Способ получения бутадиена

Изобретение относится к способу получения бутадиена каталитическим превращением этанола, включает охлаждение полученной газообразной реакционной массы в котле-утилизаторе за счет получения водяного пара, дальнейшее охлаждение и частичную конденсацию непрямым контактом последовательно с охлаждающей водой и хладагентом и компримирование несконденсировавшейся части. Способ характеризуется тем, что перед непрямым контактом с охлаждающей водой осуществляют предварительное охлаждение газообразной реакционной массы до температуры 70-100°C путем прямого контакта с потоком, находящимся в жидкой фазе и более чем на 90% масс. состоящим из смеси воды и этанола, с испарением от 0,5 до 30% масс. этого потока. Данный способ позволяет обеспечить повышение эффективности охлаждения, упрощение схемы переработки конденсата. 1 з.п. ф-лы, 1 ил., 5 пр.

 

Настоящее изобретение относится к области получения бутадиена каталитическим превращением этанола.

Известен способ получения бутадиена превращением этанола на гетерогенном катализаторе (RU 2503650, опубликован 10.01.2014). Синтез осуществляется на неподвижном слое гранулированного катализатора или в кипящем слое мелкодисперсного катализатора. Реакционная масса после реактора поступает на конденсацию.

Наиболее близким к предлагаемому (прототипом), является способ, включающий каталитическое превращение этанола в дивинил, рекуперацию энергии газообразной реакционной массы в котле-утилизаторе с получением водяного пара, дальнейшее охлаждение и частичную конденсацию реакционной массы непрямым контактом последовательно с охлаждающей водой и хладагентом и компримирование несконденсировавшейся части реакционной массы для дальнейшей переработки (Литвин О.Б. Основы технологии синтеза каучуков, М.: Химия, 1972 г., с. 46-54). В соответствии с данным способом осуществляется каталитическое превращение этанола в дивинил в контактном аппарате, реакционная масса после контактирования имеет температуру ~360°С, проходит котел-утилизатор, где охлаждается до температуры 180°С, в результате теплоотдачи в котле-утилизаторе получается водяной пар. С целью выделения из реакционной массы высококипящих продуктов (прежде всего непрореагировавшего этанола) осуществляется охлаждение и конденсация в трубчатых конденсаторах, охлаждаемых по ходу реакционного потока непрямым контактом вначале водой, а затем рассолом. После конденсаторов, охлаждаемых водой, температура реакционной массы от 20 до 32°С, при этом конденсируются вода, этанол, высшие спирты и в незначительных количествах высококипящие углеводороды, эфиры, ацетальдегид. После конденсаторов, охлаждаемых рассолом, температура реакционной массы от -3 до +5°С, при этом конденсируются остатки этанола, ацетальдегид, эфир, углеводороды и часть бутадиена. Полученные конденсаты направляются на переработку совместно или раздельно. Несконденсированный газ, состоящий из бутадиена и низкокипящих примесей, в том числе углеводородов, сжимается компрессором до избыточного давления 6 атм и направляется на выделение и очистку бутадиена. Схема конденсации и переработки конденсата по данному способу сложная, содержит до 33 аппаратов (Литвин О.Б. Основы технологии синтез каучуков, М.: Химия, 1972 г., с. 51-54).

Известный способ имеет следующие недостатки.

Имеющиеся в реакционной массе высококипящие компоненты, олигомеры, полимеры, образующиеся из бутадиена при высокой температуре, механические загрязнения, в том числе частицы катализатора, особенно при использовании мелкодисперсного катализатора, постепенно загрязняют поверхность теплопередачи в котле-утилизаторе. Такое загрязнение приводит к постепенному повышению температуры реакционной массы после котла-утилизатора. Конденсаторы, охлаждаемые водой, имеют сложную конструкцию, т.к. имеется значительный перепад температур между температурой реакционной массы и охлаждающей водой. Поэтому используется батарея конденсаторов, охлаждаемых водой, в которой осуществляется постепенное снижение температуры реакционной массы. Повышение температуры реакционной массы на выходе из котла-утилизатора может привести к выходу из строя конденсаторов, охлаждаемых водой, за счет повышенного обрастания теплопередающей поверхности со стороны воды солями жесткости или потери герметичности.

