Система мониторинга измерительной схемы турбореактивного двигателя

Изобретение касается способа и системы мониторинга измерительной схемы (3), предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю (13) летательного аппарата, при этом система содержит средства обработки (21), выполненные с возможностью построения индикатора состояния упомянутой измерительной схемы, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений. 3 н. и 4 з.п. ф-лы, 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области мониторинга измерительного канала авиационного двигателя и, в частности, к системе мониторинга прерывистых контактов измерительной схемы.

СОСТОЯНИЕ ИЗВЕСТНОГО УРОВНЯ ТЕХНИКИ

Обычно измерительная схема содержит два резервированных канала, предназначенных для сбора в течение времени физических измерений, относящихся к турбореактивному двигателю летательного аппарата. Эти измерения могут являться измерениями температуры, давления, режима, LVDT (Linear Variable Differential Transformer) и т.д. Каждый измерительный канал содержит зонд, связанный через соединители и жгуты с вычислителем, контролирующим турбореактивный двигатель.

Таким образом, прерывистый контакт, вызванный случайным заземлением или прерывистым образом разомкнутой цепью, может появляться со временем на уровне соединителей, жгутов, или даже внутри зонда. Прерывистые контакты могут быть вызваны сильной вибрацией, и/или малой силой удержания, и/или наличием загрязнения, и/или коррозией в точке соединения и т.д. Эти прерывистые контакты могут создавать, в зависимости от типа технологии измерительной схемы и используемого фильтра, нарушения типа системных паразитных ошибок или пики на измерительном сигнале исследуемой измерительной схемы.

В настоящее время не существует решения для мониторинга прерывистых контактов, не считая использования аварийных статусов, выдаваемых при регулировании, функцией которого является управление двигателем. В рамках настоящего изобретения и во всем описании под «регулированием» понимают анализ входных сигналов, осуществленный вычислителем для проверки того, что измерение не является ошибочным. Этот анализ, осуществляемый на уровне программного обеспечения вычислителя, включает тесты на правдоподобие и расхождения.

Тест на правдоподобие (или зональный тест) применим ко всем не дискретным измерениям. Этот тест основан на сравнении входного сигнала с минимальным порогом и максимальным порогом с выработкой слова правильности, указывающего, что входной сигнал находится в или вне диапазона правдоподобия.

Тесты на расхождения (или перекрестный контроль) включают обычно три теста: первый тест на расхождение между двумя резервированными каналами измерительной схемы, второй тест на расхождение между измерением первого канала (локальный канал) и соответствующей моделью (если модель измерения доступна, что не всегда имеет место), а третий тест на расхождение между измерением второго канала (другого канала) и соответствующей моделью. Следует отметить, что если никакая модель измерения не является доступной, то можно осуществить тест на расхождение относительно опорного измерения (например, измерение давления летательного аппарата). Когда никакая модель и никакой ориентир недоступны, осуществляется только тест между каналами.

Когда два измерения двух каналов правильны относительно теста на правдоподобие, вычислитель осуществляет тест на расхождение между ними. Действительно, возможно, что измерения являются правильными с электрической точки зрения, и они включены в диапазон правдоподобия, но отличаются одно от другого. В этом случае вычислитель старается обнаружить это расхождение, так как это означает, что одно из двух измерений неверно (или даже оба). Однако определение расхождения между измерениями не позволяет локализовать неверное измерение. Так, для локализации неисправности вычислитель осуществляет тест на расхождение между измерением каждого канала и заранее заданной соответствующей моделью.

Когда тест на правдоподобие или расхождение признан недействительным, слово обслуживания снимается, то есть его бит становится единицей. Следует отметить, что, в общем, большинство слов обслуживания, которые не влияют на работу двигателя, извлекаются только во время периодических осмотров (проверка А), или, при необходимости, в случае неисправности, требующей устранения неполадок (troubleshooting) двигателя.

Кроме того, при каждом получении измерения вычислитель определяет слово выбора (или SST - Selection Status) в зависимости от правильности различных тестов на правдоподобие и расхождения между каналами или относительно модели.

В качестве примера фиг. 6 представляет таблицу выбора резервированного измерения турбореактивного двигателя.

Первый и второй столбцы представляют статусы правильности относительно тестов на правдоподобие первого и второго каналов соответственно. Третий столбец представляет статус модели. Четвертый, пятый и шестой столбцы представляют статусы правильности, касающиеся тестов на расхождение между первым и вторым каналами, между первым каналом и моделью и между вторым каналом и моделью соответственно. Седьмой столбец (обведенный волнистой линией) представляет величину или канал, выбранный вычислителем, а последний столбец представляет слово выбора SST, которое обозначает статус выбора.

