическую двояковыпуклую линзу.

Технический результат обусловлен отличительными особенностями объектива бинокулярного микроскопа лампы щелевой, к которым относятся:

1. состав объектива, содержащий расположенные последовательно по ходу распространения лучей вдоль оптической оси:

а. первый асферический отрицательный мениск, имеющий первую обращенную к плоскости предмета асферическую вогнутую поверхность и вторую выпуклую сферическую поверхность;

б. второй асферический отрицательный мениск, имеющий первую обращенную к плоскости предмета сферическую выпуклую поверхность и вторую асферическую вогнутую поверхность;

в. третью асферическую положительную двояковыпуклую линзу, имеющую первую обращенную к плоскости предмета асферическую выпуклую поверхность и вторую сферическую выпуклую поверхность;

2. профиль асферических поверхностей второго порядка всех трех линз объектива, который определяется согласно выражению:

где i - порядковый номер линзы объектива; - координата точки на асферической поверхности i-той линзы в направлении оптической оси объектива; q - координата точки на асферической поверхности линзы в направлении, перпендикулярном оптической оси объектива; Ri - радиус кривизны при вершине асферической поверхности i-той линзы объектива; ki - коэффициент деформации второго порядка асферической поверхности i-той линзы объектива;

3. материал линз объектива - все линзы изготовлены из различных марок стекла, причем коэффициент дисперсии νC первой и второй линз объектива удовлетворяет условию 25<νC<35, что в 2÷2,5 раза меньше коэффициента дисперсии материала третьей линзы;

4. фокусные расстояния объектива и линз объектива находятся в следующих соотношениях:

где , , , - фокусные расстояния объектива, первого отрицательного мениска, второго отрицательного мениска и третьей двояковыпуклой линзы соответственно;

5. световой диаметр Dсв1 первой линзы объектива и общая длина объектива Lоб находятся в соотношении:

0,85<Lоб/Dсв1<0,9.

Сущность изобретения поясняется чертежом, на котором представлена оптическая схема объектива бинокулярного микроскопа лампы щелевой с указанием хода лучей. В состав предложенного объектива 1 входят установленные по ходу распространения лучей асферический отрицательный мениск 2, имеющий первую обращенную к плоскости предмета вогнутую асферическую поверхность А и вторую выпуклую сферическую поверхность, асферический отрицательный мениск 3, имеющий первую обращенную к плоскости предмета выпуклую сферическую поверхностью и вторую вогнутую асферическую поверхность Б, и асферическая двояковыпуклая линза 4, имеющая первую обращенную к плоскости предмета выпуклую асферическую поверхность В и вторую выпуклую сферическую поверхность.

Предлагаемый объектив бинокулярного микроскопа лампы щелевой работает следующим образом.

Световой поток от предметной плоскости, в которой размещен объект наблюдения, проходит последовательно через асферический отрицательный мениск 2, который является силовым компонентом объектива 1 и обращен вогнутой асферической поверхностью А к объекту, асферический отрицательный мениск 3, который является компенсирующим аберрации элементом и обращен к объекту выпуклой сферическщй поверхностью, асферическую двояковыпуклую линзу 4, являющуюся силовым компонентом объектива 1 и обращенную к объекту выпуклой асферической поверхностью В, и поступает на вход узла смены увеличения бинокулярного микроскопа.

Выбор оптических сил и материала отрицательного мениска 2 и двояковыпуклой линзы 4 обеспечивает компенсацию продольного хроматизма объектива 1.

Вогнутая асферическая поверхность отрицательного мениска 2 вносит отрицательную сферическую аберрацию и тем самым компенсирует сферическую аберрацию объектива 1.

Вогнутая асферическая поверхность отрицательного мениска 3 вносит значительную по величине отрицательную сферическую аберрацию, положительные кому и дисторсию, отрицательный астигматизм. Отрицательный мениск 3 обладает малой оптической силой и в составе объектива 1 выполняет функцию коррекционного компонента, осуществляющего компенсацию остаточных полевых и хроматических аберраций.

