Система сепарации водогазонефтяной смеси

Изобретение относится к нефтедобывающей промышленности, в частности к установкам сепарации водогазонефтяной смеси, и направлено на повышение степени утилизации попутного нефтяного газа. Система сепарации водогазонефтяной смеси включает трубопровод подачи сырья, соединенный с блоком сепарации сырья, имеющим отвод водонефтяной эмульсии, и содержит не менее двух ступеней сепарации, каждая из которых имеет вход для сырья и отводы попутного нефтяного газа, соединенные с газовым сепаратором, имеющим отвод газа потребителю. Система дополнительно содержит струйное устройство сепарации потока, расположенное на входе трубопровода подачи сырья, выполненное в виде конфузорно-диффузорного перехода, имеющего профиль Вентури с двумя щелями эжекции: одна - в области сужения, которая сообщается с входным патрубком подачи газа среднего давления, соединенным с отводом попутного нефтяного газа второй ступени сепарации, другая - на образующей диффузора, которая сообщается с входным патрубком подвода газа низкого давления, соединенным с отводом попутного нефтяного газа концевой ступени сепарации, причем в целях отвода попутного нефтяного газа второй и концевой ступеней сепарации установлены промежуточные газовые сепараторы. Изобретение обеспечивает стабильную, надежную работу системы сепарации водогазонефтяной смеси при минимальных объемах газа сепарации низкого давления и максимальном выходе легких углеводородных фракций в выходном потоке товарной нефти. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к нефтедобывающей промышленности, в частности к установкам сепарации водогазонефтяной смеси, и направлено на повышение степени утилизации попутного нефтяного газа.

Известна классическая установка подготовки нефти (УПН). На ее вход поступает, в общем случае, водогазонефтяная смесь, которая в зависимости от степени текущей обводненности и суммарного газового фактора (по нефти) в системе содержит переменное количество жидкости и свободного газа во входном потоке, поступающем на первую ступень сепарации, находящуюся под высоким давлением. В зависимости от текущих термо-барических условий и свойств нефтей на первой ступени выделяется основное количество газа в потоке, от 60-80% общего объема газа сепарации. Характерным рабочим давлением сепарации первой ступени являются значения порядка 6 атм. Остаточные объемы растворенного газа выделяются на концевых ступенях при меньших давлениях. Наименьшее давление, равное 0.05 атм, устанавливается на последней концевой ступени. В условиях требований 95% уровня утилизации попутного нефтяного газа происходит улавливание и ступенчатое компримирование всех потоков газа сепарации до общего давления утилизации внешнего транспорта. Существование концевых ступеней требует наличия, по крайней мере, двух дополнительных компрессорных блоков для получения общего потока газа сепарации с давлением, равным первой ступени. Это приводит к удорожанию процесса утилизации попутного нефтяного газа и снижению надежности установки.

Известна установка подготовки нефти (патент РФ №2283681, МПК B01D 19/00, опубликовано 20.09.2006 г), содержащая последовательно соединенные фильтр грубой очистки, газовый сепаратор первой ступени, газовый сепаратор второй ступени, деэмульсатор и блок горячей сепарации. Она снабжена эжекторами первой, второй и концевой ступеней. У эжектора концевой ступени сопло соединено газопроводом с патрубком выхода газа деэмульсатора, камера смешения соединена газопроводом с блоком горячей сепарации, а выход эжектора соединен газопроводом с камерой смешения эжектора второй ступени, у которого сопло соединено газопроводом с патрубком выхода газа газового сепаратора второй ступени. Выход эжектора соединен газопроводом с камерой смешения эжектора первой ступени, сопло которого соединено газопроводом с патрубком выхода газа газового сепаратора первой ступени, а выход эжектора соединен с магистральным газопроводом.

Недостатком данной установки является то, что общее давление выходного потока газа сепарации оказывается кратно ниже давления газового сепаратора первой ступени. При этом подхват газа концевых ступеней при близких объемах газа сепарации второй ступени, деэмульсатора и блока горячей сепарации возможен только в условиях кратного понижения давления прямого потока эжектора. Кроме того, в случае если давление прямого потока более чем в 2 раза превышает давление потока газа подхвата, режим работы эжектора - сверхзвуковой, с ожидаемо низким коэффициентом восстановления давления.