Следует отметить, что в зависимости от соответствующего двигателя слова выбора SST могут принимать одно и то же значение для различных входных сигналов в таблице выбора. Следует отметить, что этот случай не касается всех турбореактивных двигателей и может изменяться в зависимости от изготовителя двигателя.

Например, в первой строке таблицы выбора все тесты действительны, вычислитель принимает среднее значение измерений двух каналов, и слово выбора SST равно 1. В седьмой и восьмой строках тест на правдоподобие в одном из каналов является неверным, и вычислитель выбирает действующий канал, причем словом выбора SST также является 1. Таким образом, один из тестов на правдоподобие или расхождение между каналами может быть недействительным, однако это не изменяет значения слова выбора SST, которое остается, таким образом, с номинальным значением 1.

Эта неоднозначность значения слова выбора SST, которая проявляется в самых маловероятных случаях отказа (недействительный тест на расхождение, но локализация неисправного канала возможна, или тест на правдоподобие недействующего канала, но обеспечение исправности другого канала), не позволяет предоставлять точных сведений об измерительной схеме.

Кроме того, следует отметить, что пороги расхождений рассчитаны таким образом, чтобы не ухудшить тягу и управляемость двигателя и, особенно, не вызвать ложных тревог.

В частности, тесты на правдоподобие имеют в качестве пределов пределы диапазона измерений датчика, расширенного вследствие точности полной измерительной цепи и увеличенного на порог безопасности.

В том, что касается теста на расхождение, значение порога рассчитывается, обычно, с увеличением в два с половиной раза полной шкалы точности измерительной схемы. Чтобы оставаться надежным, этот тест является намеренно широким и позволяет большое отклонение измерения прежде, чем его статус станет недействительным.

Таким образом, диагностические тесты, предоставляемые регулированием, не позволяют соответствующим образом осуществить мониторинг прерывистых явлений в измерительной схеме.

Объектом настоящего изобретения является предложение системы мониторинга прерывистых контактов и шума в измерительной схеме турбореактивного двигателя для обнаружения или прогнозирования неисправности, которая может привести к отказу.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к системе мониторинга измерительной схемы, предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю летательного аппарата, при этом упомянутая система содержит средства обработки, выполненные с возможностью построения индикатора состояния упомянутой измерительной схемы, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений.

Это позволяет наблюдать прерывистые и развивающиеся явления для прогнозирования отказа на более или менее длительный срок.

В соответствии с первым вариантом воплощения система содержит средства получения для получения в течение времени упомянутых измерений, получаемых измерительной схемой, а средства обработки выполнены с возможностью построения упомянутых слов состояния с использованием тестов на правдоподобие и расхождение между резервированными каналами упомянутой измерительной схемы, причем упомянутые тесты на правдоподобие и расхождение определены в соответствии с порогами параметрирования, выбранными специально для мониторинга измерительной схемы.

Это увеличивает гибкость системы мониторинга и позволяет строить слова состояния, общие для всех измерений при оптимизации мониторинга прерывистых явлений.

Предпочтительно, средства обработки выполнены с возможностью изменения значений порогов параметрирования в зависимости от наблюдаемой величины, измеренной измерительной схемой.

Так, значения порогов могут быть изменены и сжаты для того, чтобы соответствовать искомой информации.

В соответствии со вторым вариантом воплощения система содержит средства получения для извлечения упомянутых слов состояния из вычислителя, связанного с упомянутой измерительной схемой, причем упомянутые слова состояния соответствуют словам выбора (SST), уже вычисленным посредством вычислителя в зависимости от правильности тестов на правдоподобие, расхождение между резервированными каналами упомянутой измерительной схемы и расхождений относительно модели упомянутых каналов. Это позволяет уменьшить вычислительную нагрузку.

В соответствии с третьим вариантом воплощения система содержит средства получения для извлечения слов состоянии из вычислителя, связанного с упомянутой измерительной схемой, при этом упомянутые слова состояния соответствуют словам обслуживания, предварительно определенным упомянутым вычислителем, исходя из признанных недействительными тестов на правдоподобие или расхождения. Это также позволяет уменьшить вычислительную нагрузку, будучи применимым ко всем объектам.

Предпочтительно, средства обработки выполнены с возможностью вычисления индикатора разброса для каждого резервированного канала, содержащегося в упомянутой измерительной схеме. Это позволяет выдавать информацию о состоянии каждого резервированного канала измерительной схемы.

Предпочтительно, средства обработки выполнены с возможностью анализа в полете изменения полетных индикаторов состояния для обнаружения прерывистых контактов в упомянутой измерительной схеме.