Выпуклая асферическая поверхность двояковыпуклой линзы 4 вносит положительные сферическую аберрацию, астигматизм и кривизну поля зрения, а также отрицательные кому и дисторсию, тем самым компенсируя кому и дисторсию объектива 1.

Результатом реализации заявленного технического решения является объектив бинокулярного микроскопа лампы щелевой, имеющий:

1. конструктивные параметры, приведенные в таблице:

1 - радиус при вершине асферической поверхности А линзы 2; асферическая поверхность второго порядка выполнена в соответствии с уравнением профиля:

где , q - координаты точки профиля асферической поверхности А линзы 2; R1 - радиус кривизны при вершине асферической поверхности А линзы 2 объектива 1, принимающий значение R1=-82,5; k1 - коэффициент деформации второго порядка асферической поверхности А линзы 2 объектива 1, принимающий значение k1=7,2683;

2 - радиус при вершине асферической поверхности Б линзы 3; асферическая поверхность второго порядка выполнена в соответствии с уравнением профиля:

где , q - координаты точки профиля асферической поверхности Б линзы 3; R2 - радиус кривизны при вершине асферической поверхности Б линзы 3 объектива 1, принимающий значение R2=38,16; k2 - коэффициент деформации второго порядка асферической поверхности Б линзы 3 объектива 1, принимающий значение k2=0,1346;

3 - радиус при вершине асферической поверхности В линзы 4; асферическая поверхность второго порядка выполнена в соответствии с уравнением профиля:

где , q - координаты точки профиля асферической поверхности В линзы 4; R3 - радиус кривизны при вершине асферической поверхности В линзы 4 объектива 1, принимающий значение R3=68,46; k3 - коэффициент деформации второго порядка асферической поверхности В линзы 4 объектива 1, принимающий значение k3=2,1248.

2. оптические характеристики:

- относительное отверстие

- фокусное расстояние

- передний фокальный отрезок SF=-105,25 мм;

- задний фокальный отрезок S′F=119,55 мм;

- длина от первой поверхности до предметной плоскости L=105 мм;

- световой диаметр первой поверхности Dсв1=44,0 мм;

- световой диаметр последней поверхности Dсв2=44,0 мм;

- коэффициент светопропускания, не менее 0,85;

- коэффициент рассеяния, не более 0,03;

- основная длина волны λ=546 нм.

Техническим результатом реализации предлагаемого изобретения является объектив бинокулярного микроскопа лампы щелевой с улучшенным по сравнению с прототипом качеством изображения за счет достижения высокого уровня аберрационной коррекции по всему полю зрения в условиях неизменности основных параметров объектива, таких как фокусное расстояние и относительное отверстие объектива. Высокое качество изображения, получаемого с использованием предлагаемого изобретения, обеспечивает в свою очередь высокое качество визуального биомикроскопического исследования и фотографирования переднего и заднего отделов глаза, осуществляемых с помощью лампы щелевой, бинокулярный микроскоп которой содержит объектив с асферическими линзами.

Конструктивные параметры предложенного технического решения реализованы в серийно выпускаемых лампах щелевых. Технические характеристики используемых в них объективов, указанные в заявленном изобретении, полностью удовлетворяют функциональным требованиям и назначению таких офтальмологических приборов, как лампы щелевые.