Известна установка утилизации попутного нефтяного газа (патент РФ №2523315, МПК B01D 53/00, опубликовано 20.07.2014 г), включающая трубопровод подачи сырья, блок сепарации, состоящий из двух ступеней сепарации, каждая из которых имеет вход для сырья и отводы попутного нефтяного газа и углеводородной смеси с водой, и имеющий отвод водонефтяной эмульсии, не менее чем две ступени компримирования газа с отводами газа и углеводородного компрессата, при этом отводы попутного нефтяного газа ступеней сепарации соединены с соответствующими по давлению ступенями компримирования, а отвод газа каждой ступени компримирования соединен с отводом попутного нефтяного газа предыдущей ступени сепарации, блок мембранного разделения газа с отводами подготовленного газа и пермеата, соединенный с отводом газа первой ступени компримирования, и блок стабилизации углеводородов с отводами газа стабилизации и жидких углеводородов, соединенный с отводом углеводородного компрессата со ступеней компримирования. Данная установка выбрана в качестве прототипа.

Недостатком данной установки является высокая стоимость и сложность технической реализации.

Задачей изобретения является повышение производительности и надежности работы системы сепарации с высокой экономической эффективностью.

Техническим результатом изобретения является обеспечение стабильной работы системы при достижении максимальных объемов выхода газа сепарации высокого давления и легких углеводородных фракций в товарной нефти.

Указанный технический результат достигается системой сепарации водогазонефтяной смеси, включающей трубопровод подачи сырья, соединенный с блоком сепарации сырья, имеющим отвод водонефтяной эмульсии и содержащим не менее двух ступеней сепарации, каждая из которых имеет вход для сырья и отводы попутного нефтяного газа, соединенные с газовым сепаратором, имеющим отвод газа потребителю, которая в отличие от прототипа дополнительно содержит струйное устройство сепарации потока, расположенное на входе трубопровода подачи сырья, выполненное в виде конфузорно-диффузорного перехода, имеющего профиль Вентури, с двумя щелями эжекции: одна - в области сужения, которая сообщается с входным патрубком подачи газа среднего давления, соединенным с отводом попутного нефтяного газа второй ступени сепарации, другая - на образующей диффузора, которая сообщается с входным патрубком подвода газа низкого давления, соединенным с отводом попутного нефтяного газа концевой ступени сепарации.

Согласно изобретению в систему сепарации в целях отвода попутного нефтяного газа второй и концевой ступеней сепарации установлены промежуточные газовые сепараторы.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена принципиальная схема системы сепарации водогазонефтяной смеси, на фиг. 2 - принципиальная схема струйного устройства сепарации потока.

Система сепарации водогазонефтяной смеси (фиг. 1) включает трубопровод подачи сырья 1, соединенный через струйное устройство сепарации потока (СУСП) 2 с блоком сепарации сырья 3, содержащим первую, вторую и третью (концевую) ступени сепарации, соответственно 4, 5 и 6. Каждая ступень имеет входы для сырья, соответственно 7, 8, 9, и отводы попутного нефтяного газа, соответственно 10, 11, 12. Отвод 10 попутного нефтяного газа первой ступени сепарации 4 соединен с газовым сепаратором 13, имеющим отвод газа потребителю. Отвод 11 попутного нефтяного газа второй ступени сепарации 5 соединен с промежуточным газовым сепаратором 14. Отвод 12 попутного нефтяного газа третьей ступени сепарации 6 соединен с промежуточным газовым сепаратором 15. Газовые сепараторы 14 и 15 имеют отводы газа потребителю и отводы соответственно 16 и 17, соединенные с входными патрубками 18, 19 подачи газа в СУ СП 2. Блок сепарации сырья 3 соединен с трубопроводом 20 транспорта нефти.

СУСП 2 (фиг. 2) выполнено в виде профиля Вентури, состоящего из конфузора 21, перехода 22, диффузора 23 и имеющего две щели эжекции, одна из которых 24 расположена в области сужения профиля и сообщается с входным патрубком 18 подачи газа среднего давления от отвода 16 газового сепаратора 14 второй ступени сепарации 5, а вторая щель эжекции 25 расположена на образующей диффузора 23 и сообщается с входным патрубком 19 подачи газа низкого давления от отвода 17 газового сепаратора 15 третьей, концевой ступени сепарации 6.

Система работает следующим образом.