Предпочтительно, в случае обнаружения прерывистых контактов, средства обработки выполнены с возможностью анализа в полете изменения полетных индикаторов разброса для локализации неисправного канала.

Изобретение относится также к турбореактивному двигателю летательного аппарата, содержащему, по меньшей мере, одну измерительную схему и систему мониторинга в соответствии с одним из предшествующих вариантов.

Изобретение касается также способа мониторинга измерительной схемы, предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю летательного аппарата, упомянутый способ включает в себя этап построения индикатора состояния упомянутой измерительной схемы, основанный на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылкой на сопровождающие чертежи, на которых:

Фиг. 1 схематично изображает систему мониторинга измерительной схемы турбореактивного двигателя летательного аппарата в соответствии с изобретением;

Фиг. 2 представляет блок-схему, иллюстрирующую способ мониторинга измерительной схемы турбореактивного двигателя летательного аппарата в соответствии с предпочтительным вариантом воплощения по изобретению;

Фиг. 3 представляет собой таблицу конфигурации, показывающую построение слов состояния в соответствии с предпочтительным вариантом воплощения изобретения;

Фиг. 4 представляет таблицу построения индикаторов состояния в соответствии с изобретением;

Фиг. 5А и 5В изображают блок-схемы способа мониторинга измерительной схемы турбореактивного двигателя летательного аппарата в соответствии с другими вариантами воплощения изобретения; и

Фиг. 6 представляют собой таблицу выбора, показывающую построение слова выбора для резервированного измерения турбореактивного двигателя.

ДЕТАЛЬНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ВОПЛОЩЕНИЯ

Идея, лежащая в основе изобретения, заключается в извлечении индикатора состояния измерительной схемы турбореактивного двигателя для наблюдения прерывистых и развивающихся явлений, специфических для измерительной схемы.

Фиг. 1 схематично изображает систему мониторинга измерительной схемы двигателя или турбореактивного двигателя летательного аппарата по изобретению.

Изображенная измерительная схема 3 содержит два резервированных канала 3а, 3b, предназначенных для сбора в течение времени физических измерений, относящихся к турбореактивному двигателю. Эти измерения могут соответствовать одному параметру или наблюдаемой величине среди следующих наблюдаемых величин: температуры, давления, режимы, LVDT, и т.д.

Первый канал 3а содержит первый зонд (или датчик) 5а, соединенный с вычислителем 7 с помощью первой серии соединителей 9а и жгутов 11а. Второй канал 3b включает в себя второй зонд 5b, связанный с вычислителем 7 с помощью второй серии соединителей 9b и жгутов 11b. Вычислитель 7 (например, FADEC) предназначен для работы с измерениями, предоставляемыми измерительными схемами для контроля двигателя или турбореактивного двигателя 13.

Система 1 мониторинга содержит средства 15 получения для получения данных, касающихся турбореактивного двигателя 13 от измерительной схемы 3 и/или вычислителя 7, средства хранения 17, средства вывода 19 и средства 21 обработки информации для выполнения одной или более компьютерных программ, содержащих инструкции программного кода, хранящиеся в средствах 17 хранения и предназначенных для осуществления мониторинга измерительной схемы 3.

В соответствии с изобретением средства 21 обработки выполнены с возможностью построения индикатора состояния измерительной схемы 3, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель (или весовое значение) правильности соответствующих последующих измерений.

Более конкретно, индикатор состояния соответствует матрице, содержащей пропорции возникновения переходов последовательных слов состояния в процессе полета.

Индикаторы состояния в процессе различных полетов могут быть записаны в базе данных, хранящихся, например, в средствах хранения 17 для последующей перекомпиляции с точки зрения анализа тенденции (trending - англ. яз.) для прогнозирования случая отказа измерительной схемы 3 и локализации оборудования, ответственного за ошибочное измерение.

Фиг. 2 представляет блок - схему, иллюстрирующую способ мониторинга измерительной схемы турбореактивного двигателя летательного аппарата в соответствии с предпочтительным вариантом воплощения изобретения.

В блоке Е1 средства получения 21 выполнены таким образом, чтобы получать в течение времени измерения (блок Е11), собранные по резервированным каналам 3а, 3b измерительной схемы 3 (блоки Е12, Е13). Кроме того, средства 21 обработки выполнены с возможностью построения слов состояния (блок Е14) с использованием тестов на правдоподобие (блоки Е15, Е16) и расхождение между резервированными каналами (блок Е17) измерительной схемы 3 в соответствии с логикой (блок Е18), которая может быть выражена частной таблицей конфигурации, изображенной на фиг. 3.