Это особенно относится к первому из батареи конденсаторов, т.к. там происходит лишь охлаждение газообразной реакционной массы и, соответственно, не образуется жидкий поток, который может омывать поверхность теплообмена и частично очищать его. Кроме того, до начала конденсации реакционной массы коэффициент теплопередачи от газа к жидкости очень низкий, что требует большой поверхности для охлаждения реакционной массы.

Недостатком известного способа является также загрязнение конденсата частицами мелкодисперсного катализатора при использовании процесса синтеза в кипящем слое катализатора, что усложняет схему и аппаратурное оформление переработки конденсата.

Задачей, решаемой настоящим изобретением, является повышение эффективности охлаждения, упрощение схемы переработки конденсата и исключение загрязнения конденсата частицами мелкодисперсного катализатора.

Поставленная задача решается способом получения бутадиена каталитическим превращением этанола, согласно которому осуществляется охлаждение полученной газообразной реакционной массы в котле-утилизаторе за счет получения водяного пара, дальнейшее охлаждение и частичная конденсация непрямым контактом последовательно с охлаждающей водой и хладагентом и компримирование несконденсировавшейся части, при этом перед непрямым контактом с охлаждающей водой осуществляют предварительное охлаждение газообразной реакционной массы до температуры 70-100°С путем прямого контакта с потоком, находящимся в жидкой фазе и более чем на 90% масс. состоящим из смеси воды и этанола, с испарением от 0,5 до 30% масс. этого потока.

Предпочтительно конденсат, полученный при охлаждении реакционной массы непрямым контактом с охлаждающей водой, возвращать в поток, подаваемый на прямой контакт в жидкой фазе, в количестве, компенсирующем уменьшение этого потока в результате испарения.

При прямом контакте предпочтительное движение газообразной реакционной массы и потока, находящегося в жидкой фазе - противотоком.

Прямой контакт газообразной реакционной массы с потоком, находящимся в жидкой фазе, осуществляется в аппарате, предпочтительно имеющем распределительные устройства для реакционной массы и охлаждающего потока, а также предпочтительно имеющем внутренние устройства, обеспечивающие эффективный контакт жидкой и газовой фаз -насадку различных конструкций, решетки, ректификационные тарелки различных конструкций и высокоэффективные устройства, позволяющие освободить выходящий из аппарата газ от капель уносимой с ним жидкости. Поток, направляемый на прямой контакт с реакционной массой, может использоваться однократно - после прямого контакта выводится из системы, а может циркулировать по контуру: аппарат прямого контакта - сборник -насос - аппарат прямого контакта. При этом поток может частично выводиться из циркуляционного контура и частично пополняться. Поток может дополнительно охлаждаться любым известным способом: естественным путем (например, в сборнике), непрямым или прямым контактом с охлаждающим агентом.

Возможно удаление загрязняющих примесей из циркулирующего потока любым известным способом, например путем фильтрации, и/или отстоя, и/или сепарации.

Охлаждающий поток, направляемый на прямой контакт с реакционной массой, может дополнительно содержать углеводороды предельные, непредельные, циклические, ароматические, и/или спирты, и/или эфиры, и/или альдегиды с числом углеродных атомов от 3 до 14 в количестве менее 10% масс.

В качестве охлаждающего потока, направляемого на прямой контакт с реакционной массой, может использоваться конденсат, полученный при частичной конденсации реакционной массы непрямым контактом с охлаждающей водой. Конденсат, полученный при частичной конденсации реакционной массы, содержит воду, этанол, ацетальдегид, углеводороды предельные, непредельные, циклические, ароматические, высшие спирты, эфиры, альдегиды.