Продукция нефтяных скважин, представляющая собой газожидкостную смесь (ГЖС), поступает по трубопроводу 1 в СУСП 2, где происходит впрыск газа, выделившегося на второй 5 и третьей 6 ступенях сепарации. После СУСП водогазонефтяная смесь по трубопроводу 7 поступает на первую ступень сепарации 4, где происходит сепарация жидкости и газа. Газ сепарации по газовому отводу 10 поступает в газовый сепаратор 13, а водонефтяная смесь направляется через вход 8 на вторую ступень сепарации 5, где в результате дальнейшего понижения давления из жидкой фазы происходит выделение растворенного газа, который по газовому отводу 11 направляется в промежуточный газовый сепаратор 14, и далее поступает потребителю газа, а излишки газа по отводу 16 поступают в камеру смешения СУСП 2 через входной патрубок 18. ГЖС из второй ступени сепарации 5 направляется через вход 9 на третью ступень сепарации 6, где в результате понижения давления до атмосферного из жидкой фазы отделяется остаточный газ, который по газовому отводу 12 направляется в промежуточный газовый сепаратор 15, и далее поступает потребителю газа, а излишки по отводу 17 - в камеру смешения СУСП 2 через входной патрубок 19. Нефть (товарная/сырьевая) из блока сепарации сырья 3 направляется в трубопровод 20 внешнего транспорта. При этом газ сепарации второй ступени 5 по отводу 16, через входной патрубок 18, поступает в область смешения СУСП 2 и через щель эжекции 24 впрыскивается в поток ГЖС, поступающей на вход СУСП 2 по трубопроводу 1. Газ третьей ступени сепарации 6 по отводу 17 через входной патрубок 19 поступает в область смешения СУСП и через щель эжекции 25 впрыскивается в поток ГЖС, поступающей на вход СУСП по трубопроводу 1. Из СУСП 2 ГЖС по трубопроводу 7 направляется на вход первой ступени сепарации 4 блока сепарации сырья 3.

Размещение на входе системы дополнительно струйного устройства сепарации потока позволяет минимизировать объем газа сепарации низкого давления без использования установок компримирования газа нижних ступеней за счет использования избыточной объемной энергии высокого давления водогазонефтяной смеси в системе нефтесбора, увеличивая тем самым уровень использования попутного нефтяного газа, включая газ нижних ступеней сепарации, энергоэффективность системы сепарации, кроме того, это позволяет повысить надежность работы системы.

Таким образом, предложенное изобретение обеспечивает стабильную, надежную работу системы сепарации водогазонефтяной смеси при минимальных объемах газа сепарации низкого давления и максимальном выходе легких углеводородных фракций в выходном потоке товарной нефти.

1. Система сепарации водогазонефтяной смеси, включающая трубопровод подачи сырья, соединенный с блоком сепарации сырья, имеющим отвод водонефтяной эмульсии и содержащим не менее двух ступеней сепарации, каждая из которых имеет вход для сырья и отводы попутного нефтяного газа, соединенные с газовым сепаратором, имеющим отвод газа потребителю, отличающаяся тем, что дополнительно содержит струйное устройство сепарации потока, расположенное на входе трубопровода подачи сырья, выполненное в виде конфузорно-диффузорного перехода, имеющего профиль Вентури с двумя щелями эжекции: одна - в области сужения, которая сообщается с входным патрубком подачи газа среднего давления, соединенным с отводом попутного нефтяного газа второй ступени сепарации, другая - на образующей диффузора, которая сообщается с входным патрубком подвода газа низкого давления, соединенным с отводом попутного нефтяного газа концевой ступени сепарации.

2. Система сепарации по п. 1, отличающаяся тем, что в целях отвода попутного нефтяного газа второй и концевой ступеней сепарации установлены промежуточные газовые сепараторы.



 

Похожие патенты:

Изобретение относится к области очистки газов и может быть использовано в быту, в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц.

Предложена система для производства диоксида углерода, включающая в себя: подсистему сбора, выполненную для сбора технологического газа, причем технологический газ включает в себя углеводород; подсистему сжигания, выполненную для сжигания углеводорода в технологическом газе и получения газообразного потока сгорания, при этом газообразный поток продуктов сгорания включает в себя диоксид углерода и воду; и подсистему отделения, выполненную для отделения диоксида углерода от газообразного потока продуктов сгорания.

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.

Изобретение относится к усовершенствованному способу оксосинтеза с рециркуляцией преобразованных отходов масел. Способ включает гидроформилирование олефина с синтез-газом в реакторе с полученим продукта оксосинтеза и побочного продукта - отходов масел, характеризующегося более низкой или более высокой температурой кипения, чем продукт оксосинтеза, отделение продукта оксосинтеза от отходов масел, преобразование отделенных отходов масел в синтез-газ, включающее испарение отходов масел газообразным углеводородом в резервуаре испарителя с получением смешанного парообразногопотока газообразного углеводорода и испаренных отходов масел и прямое окисление смешанного парообразного потока с получение синтез-газа, и рециркуляцию синтез-газа.