Первый и второй столбцы таблицы, изображенной на фиг. 3, представляют статусы правильности, относящиеся к тестам на правдоподобие первого канала 3а и второго канала 3b соответственно. Третий столбец представляет статус правильности, относящийся к тесту расхождения между каналами 3а и 3b. Четвертый столбец представляет слово состояния, определенное целым числом, выбранным из пяти чисел. Например, когда все тесты являются действительными, слово состояния является равным 1. Напротив, когда два теста на правдоподобие являются недействительными, слово состояния является равным 5.

Таким образом, в отличие от регулирования, только тесты на правдоподобие Е15, Е16 двух каналов 3а, 3b и тест на расхождение между каналами 3а и 3b используются для построения слов состояния. Сравнение с возможной моделью или внешним измерением не имеет отношения к мониторингу прерывистых контактов.

Это позволяет построить таблицу конфигурации слов состояния простым образом и общим для всех измерений в отличие от таблиц выбора регулирования, которые являются специфическими для каждой наблюдаемой величины или типа измерений и которые содержат больше входных сигналов (см. фиг. 6).

Кроме того, тесты на правдоподобие Е15, Е16 и расхождение Е17 определены в соответствии с порогами параметрирования, выбранными специально для мониторинга измерительной схемы 3. Сетка порогов параметрирования по изобретению является триплетом, образованным нижним порогом теста на правдоподобие, верхним порогом теста на правдоподобие и порогом теста на расхождение. Эта сетка может быть создана ограниченной до достижения естественного разброса расхождения между каналами. Таким образом, эти пороги выбраны более узкими, чем те, которые выбраны для регулирования.

Действительно, наблюдая в полете изменение измерения в стабильной фазе, отмечают, что расхождение между каналами составляет примерно на два порядка меньшую величину, чем порог теста на расхождение при регулировании. Значительные переходы создают более значительные точечные расхождения, но последние составляют величину меньшего порядка, чем порог расхождения, фиксируемый при регулировании. Таким образом, пороги, фиксируемые для регулирования (в частности, для теста расхождения между каналами), представляются широкими с точки зрения надежности.

Так как мониторинг прерывистых контактов измерительной схемы 3 не имеет ни тех же целей, ни тех же ограничений, что и регулирование, то эти пороги, предпочтительно, ограничены для того, чтобы в большей степени соответствовать искомой информации.

Предпочтительно, средства обработки 21 выполнены с возможностью изменения значений порогов параметрирования в зависимости от наблюдаемой величины, измеряемой в измерительной схеме 3.

Кроме того, с каждой наблюдаемой величиной можно связать несколько сеток параметрирования. Действительно, для порога теста на расхождение можно выбрать какую-либо величину, находящуюся в интервале от естественного шума измерения до порога регулирования.

В блоке Е2 средства обработки 21 извлекают индикатор состояния измерительной схемы 3 на основании слов состояния, созданных в процессе полета в блоке Е1.

Фиг. 4 изображает таблицу построения индикатора состояния. Последний является квадратной матрицей порядка 5 «подсчета», коэффициенты которой соответствуют числу переходов между последовательными словами состояния, созданными в процессе полета.

В частности, строки (i=1 - i=5) представляют собой весовые значения (1-5 соответственно) слов состояния в момент t, а столбцы (j=1 - j=5) представляют собой весовые значения (1-5 соответственно) слов состояния в следующий момент t+1. Таким образом, каждый коэффициент aij представляет собой счетчик, указывающий количество последовательных переходов между словом состояния с весовым значением i и словом состояния с весовым значением j в процессе полета.

В начале полета матрица подсчета является пустой (то есть нулевой матрицей) и постепенно (то есть в каждый момент t) увеличивают счетчик соответствующего коэффициента. Увеличение зависит от измеренной наблюдаемой величины, так как не все наблюдаемые величины измеряются на одной и той же частоте.

Например, в случае исправной измерительной схемы 3 в течение всего полета будут иметь место только переходы от слова состояния значением 1 к слову состояния значением 1. Это формирует матрицу, в которой все коэффициенты являются нулевыми за исключением коэффициента а11, который будет равен продолжительности полета, умноженной на частоту получения измерений. Кроме того, следует отметить, что для заданной наблюдаемой величины (температура, давление, режим, и т.д.) можно построить несколько матриц подсчета: одна матрица для каждой сетки параметрирования.

Индикатор состояния может легко передаваться на землю средствами вывода 19. Следует отметить, что матрица подсчета является относительно небольшой (например, 5×5), что уменьшает стоимость передачи сообщений, содержащих индикаторы состояния различных наблюдаемых величин.

В блоке Е3 средства обработки 21 выполнены с возможностью анализировать в полете изменение полетных индикаторов состояния для обнаружения прерывистых контактов в измерительной схеме 3.

