Способ упрочнения режущего инструмента

Изобретение относится к машиностроению, в частности к изготовлению режущих деталей машин и режущего инструмента. Способ упрочнения режущего инструмента включает нанесение на режущую поверхность износостойкого покрытия, при этом осуществляют предварительную струйно-абразивную обработку режущей поверхности, а нанесение износостойкого покрытия осуществляют газопламенным напылением до толщины получаемого слоя от 0,5 до 3 мм с одновременным локальным охлаждением, после чего охлаждают режущую поверхность и производят ее заточку. После газопламенного напыления можно проводить оплавление покрытия, износостойкое покрытие можно напылять с чередующимися твердыми и пластичными слоями или из смеси твердых и пластичных порошков. Изобретение направлено на повышение износостойкости режущего инструмента с получением эффекта самозатачивания. 3 з.п. ф-лы, 1 пр.

 

Изобретение относится к машиностроению, в частности к изготовлению режущих деталей машин и режущего инструмента.

Известен способ упрочнения режущих деталей машин и инструментов, при котором при изготовлении детали оставляют технологический припуск на "мягкой" поверхности режущих граней, сопрягающихся у лезвия, проводят химико-термическую обработку на толщину слоя, превышающую технологический припуск, выполняют упрочняющую термообработку (закалку и отпуск) сердцевины и диффузионного слоя, сошлифовывают (затачивают) часть толщины диффузионного слоя "мягкой" поверхности, снимая технологический припуск, подвергающейся большему износу, по мере накопления дефектов износа лезвия дошлифовывают (затачивают) "мягкую" поверхность. (Патент РФ № 2131468, МПК C21D 9/18, С23С 8/32, приор. от 10.12.1997, опубл. 10.06.1999.)

Однако известный способ имеет высокую трудоемкость, связанную с проведением химико-термической обработки, закалки, отпуска и механической обработки, требует изготовления деталей с технологическим припуском. Кроме того, известный способ подходит только для упрочнения сталей с высоким содержанием углерода.

Известен способ нанесения износостойких покрытий на рабочую поверхность деталей почвообрабатывающих машин, включающий дуговую наплавку рабочей поверхности вдоль линий армирования износостойким присадочным материалом большей плотности, чем основной металл детали с созданием сжимающих напряжений на толщину рабочей поверхности при охлаждении детали, причем наплавку рабочей поверхности вдоль линий армирования выполняют в виде точек износостойкого материала толщиной слоя 0,8-2,0 мм, расположенных на расстоянии друг от друга, обеспечивающем перекрытие промежутков основного металла между соседними точками в направлении перемещения рабочей поверхности детали, при этом наплавку каждой последующей точки вдоль линий армирования выполняют со скоростью, обеспечивающей перекрытие зон термического влияния соседних точек с образованием закалочной структуры на толщину основного металла рабочей поверхности (Патент РФ № 2464358, МПК С23С 26/00, В23K 9/04, С23С 4/12, приор. от 11.04.2011, опубл. 20.10.2012), который принят за прототип. Однако известный способ, принятый за прототип, не обеспечивает получение равномерного покрытия, что снижает износостойкость инструмента и имеет высокую трудоемкость, связанную с точечной наплавкой. Кроме того, при наплавке снижается прочность материала основы в связи с высокотемпературным воздействием.

Технической задачей, на решение которой направлено заявляемое изобретение, является повышение износостойкости режущего инструмента с получением эффекта самозатачивания и снижение трудоемкости процесса упрочнения.

Сущность предлагаемого способа заключается в том, что наносят на режущую поверхность износостойкое покрытие, в отличие от прототипа осуществляют предварительную струйно-абразивную обработку режущей поверхности до заданной шероховатости, а нанесение износостойкого покрытия осуществляют газопламенным напылением до толщины получаемого слоя от 0,5 до 3 мм с одновременным локальным охлаждением, после чего охлаждают режущую поверхность и производят ее заточку.

Кроме того, после газопламенного напыления производят оплавление покрытия.

Кроме того, износостойкое покрытие напыляют с чередующимися твердыми и пластичными слоями.

Кроме того, износостойкое покрытие напыляют из смеси твердых и пластичных порошков.

Технический результат заключается в повышении рабочего ресурса инструмента с увеличением времени до его перезаточки, снижении трудоемкости процесса упрочнения, снижении разупрочнения материала основы.