Предварительное охлаждение газообразной реакционной массы путем прямого контакта осуществляют до температуры 70-100°С. В этом интервале температур происходит испарение оптимального количества охлаждающего потока, направляемого на прямой контакт с реакционной массой, в интервале давления в реакторе синтеза от небольшого избыточного до 0,1 МПа избыточного.

Оптимальное количество испаряющегося при прямом контакте потока, находящегося в жидкой фазе и подаваемого на прямой контакт с газообразной реакционной массой, составляет от 0,5 до 30% масс. Этот интервал также справедлив для интервала давления в реакторе синтеза от небольшого избыточного до 0,1 МПа избыточного. Поддержание испарения менее 0,5% масс. потока, находящегося в жидкой фазе и подаваемого на прямой контакт с реакционной массой, приводит к неустойчивому режиму работы аппарата, в котором осуществляется прямой контакт, и возможному переходу в нем от испарения к конденсации. Поддержание испарения более 30% масс. потока, находящегося в жидкой фазе и подаваемого на прямой контакт с реакционной массой, увеличивает затраты на дальнейшую конденсацию реакционной массы и затраты на аппаратурное оформление.

При реализации предложенного способа осуществляется эффективное предварительное охлаждение газообразной реакционной массы в основном за счет испарения части жидкого потока, подаваемого на прямой контакт. При этом одновременно происходит удаление из реакционной массы высококипящих компонентов, олигомеров, полимеров, образующихся из бутадиена при высокой температуре, механических загрязнений, в том числе частиц мелкодисперсного катализатора.

Кроме того, исключается неэффективное охлаждение реакционной массы до температуры конденсации непрямым контактом с охлаждающей водой, т.к. реакционная масса после прямого контакта находится в состоянии насыщенного газа и при охлаждении охлаждающей водой сразу начинается ее частичная конденсация. Коэффициент теплопередачи от конденсирующегося газа к охлаждающей жидкости на порядок выше по сравнению с теплопередачей от газа к жидкости, что приводит к значительному уменьшению необходимой теплопередающей поверхности.

Исключается также попадание частиц катализатора в конденсат реакционной массы, что упрощает схему переработки конденсата и увеличивает срок службы аппаратов, входящих в эту схему.

Все вышеперечисленное обеспечивает достижение поставленной задачи.

Каталитическое превращение этанола в дивинил осуществляется в реакционном аппарате на неподвижном слое гранулированного катализатора или в кипящем слое мелкодисперсного катализатора.

Отличиями предлагаемого способа получения бутадиена от прототипа является осуществление перед непрямым контактом с охлаждающей водой предварительного охлаждения газообразной реакционной массы до температуры 70-100°С путем прямого контакта с потоком, находящимся в жидкой фазе и более чем на 90% масс. состоящим из смеси воды и этанола, с испарением от 0,5 до 30% масс. этого потока.

На фиг. 1 представлена принципиальная технологическая схема способа получения бутадиена.

Газообразная реакционная масса поступает по линии 1 в котел-утилизатор 2, где отдает часть своего тепла водному конденсату, поступающему в 2 по линии 3. В результате рекуперации тепла образуется водяной пар, выходящий из 2 по линии 4. Охлажденная газообразная реакционная масса выходит из 2 по линии 5 и поступает в нижнюю часть аппарата прямого контакта 6. В верхнюю часть аппарата 6 поступает по линии 7 поток, находящийся в жидкой фазе, который, пройдя через аппарат 6, выходит снизу аппарата 6 и по линии 7 возвращается на верх аппарата 6. С верха аппарата 6 по линии 8 отбирают охлажденную газообразную реакционную массу с частью испарившегося жидкого потока и подают на охлаждение и частичную конденсацию непрямым контактом с охлаждающей водой в аппарат 9. Несконденсировавшуюся часть реакционной массы направляют по линии 10 на непрямой контакт с хладагентом в аппарат 11, где происходит дальнейшая частичная конденсация реакционной массы. Несконденсированную часть реакционной массы из аппарата 11 по линии 12 подают на компримирование и дальнейшую переработку. Конденсат из аппарата 9 отбирают по линии 13 и по линии 14 направляют на смешение с конденсатом, отбираемым из аппарата 11 по линии 15. Объединенный конденсат по линии 16 направляют на дальнейшую переработку.