Действительно, каждый индикатор состояния, извлекаемый в течение каждого текущего полета, может быть записан в средства хранения 17. Это позволяет осуществлять мониторинг за тенденциями изменения измерения, зная, что прерывистое явление создает от полета к полету особые характерные признаки ухудшения, которые позволяют прогнозировать отказ на более или менее длительный срок.

В блоке Е4, если прогноз ухудшения подтверждается на нескольких рейсах, сработает сигнализация. Это позволяет избежать ложных тревог.

Следует отметить, что в случае, когда только тест на расхождение является недействительным, индикатор состояния, извлекаемый в блоке Е3, не позволяет локализовать неисправный канал.

Таким образом, в блоке Е6 средства обработки 21 выполнены с возможностью вычисления из измерений (блок 5) дополнительного индикатора разброса для каждого резервированного канала 3а, 3b измерительной схемы 3. Индикатор разброса может соответствовать максимальному значению типового расхождения в текущем полете или значению, взятому в качестве типового расхождения, скользящего в процессе перехода слова состояния.

В случае, когда прерывистые контакты обнаружены (блок Е4), средства обработки 21 выполнены с возможностью анализа изменения полетных индикаторов разброса от полета к полету для локализации неисправного канала (блок Е7). В частности, информация из блоков Е4 и Е5 анализируется в блоке Е7 для определения неисправного канала. Действительно, канал, имеющий большой разброс (то есть канал с сильным разбросом или большими шумами), подтверждает проблему прерывистого контакта в этом канале.

Фиг. 5А и 5В изображают блок-схемы, иллюстрирующие способ мониторинга измерительной схемы турбореактивного двигателя летательного аппарата в соответствии со вторым и третьим вариантами воплощения изобретения.

Варианты воплощения по фиг. 5А и 5В отличаются от варианта по фиг. 2 только природой и происхождением слов состояния.

Действительно, на фиг. 5А все блоки идентичны блокам на фиг. 2 за исключением блока Е1, который заменен блоком Е101.

В блоке Е101 средства 15 получения выполнены с возможностью извлечения слов состояния из вычислителя 7, связанного с измерительной схемой 3. В соответствии с этим вторым вариантом воплощения слова состояния соответствуют словам выбора SST регулирования, уже вычисленным вычислителем 7, в зависимости от правильности тестов на правдоподобие, расхождения между резервированными каналами измерительной схемы 3 и расхождения относительно модели (см. фиг. 6). Следует отметить, что таблицы построения слов выбора SST являются специфическими для каждой наблюдаемой величины.

В варианте воплощения по фиг. 5В все блоки также идентичны блокам по фиг. 2 за исключением блока Е1, который заменен блоком Е102.

В блоке Е102 средства 15 получения выполнены с возможностью извлечения слов состояния из вычислителя 7, связанного с измерительной схемой 3. В соответствии с эти третьим вариантом воплощения слова состояния соответствуют словам обслуживания, предварительно определенным вычислителем 7, исходя из тестов на правдоподобие или расхождения, которые могут быть действительными или недействительными.

Варианты воплощения по фиг. 5А и 5В позволяют уменьшить время вычисления, зная, что слова состояния уже определены при регулировании. Однако этот выигрыш во времени вычислений происходит в ущерб точности, так как эти слова состояния являются следствием тестов с менее ограниченными порогами.

Таким образом, выбор между тремя вариантам воплощения может осуществляться в зависимости от имеющихся данных и ограничений точности, времени вычисления и стоимости передач.

1. Система мониторинга измерительной схемы (3), предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю (13) летательного аппарата, отличающаяся тем, что она содержит:
- средства обработки (21), выполненные с возможностью построения индикатора состояния упомянутой измерительной схемы, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений, и
- средства получения (15) для получения в течение времени упомянутых измерений, собираемых измерительной схемой (3),
а также тем, что средства обработки (21) выполнены с возможностью построения упомянутых слов состояния с использованием тестов на правдоподобие и расхождение между резервированными каналами упомянутой измерительной схемы (3), при этом упомянутые тесты на правдоподобие и расхождение определены в соответствии с порогами параметрирования, выбранными специально для мониторинга измерительной схемы.

2. Система по п. 1, отличающаяся тем, что средства обработки (21) выполнены с возможностью изменения значений порогов параметрирования в зависимости от наблюдаемой величины, измеренной измерительной схемой.

3. Система по одному из предыдущих пунктов, отличающаяся тем, что средства обработки (21) выполнены с возможностью вычисления индикатора разброса для каждого резервированного канала, имеющегося в упомянутой измерительной схеме.