Изобретение относится к опреснению соленой воды, в том числе морской или минерализованной воды дистилляцией, и может быть использовано для локального водоснабжения пресной водой.

Изобретение относится к технологии дополнительного извлечения ценных компонентов из природного углеводородного газа и может быть использовано на предприятиях газоперерабатывающей промышленности. Способ комплексного извлечения ценных примесей из природного гелийсодержащего углеводородного газа с повышенным содержанием азота включает стадии: первого уровня очистки сырьевого потока природного углеводородного газа от механических примесей и капельной жидкости, второго уровня очистки первого потока очищенного углеводородного газа от примесей сероводорода, диоксида углерода и метанола, регенерации потока насыщенного абсорбента, отпарки кислой воды от метанола, сероводорода и диоксида углерода, компримирования и осушки низконапорных кислых газов, третьего уровня осушки, очистки от соединений ртути второго потока очищенного углеводородного газа, низкотемпературного разделения третьего потока осушенного и очищенного углеводородного газа, расширения и охлаждения деэтанизированного газа с частичной его конденсацией в «холодном боксе», криогенного деазотирования, удаления водорода из азотно-гелиевой смеси, криогенной доочистки полупродукта жидкого гелия от примесей азота, кислорода, аргона и неона, криогенного выделения гелия, адсорбционной очистки ШФЛУ, газофракционирования очищенной ШФЛУ, подготовки товарного топливного газа, хранения жидких азота и гелия в сосудах Дьюара в товарном парке.

Изобретение относится к устройству для регулирования технологических газов в установке для получения металлов прямым восстановлением руд. Устройство имеет восстановительный реактор, смонтированное выше по потоку относительно восстановительного реактора устройство для разделения газовых смесей с сопряженным нагнетательным устройством, установленное ниже по потоку относительно восстановительного реактора газоочистительное устройство, сконфигурированное для регулирования количества технологических газов, и устройство для регулирования давления, которое таким образом размещено перед местом присоединения подводящего трубопровода к перепускному трубопроводу для технологических газов, в частности так называемого отходящего газа, что уровень давления поддерживается постоянным в устройстве для разделения газовых смесей с сопряженным нагнетательным устройством.

Изобретение относится к системам и способам фракционного отделения газовой смеси, содержащей диоксид углерода. Система отделения включает в себя источник газовой смеси, содержащей по меньшей мере первый компонент и второй компонент, и сепарационную установку в гидравлической связи с источником для приема газовой смеси и по меньшей мере частичного отделения первого компонента от второго компонента, причем сепарационная установка содержит по меньшей мере одно из устройств: вихревой сепаратор и емкость высокого давления.

Изобретение относится к переработке жидких радиоактивных отходов (ЖРО). Установка для переработки ЖРО содержит узел их нейтрализации, соединенный со сборной емкостью, парогенератор, цилиндрический роторно-пленочный испаритель с рубашкой и со штуцерами ввода ЖРО, отвода концентрата и вторичного пара, ротор с закрепленными по всей его длине лопатками, распределяющими ЖРО по обогреваемой поверхности испарителя в виде тонкой пленки, линию слива конденсата первичного пара, сепаратор и конденсатор.

Изобретение относится к газонефтяной промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых и газоконденсатных месторождений.

Изобретение относится к аппаратам для концентрирования различных суспензий и может быть использовано в пищевой и химической отраслях промышленности. Барботажный вакуум-выпарной аппарат содержит корпус с патрубками для ввода, при этом аппарат состоит из двух частей, верхней и нижней, причем верхняя часть снабжена паровой рубашкой, с ней соединен патрубок для удаления испаряемых паров, а внутри аппарата установлен коллектор с радиально расположенными трубками для барботирования суспензии горячим воздухом и центральная рециркуляционная труба с входными и выходными окнами, в которой установлен вал с ротором для рециркуляции суспензии из входных окон в выходные; к внешней части центральной рециркуляционной трубы закреплены мешалки со скребками, при этом центральная рециркуляционная труба установлена с возможностью вращения в подшипниках, при этом вал ротора и центральная рециркуляционная труба вращается за счет электропривода через коническую и две цилиндрические зубчатые передачи. Технический результат - повышение качества сгущаемой суспензии, интенсификация процесса тепломассообмена и снижение энергозатрат на процесс выпаривания. 4 ил.