Возможно выведение из системы по линии 17 частично или полностью циркулирующего по линии 7 жидкого потока с заменой его и пополнением испарившейся части по линии 18 полностью или частично свежим жидким потоком.

Возможно пополнение по линии 19 циркулирующего по линии 7 потока частью конденсата, отбираемого из аппарата 9.

Возможно охлаждение части или всего циркулирующего по линии 7 потока в аппарате 20 охлаждающей водой. При этом на вход в аппарат 20 циркулирующий поток подают по линии 21, а выводят из аппарата 20 по линии 22.

Изобретение иллюстрируется следующими примерами.

Пример 1.

Газообразную реакционную смесь каталитического превращения этанола, имеющую температуру 400°С и давление 0,02 МПа, в количестве 8 кг/час, содержащую (% масс): водорода - 3,0, азота - 1,9, двуокиси углерода - 2,2, углеводородов С12 - 2,2, бутадиена - 29,6, этанола - 32,2, воды - 16,1, углеводородов предельных, непредельных, циклических, ароматических, спиртов, эфиров и альдегидов с числом углеродных атомов от 3 до 14 - 12,8 по линии 1 подают в котел-утилизатор 2, где ее охлаждают до температуры 180°С за счет получения водяного пара. Охлажденную газообразную реакционную смесь по линии 5 подают в нижнюю часть аппарата 6. В верхнюю часть аппарата 6 подают по линии 7 жидкофазный поток в количестве 8 кг/час, имеющий температуру 72°С, содержащий этанола 53% масс., воды 41% масс. и углеводородов предельных, непредельных, циклических, ароматических, спиртов, эфиров и альдегидов с числом углеродных атомов от 3 до 14 - остальное. В аппарате 6, снабженном 10 решетчатыми тарелками, осуществляют прямой контакт движущихся противотоком газообразного и жидкого потоков. В результате прямого контакта происходит активный массо- и теплообмен. Из кубовой части аппарата по линии 7 отбирают 6,72 кг/час жидкого потока с температурой 78°С. С верха аппарата 6 по линии 8 выводят 9,28 кг/час газообразного потока, имеющего температуру 75°С, который направляют на дальнейшее охлаждение и частичную конденсацию непрямым контактом с охлаждающей водой в аппарат 9. Несконденсированный в аппарате 9 газ в количестве 4,47 кг/час, имеющий температуру 40°С, по линии 10 подают на дальнейшее охлаждение и частичную конденсацию непрямым контактом с хладагентом. Несконденсированный в аппарате 11 газ в количестве 3,93 кг/час, имеющий температуру 10°С, по линии 12 подают на компримирование и дальнейшую переработку. Конденсат, выходящий из аппарата 9 по линии 13 в количестве 601 кг/час, по линии 14 в количестве 441 кг/час подают на смешение с конденсатом, выходящим из аппарата 11 по линии 15 в количестве 4,81 кг/час. Объединенный конденсат в количестве 4,07 кг/час по линии 16 подают на дальнейшую переработку. Часть конденсата, выходящего по линии 13, по линии 19 в количестве 1,28 кг/час направляют на восполнение потерь от испарения циркулирующего потока 7, возвращаемого в аппарат 6.

Таким образом, при прямом контакте реакционная газообразная смесь охладилась до 75°С за счет испарения 16% потока, находящегося в жидкой фазе.

Пример 2.

Газообразную реакционную смесь каталитического превращения этанола, имеющую температуру 400°С и давление 0,02 МПа, в количестве и состава, аналогичных примеру 1, по линии 1 подают в котел-утилизатор 2, где ее охлаждают до температуры 235°С за счет получения водяного пара.