4. Система по п. 1 или 2, отличающаяся тем, что средства обработки (21) выполнены с возможностью анализа в полете изменения полетных индикаторов состояния для обнаружения прерывистых контактов в упомянутой измерительной схеме.

5. Система по п. 4, отличающаяся тем, что в случае обнаружения прерывистых контактов средства обработки (21) выполнены с возможностью анализа в полете изменения полетных индикаторов разброса с целью локализации неисправного канала.

6. Турбореактивный двигатель летательного аппарата, содержащий, по меньшей мере, одну измерительную схему и систему мониторинга по одному из предыдущих пунктов.

7. Способ мониторинга измерительной схемы (3), предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю (13) летательного аппарата, отличающийся тем, что упомянутый способ включает в себя этап построения индикатора состояния упомянутой измерительной схемы, основанный на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений, и этап построения упомянутых слов состояния с использованием тестов на правдоподобие и расхождение между резервированными каналами упомянутой измерительной схемы (3), при этом упомянутые тесты на правдоподобие и расхождение определены в соответствии с порогами параметрирования, специально выбранными для мониторинга измерительной схемы.



 

Похожие патенты:

Изобретение относится к области турбомашиностроения, а именно к способам оценки стабильности серийного производства газотурбинных двигателей.Технический результат изобретения - возможность оценки стабильности серийного производства газотурбинных двигателей на этапе приемосдаточных испытаний.

Наземная информационно-диагностическая система для безопасной эксплуатации авиационного газотурбинного двигателя, содержащая электронную систему управления по меньшей мере два датчика внешних воздействующих факторов, установленных на по меньшей мере одной электронной системе управления во время проведения технического обслуживания, со своими устройствами согласования и аппаратно-программными интерфейсами, блоком памяти и блоком расчета уровня работоспособности.

Изобретение относится к способам технической диагностики ослабления посадки элементов редуктора двигателя по вибрационным параметрам при его испытаниях или в эксплуатации и может найти применение при его доводке, а также для создания систем диагностики двигателя.

Изобретение относится к области двигателестроения и энергомашиностроения и может найти применение при доводке газотурбинных двигателей, а также для создания систем диагностики колебаний.

Изобретение относится к устройству контроля деградации материала и защитных покрытий турбинных лопаток газотурбинных двигателей. Устройство содержит теплоизолятор, установленный на корпусе, крышку со стяжным стержнем и термопарами, электронагреватель, расположенный во внутреннем пространстве устройства, например, вокруг стяжного стержня, испытываемый образец представляет собой полый цилиндр из материала турбинных лопаток, установленный в устройстве между теплоизолятором и крышкой со стяжным стержнем, стяжной стержень проходит во внутреннем пространстве устройства по его оси, причем конец стяжного стержня выступает из корпуса устройства и имеет резьбу, крышка, испытываемый образец, теплоизолятор, корпус стягиваются посредством стяжного стержня с помощью гайки, термопары расположены в крышке на ее поверхности, прижимающей испытываемый образец, и соединены с усилителем сигнала термопар, который в свою очередь соединен с устройством контроля и управления.

Описаны способ и система для испытания компрессора. Для проведения испытания методом подобия выбирают заменитель для HFC-134a.

Изобретение относится к области испытания и технического диагностирования машин, в частности к способу определения эффективной мощности двигателей внутреннего сгорания.

Изобретение относится к техническому обслуживанию вертолетных двигателей. Технический результат - предоставление системы назначения технического обслуживания, которая принимает во внимание множество составляющих уже примененного технического обслуживания, полетные условия эксплуатации и конкретную конфигурацию двигателя, чтобы определить операции по техническому обслуживанию для вертолетного двигателя.

Изобретение относится к конструкциям экспериментальных стендов для испытания струйных насосов (СН), работающих в составе погружных установок для добычи нефти, содержащих электродвигатель, гидрозащиту, электроцентробежный насос и газосепаратор.

Изобретение относится к машиностроению, в частности к определению при испытаниях коэффициента расхода газа через сопловой аппарат турбины, и может быть использовано в двухконтурных газотурбинных двигателях.

Изобретение относится к системам бортовой диагностики для распознавания ухудшения характеристик компонента из-за умышленного повреждения и способу реагирования на состояния, выявленные в бортовом диагностическом блоке моторного транспортного средства, и сигнализирования об ухудшении характеристик компонента моторного транспортного средства. Способ включает в себя выполнение первого ответного действия, если условия сигнализируют об ухудшении характеристик компонента, обусловленном умышленным повреждением, и выполнение второго ответного действия, если условия сигнализируют об ухудшении характеристик компонента, не обусловленном умышленным повреждением. Предложен также бортовой диагностический блок. Достигается выявление умышленного повреждения в компонентах контроля отработавших газов в течение одиночного цикла вождения. 2 н. и 4 з.п. ф-лы, 6 ил.