Изобретение представляет: распределитель для жидкой или газообразной среды, внутренняя полость распределителя включает размещенные соосно центральной оси вращения внутри друг друга полые фигуры вращения - оболочки, имеющие сквозные отверстия или окна, с возможностью перемещения и поворота любой из них относительно других и корпуса распределителя, его переключение связано с возможностью совмещения определяемых управляющим распределением устройством отверстий или окон в оболочках и корпусе распределителя. Изобретение позволяет оптимизировать процесс управления распределителем для жидкой или газообразной среды по нескольким параметрам, а так же позволяет достичь высокой плавности переключения, исключающей гидравлические удары, что дает возможность использовать распределитель в жидкостных отстойниках для забора или подачи конкретной жидкостной фазы в конкретный уровень без смешивания фаз. 24 з.п. ф-лы, 5 ил.

Изобретение относится к области теплоэнергетики, а более точно к устройству для очистки дымовых газов от оксидов азота селективным некаталитическим восстановлением. Устройство включает корпус дымохода, внутри которого расположена распределительная решетка для ввода аммиачного раствора внутрь газового потока дымовых газов. Распределительная решетка выполнена из поворотных сегментов и кинематически соединена с узлом управления. Поворотные сегменты расположены между двух кольцевых диафрагм, из которых одна герметично соединена с камерой сбора отработанного аммиачного раствора и корпусом, а другая с направляющим диффузором. При этом перед выходным патрубком дымовых газов установлен дополнительный конус, сопряженный геометрически с направляющим диффузором и соединенный с устройством его перемещения. Предложенное устройство повышает степень очистки дымовых газов от окислов азота, просто в изготовлении и надежно в процессе эксплуатации. 4 з.п. ф-лы, 3 ил.

Изобретение относится к очистителю, который разделяет газы, полученные в электролитическом генераторе из загрязнителей электролита, а также электролитическому генератору, содержащему такой очиститель, и способу газоочистки. Газоочиситель для электролитического генератора содержит резервуар для сбора, вход для очистки, предназначенный для подачи двухфазной текучей среды, содержащей очищаемый газ, в резервуар, множество промывочных тарелок, разбрызгиватель, выполненный с возможностью распределения промывочной жидкости по множеству промывочных тарелок, конденсатор для повторного ожижения, содержащий теплообменник, в котором циркулирует хладагент, и выход для очистки, предназначенный для направления потока очищаемого газа через множество промывочных тарелок и конденсатор. Изобретение обеспечивает простую и эффективную очистку газа. 3 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам, предназначенным в основном для защиты воздушного бассейна Земли от канцерогенных газов и осадков, вылетающих из торчащих в небо труб промышленных предприятий (или организаций) в металлургической или химической промышленности, включая котельные, ТЭЦ и др. Способ комплексной очистки воздушного бассейна от производственных отходов/выбросов из труб осуществляется в замкнутом и непрерывном режиме. Технический результат достигается путем создания многоуровневого каскада герметичных емкостей (например, в виде резервуаров, хранилищ, сборников или бассейнов), изолированных от внешней воздушной или водной среды с, как правило, многоэтапной автоматической, полуавтоматической или ручной регулировкой процессов очистки вредных газов или составов (выбросов) без использования торчащих в небо труб, причем резервирование основных элементов, узлов, блоков, агрегатов и емкостей осуществляется как по принципу дублирования в масштабах 1:1, так, возможно, и в уменьшенных вариантах по габаритам. Последнее согласовано с длительностью циклов выполнения ремонта, профилактики, технического обслуживания, замены или очистки основных емкостей или оборудования от очищенных и/или очищаемых продуктов промышленных производств. То есть, чем дольше цикл очистки, удаления отходов/выбросов или ремонта основного оборудования и емкостей, тем большие габаритные размеры должны иметь резервные емкости, чтобы процесс очистки воздушного бассейна не прерывался. Технический результат - создание многоуровневого каскада герметичных емкостей (например, в виде резервуаров, хранилищ, сборников или бассейнов), изолированных от внешней воздушной или водной среды с, как правило, многоэтапной автоматической, полуавтоматической или ручной регулировкой процессов очистки вредных газов или составов (выбросов) без использования торчащих в небо труб, причем резервирование основных элементов, узлов, блоков, агрегатов и емкостей осуществляется как по принципу дублирования в масштабах 1:1, так, возможно, и в уменьшенных вариантах по габаритам. Последнее согласовано с длительностью циклов выполнения ремонта, профилактики, технического обслуживания, замены или очистки основных емкостей или оборудования от очищенных и/или очищаемых продуктов промышленных производств. 1 ил.