Предложенная совокупность существенных признаков заявляемого способа позволяет получать равномерные по толщине покрытия с высокой твердостью до 62-65 HRC и возможностью упрочнения инструмента любых габаритов. При этом за счет неравномерного износа основы и упрочняющего покрытия создается эффект самозатачивания и увеличивается время до повторной заточки инструмента. При этом процесс упрочнения имеет минимальную трудоемкость и высокую производительность. Следует также отметить, что применение газопламенной горелки с периферическим охлаждением позволяет уменьшить разупрочнение основы из-за термического воздействия. Чередование слоев или использование смеси порошков с повышенной и пониженной твердостью и использование смеси повышает ударную вязкость покрытия, препятствует образованию хрупких трещин и сколов. Заявляемый способ может использоваться для упрочнения такого режущего инструмента, как лемехи плугов, ножи, резцы и пр.

Заявляемый способ упрочнения режущего инструмента заключается в том, что сначала производят обработку рабочей поверхности до получения заданной шероховатости, затем наносят износостойкое газопламенное покрытие, причем напыление ведут с одновременным охлаждением. Затем охлаждают рабочую поверхность и производят заточку инструмента. Также покрытие могут напылять с чередующимися твердыми и пластичными слоями или из смеси твердого и пластичного порошка. В качестве материала для напыления выбирают, например, твердый порошок ПН70Х17С4Р4 и пластичный порошок ПН85Ю15. Дополнительно могут производить оплавление покрытия после газопламенного напыления.

Примером реализации предлагаемого способа может служить процесс нанесения износостойкого покрытия на серию лемехов сельскохозяйственных плугов.

Сначала производят механическую очистку и струйно-абразивную обработку поверхности до шероховатости 140-160 мкм. Затем напыляют на рабочую поверхность газопламенным методом покрытие с чередующимися слоями из порошка ПН70Х17С4Р4 и ПН85Ю15 до получения слоя толщиной 1,5 мм, причем напыление ведут с одновременным охлаждением. Затем охлаждают рабочую поверхность на воздухе и производят заточку инструмента.

Проведенные экспериментальные исследования, показали что, использование заявляемого способа по сравнению с прототипом обеспечивает повышение износостойкости инструмента в 1,4 раза и увеличение времени до перезаточки режущей кромки в 1,8 раза. Кроме того, практически полностью отсутствует разупрочнение основы, в то время как по способу-прототипу наблюдается рост зерна и снижение твердости основы.

Способ упрочнения режущего инструмента может быть осуществлен с помощью известных в технике средств. Следовательно, он соответствует критерию «промышленная применимость».

Использование заявляемого способа обеспечивает значительное повышение износостойкости режущего инструмента, увеличение времени до его повторной заточки, возможность упрочнения крупногабаритного инструмента и повышение производительности процесса.

1. Способ упрочнения режущего инструмента, включающий нанесение на режущую поверхность износостойкого покрытия, отличающийся тем, что осуществляют предварительную струйно-абразивную обработку режущей поверхности, а нанесение износостойкого покрытия осуществляют газопламенным напылением до толщины получаемого слоя от 0,5 до 3 мм с одновременным локальным охлаждением, после чего охлаждают режущую поверхность и производят ее заточку.

2. Способ по п. 1, отличающийся тем, что после газопламенного напыления производят оплавление покрытия.

3. Способ по п. 1, отличающийся тем, что износостойкое покрытие напыляют с чередующимися твердыми и пластичными слоями.

4. Способ по п. 1, отличающийся тем, что износостойкое покрытие напыляют из смеси твердых и пластичных порошков.



 

Похожие патенты:

Изобретение относится к износостойким покрытиям, которые могут быть использованы в поршневых кольцах двигателей внутреннего сгорания. Износостойкое покрытие для поршневых колец содержит, мас.%: Fe от 15 до 25, WC от 10 до 25 , Cr от 30 до 40, Ni от 10 до 25, Mo от 10 до 25, C от 1 до 10 , Si от 0,1 до 2, причем Cr присутствует в покрытии в элементарной форме и в форме карбида Cr2C3, при этом общая доля карбидов составляет от 15 до 50 мас.

Изобретение относится к способу эпитаксиального нанесения ремонтного материала на поверхность (38) подложки, полученной направленной кристаллизацией, и может быть использовано для ремонта деталей газотурбинного двигателя.