Объектив бинокулярного микроскопа лампы щелевой содержит последовательно установленные вдоль оптической оси по ходу распространения лучей первый асферический отрицательный мениск, второй асферический отрицательный мениск, асферическую двояковыпуклую линзу и отличается тем, что первый асферический отрицательный мениск имеет первую обращенную к плоскости предмета асферическую вогнутую поверхность и вторую выпуклую сферическую поверхность, второй асферический отрицательный мениск имеет первую обращенную к плоскости предмета сферическую выпуклую поверхность и вторую асферическую вогнутую поверхность, третья асферическая положительная двояковыпуклая линза имеет первую обращенную к плоскости предмета асферическую выпуклую поверхность и вторую сферическую выпуклую поверхность, при этом профиль асферических поверхностей второго порядка всех трех линз объектива определяется согласно выражению:
,
где i - порядковый номер линзы объектива, - координата точки на асферической поверхности i-й линзы в направлении оптической оси объектива, q - координата точки на асферической поверхности линзы в направлении, перпендикулярном оптической оси объектива, Ri - радиус кривизны при вершине асферической поверхности i-й линзы объектива, ki - коэффициент деформации второго порядка асферической поверхности i-й линзы объектива,
все линзы изготовлены из различных марок стекла, причем коэффициент дисперсии νC первой и второй линз объектива удовлетворяет условию 25<νC<35, что в 2÷2,5 раза меньше коэффициента дисперсии материала третьей линзы, при этом имеют место следующие соотношения:
,
,
,
где , , , - фокусные расстояния объектива, первого отрицательного мениска, второго отрицательного мениска и третьей двояковыпуклой линзы соответственно,
а световой диаметр Dсв1 первой линзы объектива и общая длина объектива Lоб находятся в соотношении 0,85<Lоб/Dсв1<0,9.



 

Похожие патенты:

Окуляр с вынесенным зрачком содержит пять линз, объединенных в три оптических компонента, из которых первые два компонента со стороны плоскости изображения выполнены в виде склеенных линз, а глазной компонент - в виде положительной менисковой линзы, обернутой вогнутостью к глазу наблюдателя.

Изобретение может быть использовано в качестве фотографического объектива. Объектив состоит из двух компонентов, разделенных воздушным промежутком.

Объектив содержит по ходу луча три компонента. Первый компонент выполнен в виде положительного мениска, склеенного из двояковыпуклой и двояковогнутой линз и обращенного вогнутой стороной к плоскости изображений.

Изобретение относится к оптическому приборостроению и может быть использовано в различных оптических системах, например в приемных каналах, работающих с ПЗС-матрицами.

Изобретение относится к оптическому приборостроению и может быть использовано в качестве приемного объектива в оптических приборах, работающих с различными фотоприемными устройствами.

Изобретение относится к области оптического приборостроения и может быть использовано в качестве апохроматического объектива в астрономических телескопах для визуального наблюдения и фотографирования.

Объектив // 2239212

Изобретение может быть использовано в объективах микроскопов для наблюдения и фотографирования малоконтрастных микроскопических структур. Микрообъектив содержит последовательно расположенные пять компонентов.

Микрообъектив может быть использован в микроскопах для визуального наблюдения, вывода на TV-камеру и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.
Изобретение может быть использовано в микроскопах, а также для визуального наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Изобретение может быть использовано в микроскопах, а также для визуального наблюдения и вывода на TV-камеру малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Изобретение может быть использовано в микроскопах для наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Микрообъектив содержит последовательно расположенные пять компонентов. Первый компонент - положительный мениск, обращенный выпуклостью к пространству изображения.

Микрообъектив содержит пять компонентов. Первый компонент содержит мениск, обращенный выпуклостью к пространству изображения и склеенный из отрицательного мениска, обращенного выпуклостью к пространству изображения, и размещенной перед ним положительной линзы.

Микрообъектив может быть использован для визуального наблюдения в большом поле зрения с большим контрастом изображения. Микрообъектив содержит последовательно расположенные четыре компонента.

Микрообъектив может быть использован для исследования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов.

Способ включает предварительное измерение технологические погрешностей линзовых узлов и расчет по ним величины изменения одного из воздушных промежутков и углы поворота каждого линзового узла вокруг оси наружного цилиндра линзового узла.

Нашлемная широкоугольная коллиматорная дисплейная оптическая система содержит проектор, включающий в себя жидкокристаллический дисплей, линзовую проекционную систему, состоящую из трех компонентов, двухзеркальный компонент и светоделительное коллимирующее вогнутое зеркало, соединяющее изображения от внешнего пространства и от жидкокристаллического дисплея.
Наверх