Изобретение относится к охране окружающей среды и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных газов бензиновых и дизельных двигателей. Способ предусматривает образование сорбционного катализатора, который состоит из смеси глауканита, интеркалированного графита и раствора солей тяжелых металлов и состоит из слоев различного фракционного состава. Способ характеризуется тем, что используется глауканит концентрацией не менее 70% и СВЧ-термообработка. 1 табл.

Изобретение относится к способам получения технических газов из воздуха. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, установленного в створе природного или техногенного водотока. На гидроагрегат, имеющий подвижные в радиальном направлении стенки в виде мембран, устанавливают камеры сжатия воздуха, рабочие органы которых приводят в возвратно-поступательное движение энергией периодического гидравлического удара. Сжатый атмосферный воздух из генератора пневматической энергии собирают в ресивере, сглаживающем пульсации давления, далее после очистки и осушки подают в установку разделения воздуха, выделенный технический газ направляют потребителю. Изобретение позволяет снизить себестоимость получения технических газов за счет использования гидравлической энергии природных и техногенных водотоков для генерации пневматической энергии, необходимой для работы газоразделительных установок различного типа. 1 ил.

Изобретение относится к области обработки воздуха. Способ калибровки датчика воздуха устройства обработки воздуха включает в себя этапы, на которых: i) - очищают воздух, используя устройство обработки воздуха; ii) - измеряют первое количество воздуха, используя датчик воздуха для получения первого значения для калибровки датчика воздуха, причем первое количество воздуха представляет собой смесь окружающего воздуха и очищенного воздуха, причем устройство обработки воздуха расположено в воздухонепроницаемом пространстве, а этап 2 дополнительно включает в себя этапы, на которых: определяют, удовлетворяет ли качество первого количества воздуха в воздухонепроницаемом пространстве заданному критерию; и если качество первого количества воздуха удовлетворяет заданному критерию, измеряют первое количество воздуха, используя датчик воздуха, для получения первого значения. Это позволяет повысить точность измерений и, как следствие, оптимизировать работу устройства обработки воздуха. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к способам модернизации установок подготовки природного и попутного нефтяного газа к транспорту методом низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Способ модернизации действующей установки низкотемпературной сепарации газа заключается в установке на линии подачи охлажденного газа в узел редуцирования дефлегматора, верх которого соединяют линией вывода газа дефлегмации с узлом редуцирования, а низ - линией вывода флегмы с блоком сепарации конденсата. Верхнюю часть дефлегматора оборудуют двумя секциями тепломассообменных элементов, которые соединяют линиями подачи газа и конденсата с блоком низкотемпературной сепарации, а также линиями вывода газа и конденсата с блоком рекуперации холода и блоком сепарации конденсата, соответственно. Течение технологических сред между точками подключения дефлегматора на линиях подачи охлажденного газа в узел редуцирования, подачи газа низкотемпературной сепарации в блок рекуперации холода и подачи конденсата низкотемпературной сепарации в блок сепарации конденсата перекрывают с помощью запорной арматуры. Техническим результатом является увеличение степени извлечения тяжелых углеводородов при обеспечении заданного качества подготовки газа. 1 ил., 1 пр.

Изобретение относится к технологии получения поваренной соли из неочищенных рассолов от растворения каменной соли путем выпаривания в многокорпусных выпарных установках. Описан способ получения поваренной соли из рассола от растворения каменной соли, включающий выпаривание этого рассола в присутствии затравки с получением упаренной суспензии, классификацию упаренной суспензии, промывку солепульпы от гипсовой затравки, разделение в фильтрующей центрифуге сгущенной суспензии, сушку соли, в котором выпаривание проводят при 50-155°С, а в выпарных корпусах в качестве затравки применяют полугидрат сульфата кальция, для приготовления которого часть гипсового шлама перед его подачей на затравливание нагревают до температуры, равной температуре среды в корпусе, для которого предназначена затравка, и подают в выпарной корпус, отмучивают солепульпу от гипсовой затравки исходным рассолом во взвешенном слое кристаллов соли и кристаллы соли дополнительно промывают исходным рассолом в фильтрующей центрифуге. Технический результата: расширение температурного интервала выпаривания рассола, удлинение межпромывочного пробега установки, уменьшение в получаемой соли содержания примеси частиц гипса. 1 ил.
Наверх