Группа изобретений относится к изготовлению поликристаллического материала и изделий, содержащих этот материал для защиты от повреждений. Способ изготовления поликристаллического материала включает получение гранулированной структуры-предшественника, включающей железо, кремний и источник углерода или азота, нагрев структуры-предшественника, нанесение на основу слоя нагретой структуры-предшественника и охлажение слоя структуры-предшественника.

Изобретение относится к способу получения функциональных покрытий (варианты) и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике.

Изобретение относится к области газотермических покрытий, более конкретно к плазменному напылению на детали, эксплуатируемые в экстремальных условиях. Способ нанесения износостойкого покрытия на стальные детали, включающий ввод дисперсного порошка самофлюсующегося сплава на основе никеля через кольцевую щель в воздушно-плазменную струю с последующей газодинамической фокусировкой и напыление его на предварительно обработанную поверхность стальной детали, отличающийся тем, что используют порошок самофлюсующегося сплава на основе никеля состава Ni-Cr-B-Si-C или Ni-Al, частицы которого плакированы твердорастворным сплавом Ni-Cr с толщиной слоя 2-6 мкм, при этом в качестве фокусирующего газа используют смесь воздуха и природного газа, взятых в соотношении природный газ : воздух =(1,86÷4,88):1, а напыление осуществляют при среднемассовой температуре струи плазмы 5750÷6500 К и ее среднемассовой скорости 2170÷2500 м/с.

Изобретение относится к способу изготовления конструктивной детали, содержащей один или несколько функциональных элементов, таких как опорно-уплотнительные элементы прокладок для блока цилиндров или камер сгорания.

Изобретение относится к способу газодинамического напыления антикоррозионного покрытия из коррозионно-стойкой композиции на поверхности контейнера для транспортировки и/или хранения отработавшего ядерного топлива, выполненного из высокопрочного чугуна с шаровидным графитом и может быть использовано, например, для покрытия полости контейнера, служащей для приема отработавшего ядерного топлива.

Изобретение относится к способам получения наноматериалов модификацией поверхности металлсодержащих каркасных соединений, которые могут быть использованы в качестве высокопористых эффективных гетерогенных катализаторов гидрирования непредельных соединений, фотокатализаторов в солнечных батареях.

Изобретение относится к устройству для плазменного нанесения цветного рисунка на поверхность полотна и может быть применено для создания живописи как на металле, так и на не металлических поверхностях любой формы, расположенных как на близких, так и на значительных расстояниях от красителя.
Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок.