Охлажденную газообразную реакционную смесь по линии 5 подают в нижнюю часть аппарата 6. В верхнюю часть аппарата 6 подают по линии 7 жидкофазный поток, имеющий температуру 71°С, в количестве и состава, аналогичных примеру 1. В аппарате 6, снабженном 10 решетчатыми тарелками, осуществляют прямой контакт движущихся противотоком газообразного и жидкого потоков. В результате прямого контакта происходит активный массо- и теплообмен. Из кубовой части аппарата по линии 7 отбирают 6 кг/час жидкого потока с температурой 81°С. С верха аппарата 6 по линии 8 выводят 10 кг/час газообразного потока, имеющего температуру 78°С, который направляют на дальнейшее охлаждение и частичную конденсацию непрямым контактом с охлаждающей водой в аппарат 9. Несконденсированный в аппарате 9 газ в количестве 4,44 кг/час, имеющий температуру 40°С, по линии 10 подают на дальнейшее охлаждение и частичную конденсацию непрямым контактом с хладагентом. Несконденсированный в аппарате 11 газ в количестве 3,91 кг/час, имеющий температуру 10°С, по линии 12 подают на компримирование и дальнейшую переработку. Конденсат, выходящий из аппарата 9 по линии 13 в количестве 5,56 кг/час, по линии 14 в количестве 3,56 кг/час подают на смешение с конденсатом, выходящим из аппарата 11 по линии 15 в количестве 0,53 кг/час. Объединенный конденсат в количестве 4,09 кг/час по линии 16 подают на дальнейшую переработку. Часть конденсата, выходящего по линии 13, по линии 19 в количестве 2 кг/час направляют на восполнение потерь от испарения циркулирующего потока 7, возвращаемого в аппарат 6.

Таким образом, при прямом контакте реакционная газообразная смесь охладилась до 78°С за счет испарения 25% потока, находящегося в жидкой фазе.

Пример 3.

Газообразную реакционную смесь каталитического превращения этанола, имеющую температуру 400°С и давление 0,1 МПа, в количестве и состава, аналогичных примеру 1, по линии 1 подают в котел-утилизатор 2, где ее охлаждают до температуры 180°С за счет получения водяного пара.

Охлажденную газообразную реакционную смесь по линии 5 подают в нижнюю часть аппарата 6. В верхнюю часть аппарата 6 подают по линии 7 жидкофазный поток, имеющий температуру 40°С, в количестве 8 кг/час, содержащий этанола 13% масс., воды 84% масс. и углеводородов предельных, непредельных, циклических, ароматических, спиртов, эфиров и альдегидов с числом углеродных атомов от 3 до 14 - остальное. В аппарате 6, снабженном 10 решетчатыми тарелками, осуществляют прямой контакт движущихся противотоком газообразного и жидкого потоков. В результате прямого контакта происходит активный массо- и теплообмен. Из кубовой части аппарата по линии 7 отбирают 7,96 кг/час жидкого потока с температурой 103°С. Этот жидкий поток по линии 21 направляют в аппарат 20, где он охлаждается до температуры 40°С. Охлажденный поток по линии 22 возвращается в линию 7 и далее на верх аппарата 6. С верха аппарата 6 по линии 8 выводят 8,04 кг/час газообразного потока, имеющего температуру 100°С, который направляют на дальнейшее охлаждение и частичную конденсацию непрямым контактом с охлаждающей водой в аппарат 9. Несконденсированный в аппарате 9 газ в количестве 4,06 кг/час, имеющий температуру 40°С, по линии 10 подают на дальнейшее охлаждение и частичную конденсацию непрямым контактом с хладагентом.