Описаны системы и способы оценки эффективности секции паровой турбины. Упомянутые системы и способы включают определение набора данных измерений, получаемых непосредственно от набора датчиков на паровой турбине, определение набора вычисленных данных, связанных с измерениями, которые не могут быть получены непосредственно от упомянутого набора датчиков, и оценку эффективности упомянутой секции с использованием упомянутого набора данных измерений и упомянутого набора вычисленных данных. В описанных способах для оценки эффективности паровых турбин, когда недоступны необходимые физические датчики, используют физические модели в сочетании с методами нелинейной фильтрации. Упомянутые модели описывают поведение различных компонентов электростанции, включая секции паровой турбины, впускные и перепускные трубы, точки слияния потоков, впускные и регулировочные клапаны. Технический результат изобретения - повышение эффективной выработки энергии и снижение эксплуатационных затрат.3 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД, включающем вакуумную камеру 1 со стапелем 2 для установки ЖРД 3 с соплом, имеющим радиационно-охлаждаемый насадок (РОН) 4, газодинамическую трубу 5 с эжектором 6, отсечной клапан 7 в канале газодинамической трубы (ГДТ), охлаждаемые экраны 8 на внутренних стенках вакуумной камеры 1, вакуумную систему 9, магистраль с пускоотсечным клапаном 10, сообщающую полость газодинамической трубы 5 между РОН 4 и отсечным клапаном 7 с вакуумной системой 9. На стыке среза РОН 4 с ГДТ 5 выполнен компенсатор температурного расширения в виде, состоящего из рассчитанной на радиальное температурное расширение РОН 4 тонкостенной цилиндрической или усеченно-конической мембраны 11 из жаростойкой стали, герметично соединенной посредством сварки со стенкой РОН 4 на его срезе и, с другой стороны, - через цилиндрическую стальную проставку 12 с окружающим ГДТ 5, рассчитанным на осевое температурное расширение РОН 4, тонкостенным сильфоном 13 с фланцем 14, который герметично (через уплотнение 15) соединен с фланцем 16 на охлаждаемой внешней стенке тракта охлаждения газодинамической трубы 5, при этом полость ГДТ от РОН 4 до отсечного клапана в канале ГДТ 5 подключена к системе вакуумирования 9 через пускоотсечной клапан 10. Изобретение обеспечивает повышение функциональных возможностей в части обеспечения наиболее полной имитации условий теплообмена, соответствующих объективным условиям при огневых испытаниях ЖРД и ДУ космического назначения. 2 ил.

Изобретение относится к способу и системе диагностики силовой установки с двумя многоступенчатыми турбокомпрессорами. Способ диагностики силовой установки, оборудованной, по меньшей мере, одним турбокомпрессором (2) низкого давления и, по меньшей мере, одним турбокомпрессором (8) высокого давления, при этом турбокомпрессоры являются многоступенчатыми и питают двигатель внутреннего сгорания, а указанной силовой установкой оборудовано автотранспортное средство, согласно изобретению, содержит следующие этапы, на которых определяют режим работы силовой установки, определяют мощность турбины высокого давления (13) в зависимости от первой совокупности данных и в зависимости от режима работы, определяют мощность турбины высокого давления (13) в зависимости от второй совокупности данных, определяют критерий неисправности как соотношение между мощностью турбины высокого давления (13) в зависимости от первой совокупности данных и мощностью турбины высокого давления (13) в зависимости от второй совокупности данных, и сравнивают критерий неисправности с сохраненными в памяти значениями, чтобы определить, существует ли неисправность. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Система двигателя (10) внутреннего сгорания содержит датчик (30) давления в цилиндре, датчик (42) угла поворота коленчатого вала, уплотнительный участок и электронный блок управления (40). Средство вычисления величины тепловыделения, средство вычисления первого отношения и средство определения неисправности уплотнения реализуются электронным блоком управления (40). Датчик (30) давления в цилиндре включает в себя корпус цилиндрической формы, элемент восприятия давления, который размещен на одном конце этого корпуса и выполнен с возможностью восприятия давления в цилиндре, и элемент измерения давления, расположенный внутри корпуса. Элемент измерения давления выполнен с возможностью генерирования выходного сигнала в соответствии с приложенной сжимающей нагрузкой. Датчик (42) угла поворота коленчатого вала измеряет угол поворота коленчатого вала. Уплотнительный участок уплотняет пространство между наружной поверхностью корпуса датчика (30) давления в цилиндре и поверхностью стенки камеры сгорания (14), которая окружает корпус. Средство вычисления величины тепловыделения предназначено для расчета величины тепловыделения в цилиндре, то есть количества тепла, выделенного при сгорании, на основе данных о давлении в цилиндре, которые представляют собой данные, относящиеся к давлению в цилиндре, измеренному с помощью датчика (30) давления в цилиндре. Средство вычисления первого отношения предназначено для вычисления первого отношения, которое представляет собой отношение величины уменьшения величины тепловыделения по отношению к увеличению угла поворота коленчатого вала в период такта расширения от угла поворота коленчатого вала, при котором величина тепловыделения, рассчитываемого средством вычисления величины тепловыделения, демонстрирует максимальное значение, до момента открытия выпускного клапана. Средство определения неисправности уплотнения предназначено для определения наличия или отсутствия неисправности в работе уплотнения уплотнительного участка на основе первого отношения и частоты вращения двигателя. Технический результат заключается в предотвращении ошибки измерения давления в цилиндре. 11 з.п. ф-лы, 27 ил.