Изобретение может быть использовано для плазменного напыления многофункциональных покрытий в приборо- и машиностроении, а также при изготовлении внутрикостных имплантатов с металлическими и композиционными покрытиями. Рабочий газ подают в дугу, горящую между катодом и медным анодом, с образованием плазменной струи. Напыляемый материал подают в плазменную струю струей транспортирующего газа на предварительно обработанную поверхность. Плазменное напыление проводят в вакуумной среде при качательном движении плазмотрона перпендикулярно направлению его движения и дополнительно воздействуют на напыляемую поверхность импульсными газовыми разрядами с током 90±2 A при длительности импульсов тока 0,2±0,02 с и с частотой повторения импульсов 50±2 Гц. Качательное движение плазмотрона осуществляется с углом качения 15-25° с частотой 20-40 движений в минуту и длиной поступательного движения 10-15 мм со скоростью перемещения 20-30 движений в минуту. Способ обеспечивает получение покрытия, сформированного из частиц с оптимальными характеристиками адгезии и равномерности покрытия. 1 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности. Способ получения высокотемпературного многослойного композита на поверхности металлической детали с помощью высокоскоростного газопламенного напыления включает обработку поверхности высокоскоростным газопламенным напылением в защитной атмосфере предварительно механически активированного порошка NiAl с эффектом памяти формы с получением слоя толщиной 120-500 мкм с последующим пластическим деформированием при нагреве ниже температуры начала мартенситного превращения, получение высокотемпературного слоя путем высокоскоростного газопламенного напыления в защитной атмосфере предварительно механически активированной смеси порошков из Si, Y, BN, С, Со, Ni3Al, при их соотношении вес. %: Si 4-13, Y 2-3, BN 12-20, С 2-8, Со 3-10, Ni3Al - остальное, толщиной 150-500 мкм. Затем проводят нагрев при температуре на 30-35°C выше солидуса с последующим старением в две ступени. На первой ступени осуществляют нагрев до температуры 1000-1100°C с выдержкой 1-1,5 часа, на второй ступени - нагрев до температуры 900-950°C с выдержкой 2,5-3 часа. В качестве защитной атмосферы при высокоскоростном газопламенном напылении используют аргон. Обеспечивается повышение жаропрочных характеристик, снижение времени и стоимости процесса. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию наноструктурированных износостойких материалов конструкционного назначения и может быть использовано для повышения долговечности деталей машин в промышленности. Способ высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие включает нанесение нижнего слоя покрытия толщиной 20-100 мкм из механически активированного порошка Ni, среднего слоя - толщиной 50-500 мкм из механически активированного порошка с эффектом памяти формы на основе TiNi и верхнего слоя - толщиной 50-500 мкм из механически активированной смеси порошков из В4С, WC, (Cr3C2 или CSi), Со, Ni, С, при их соотношении вес.%: В4С 35-80, WC 7-40, (Cr3C2 или CSi) 7-30, Со 1-5, Ni 4-7, С 1-3. Затем проводят отжиг при температуре 600-800°С в течение 0,5-1 ч. После нанесения среднего слоя из сплава с эффектом памяти формы на основе TiNi осуществляют его поверхностное пластическое деформирование при нагревании в интервале температур мартенситного превращения на величину до 4-10% от толщины слоя. Механическую активацию порошков и высокоскоростное газопламенное напыление производят в защитной атмосфере. Обеспечивается повышение прочностных характеристик и износостойкости композитных покрытий с использованием материалов с эффектом памяти формы. 3 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия включает формирование на металлической поверхности композитной структуры металл-оксид при совместном распылении металлов, при этом получаемое покрытие из оксида циркония стабилизируют иттрием и создают градиентный переходный слой, содержащий две фазы в виде металлической фазы с составом, соответствующим составу защищаемой поверхности, и диэлектрической фазы, содержащей оксид циркония, стабилизированный иттрием, нанесенной на упомянутую металлическую фазу. Соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Для создания градиентного переходного слоя используют магнетронную систему с двумя магнетронами, причем при помощи первого магнетрона распыляют мишень из никелевого сплава, состав которого соответствует составу металлического изделия, а при помощи второго магнетрона распыляют мишень из циркония с добавками стабилизирующего элемента иттрия. Первоначальное распыление мишеней осуществляют в атмосфере аргона, при этом интенсивность атомного потока, сформированного от упомянутой первой мишени, превышает интенсивность атомного потока от упомянутой второй мишени. После формирования первичного сплошного слоя из никелевого сплава в рабочую камеру подают кислород для обеспечения реактивного распыления с образованием в напыляемой пленке оксида циркония при неокисленном никеле. В процессе напыления парциальное давление кислорода плавно увеличивают до давления 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения, после чего продолжают напыление оксида циркония до достижения пленкой из него требуемой толщины. При проведении указанных операций формируется плавный переход от упомянутого слоя из никелевого сплава к пленке из оксида циркония с механическими свойствами, плавно изменяющимися по толщине получаемого слоя, с обеспечением изотропного распределения внутренних напряжений при циклических термонагрузках. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии.
Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия включает формирование на металлической поверхности композитной структуры металл-оксид при совместном напылении металлов и напыление пленки оксида циркония до достижения ею требуемой толщины. В получаемом покрытии, содержащем оксид циркония, стабилизированный иттрием, создают градиентный переходный слой, содержащий две фазы в виде металлической фазы с составом, соответствующим составу защищаемой поверхности, и диэлектрической фазы, содержащей оксид циркония, при этом соотношение фаз в переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Для получения указанного градиентного переходного слоя используют магнетронную систему с двумя магнетронами. При помощи первого магнетрона распыляют первую мишень из никелевого сплава, состав которого соответствует составу металлического изделия, а при помощи второго магнетрона распыляют вторую мишень из циркония с добавками иттрия. Первоначальное распыление мишеней осуществляют в среде аргона, при этом интенсивность атомного потока, сформированного от первой мишени из упомянутого никелевого сплава, превышает интенсивность атомного потока от второй циркониевой мишени. После формирования первичного сплошного слоя из никелевого сплава в рабочую камеру подают кислород с обеспечением реактивного напыления с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом в процессе напыления парциальное давление кислорода плавно увеличивают до давления 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из упомянутого никелевого сплава, уменьшают вплоть до его полного отключения. Обеспечиваются механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии покрытия на рабочих поверхностях деталей.

Изобретение относится к способу нанесения покрытия путем термического напыления, в частности к нанесению покрытия на внутреннюю поверхность гильзы цилиндра путем плазменно-дугового напыления. Способ включает нанесение покрытия из сплава на внутреннюю поверхность цилиндра посредством вращения аппарата для плазменного напыления вокруг проволоки и перемещения аппарата вдоль продольной оси цилиндра, так что покрытие наносится на внутреннюю поверхность цилиндра по окружности и вдоль осевого направления цилиндра, при этом аппарат содержит сопло плазменной горелки, к которому подводят плазменный газ, и вспомогательные сопла, к которым подводят транспортирующий газ, изменение расхода транспортирующего газа и/или плазменного газа осуществляют с помощью управляющего элемента в зависимости от осевого положения аппарата внутри цилиндра, причем первый более низкий расход газа осуществляют в области верхней мертвой точки и в области нижней мертвой точки, а второй, более высокий расход газа, - в средней области и в верхней области у крышки гильзы цилиндра двигателя, при этом область верхней мертвой точки примыкает к верхней области у крышки и к средней области, а к средней области примыкает область нижней мертвой точки цилиндра. 5 з.п. ф-лы, 2 ил.

Изобретение относится к системам и устройствам для получения продуктов из распыленных металлов и сплавов. Получают поток жидкого сплава и/или ряд капель жидкого сплава. Жидкий сплав распыляют для получения электрически заряженных частиц жидкого сплава бомбардировкой электронами потока жидкого сплава и/или ряда капель жидкого сплава. Электрически заряженные частицы жидкого сплава ускоряют по меньшей мере одним из электрического поля и электромагнитного поля. Ускоряющиеся частицы жидкого сплава охлаждают до температуры меньшей, чем температура солидуса частиц жидкого сплава, так что частицы жидкого сплава затвердевают во время ускорения. Твердые частицы сплава соударяются с подложкой, и ударяющиеся частицы деформируются и металлургически связываются с подложкой, образуя твердую заготовку сплава. Обеспечивается получение мелкозернистой гомогенной структуры заготовок. 5 н. и 32 з.п. ф-лы, 26 ил.

Изобретение относится к области металлургии, а именно к деформационно-термической обработке покрытий титан-никель-гафний с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине. Способ получения наноструктурированного покрытия титан-никель-гафний с высокотемпературным эффектом памяти формы на стали, включающий нанесение порошка TiNiHf путем высокоскоростного газопламенного напыления, проведение пластической деформации покрытия в четыре этапа, на первом этапе в интервале температур 500-550°C со степенью пластической деформации ε=6-9%, на втором этапе в интервале температур 570-600°C со степенью пластической деформации ε=9-12%, на третьем этапе в интервале температур 600-700°C со степенью пластической деформации ε=12-15%, на четвертом этапе в интервале температур 850-890°C со степенью пластической деформации ε=15-40%, при этом после каждого этапа пластической деформации проводят отжиг при температуре 500-600°C в течение 2-3 часов, и последующую закалку при температуре 900-950°C с последующим охлаждением. Пластическую деформацию покрытия осуществляют обкаткой посредством трехроликового приспособления в радиальном направлении в защитной среде аргона и при пропускании электрического тока в зоне контакта трехроликового приспособления с покрытием Ti-Ni-Hf. В покрытии Ti-Ni-Hf с эффектом памяти формы содержится 19-23% гафния. Обеспечивается получение многофункционального наноструктурированного покрытия с эффектом памяти формы. 2 з.п. ф-лы, 1табл., 1 пр.

Изобретение относится к способу армирования передней кромки (16) лопасти (12) для ее защиты, а также к лопасти с армированием и может найти применение при изготовлении или восстановлении лопасти турбинного двигателя, вертолета или пропеллера. Армирование выполняют путем нанесения металлического покрытия (32) на переднюю кромку (16) термическим напылением армирующего материала (30) под давлением. Перед выполнением этапа термического напыления под давлением в лопасти (12) по обе стороны от передней кромки (16) образуют по меньшей мере одну продольную канавку (41, 43). Армирующий материал наносят в упомянутые канавки (41, 43). 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области получения электрических контактов, в частности к формированию на медных электрических контактах покрытий на основе вольфрама, никеля и меди, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошков вольфрама и никеля, взятых в соотношении 10:1 массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы W-Ni-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30. Изобретение направлено на получение на медных контактах электроэрозионностойкого покрытия с высокой адгезией с основой на уровне когезии. 2 пр., 2 ил.
Наверх