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации. В предложенном способе диагностики измеряют уровень вибрации в информативных точках корпуса машины в информативной полосе частот, фиксируют выбросы вибрации, длительность интервалов между выбросами, строят тренды изменения длительности интервалов и их отношений, сравнивают полученные значения с критическими границами, и по результатам сравнения судят о состоянии деталей машины. Согласно изобретению наблюдают изменение тренда вибрации на протяжении всего жизненного цикла машины; селектируют выбросы вибрации во времени; строят тренды длительности интервалов между выбросами вибрации и их отношений; запоминают стадии повреждения деталей машины. Изобретение направлено на предотвращение аварий машин в условиях непрерывной эксплуатации. 2 з.п. ф-лы, 16 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя. Перед испытаниями предварительно выполняют опытный образец диска, соответствующий диску ротора стартера, содержащего обод с лопатками и подободочную часть с утонением в виде двусторонней кольцевой канавки и расположенных равномерно через 120° дополнительных радиальных канавок. Затем уменьшают кольцевое утонение опытного образца диска до меньшей величины, размещают опытный образец диска внутри корпуса и раскручивают до частоты вращения, при которой происходит разрушение. После разрушения опытного образца диска последовательно определяют уровни кинетической энергии для цилиндрических сечений, заданных соответствующими концентричными радиусами, строят график зависимости кинетической энергии от радиуса и по ней определяют величину кинетической энергии для критического сечения. Затем сравнивают величины полученных значений энергий, выбирают максимальное значение кинетической энергии, по ее величине определяют угловую скорость вращения сертификационных испытаний, а по величине последней определяют толщину утонения подободочной части опытного образца диска для сертификационных испытаний. Изобретение позволяет обеспечить гарантированное разрушение диска при выбираемой частоте вращения с допустимым уровнем кинетической энергии по заданному цилиндрическому сечению. 6 ил.

Изобретение относится к устройствам для диагностики систем топливоподачи двигателей внутреннего сгорания (ДВС). Комплекс и реализуемый посредством него способ диагностики предназначены для быстрой, точной, экологически и пожаробезопасной бортовой диагностики на месте и в движении системы подачи бензина (СПБ) автомобильного ДВС, оснащенного системой впрыска бензина при низком давлении. Он включает штатные средства системы бортовой диагностики OBD-II автомобиля, дополнительные средства, диагностический сканер и ПО, совместимое с OBD-II, которое формирует и хранит в памяти электронного блока управления ДВС диагностические коды неисправностей (ДКН) компонентов СПБ, а также осуществляет обработку и визуализацию информации в виде цифр и совмещенных графиков в реальном времени текущих значений параметров СПБ. Способ диагностики заключается в том, что на основании результатов анализа полученной информации о ДКН и параметрах СПБ определяют достоверный диагноз СПБ и локализуют дефект, что является необходимым условием своевременной нормализации функционирования ДВС и токсичности отработавших газов. 2 н.п. ф-лы, 24 ил.

Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин. Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин снабжено источником давления газа, подключенным к смесительному ресиверу через регулятор расхода газовой смеси, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего. Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком через отключенный двигатель летательного аппарата. Затем летательный аппарат устанавливают на силоизмерительной платформе в положении, перевернутом на 180°. Продувают испытательную камеру рабочей средой с протоком через работающий двигатель летательного аппарата, измеряют величину газодинамического импульса потока на выходе из двигателя, силу сопротивления летательного аппарата, подъемную силу, величины крутящих моментов и давления на обтекаемых поверхностях. Дополнительно измеряют расход топлива двигателем. Определяют дальность маршевого участка полета летательного аппарата. Изобретение направлено на расширение функциональных возможностей при проведении исследований. 2 ил.
Наверх