Несконденсированный в аппарате 11 газ в количестве 3,77 кг/час, имеющий температуру 10°С, по линии 11 подают на компримирование и дальнейшую переработку. Конденсат, выходящий из аппарата 9 по линии 13 в количестве 3,98 кг/час, по линии 14 в количестве 3,94 кг/час подают на смешение с конденсатом, выходящим из аппарата 11 по линии 15 в количестве 0,30 кг/час. Объединенный конденсат в количестве 4,23 кг/час по линии 16 подают на дальнейшую переработку. Часть конденсата, выходящего по линии 13, по линии 19 в количестве 0,04 кг/час направляют на восполнение потерь от испарения циркулирующего потока 7, возвращаемого в аппарат 6.

Таким образом, при прямом контакте реакционная газообразная смесь охладилась до 100°С за счет испарения 0,5% потока, находящегося в жидкой фазе.

Пример 4.

Газообразную реакционную смесь каталитического превращения этанола, имеющую температуру 400°С и давление 0,03 МПа, в количестве и состава, аналогичных примеру 1, по линии 1 подают в котел-утилизатор 2, где ее охлаждают до температуры 180°С за счет получения водяного пара.

Охлажденную газообразную реакционную смесь по линии 5 подают в нижнюю часть аппарата 6. В верхнюю часть аппарата 6 подают по линии 7 жидкофазный поток, имеющий температуру 67°С, в количестве 4,0 кг/час, содержащий этанола 57% масс., воды 37% масс. и углеводородов предельных, непредельных, циклических, ароматических, спиртов, эфиров и альдегидов с числом углеродных атомов от 3 до 14 - остальное. В аппарате 6, снабженном 10 решетчатыми тарелками, осуществляют прямой контакт движущихся противотоком газообразного и жидкого потоков. В результате прямого контакта происходит активный массо- и теплообмен. Из кубовой части аппарата по линии 7 отбирают 2,8 кг/час жидкого потока с температурой 79°С. С верха аппарата 6 по линии 8 выводят 9,2 кг/час газообразного потока, имеющего температуру 77°С, который направляют на дальнейшее охлаждение и частичную конденсацию непрямым контактом с охлаждающей водой в аппарат 9. Несконденсированный в аппарате 9 газ в количестве 4,44 кг/час, имеющий температуру 40°С, по линии 10 подают на дальнейшее охлаждение и частичную конденсацию непрямым контактом с хладагентом. Несконденсированный в аппарате 11 газ в количестве 3,91 кг/час, имеющий температуру 10°С, по линии 12 подают на компримирование и дальнейшую переработку. Конденсат, выходящий из аппарата 9 по линии 13 в количестве 4,76 кг/час, по линии 14 в количестве 3,56 кг/час подают на смешение с конденсатом, выходящим из аппарата 11 по линии 15 в количестве 0,53 кг/час. Объединенный конденсат в количестве 4,09 кг/час по линии 16 подают на дальнейшую переработку. Часть конденсата, выходящего по линии 13, по линии 19 в количестве 1,2 кг/час направляют на восполнение потерь от испарения циркулирующего потока 7, возвращаемого в аппарат 6.

Таким образом, при прямом контакте реакционная газообразная смесь охладилась до 77°С за счет испарения 30% потока, находящегося в жидкой фазе.

Пример 5.

Газообразную реакционную смесь каталитического превращения этанола, имеющую температуру 400°С и давление 0,2 МПа, в количестве и состава, аналогичных примеру 1, по линии 1 подают в котел-утилизатор 2, где ее охлаждают до температуры 180°С за счет получения водяного пара.

Охлажденную газообразную реакционную смесь по линии 5 подают в нижнюю часть аппарата 6. В верхнюю часть аппарата 6 подают по линии 7 жидкофазный поток, имеющий температуру 40°С, в количестве 16 кг/час, содержащий этанола 57% масс., воды 37% масс. и углеводородов предельных, непредельных, циклических, ароматических, спиртов, эфиров и альдегидов с числом углеродных атомов от 3 до 14 - остальное. В аппарате 6, снабженном 10 решетчатыми тарелками, осуществляют прямой контакт движущихся противотоком газообразного и жидкого потоков. В результате прямого контакта происходит активный массо- и теплообмен. Из кубовой части аппарата по линии 7 отбирают 15,91 кг/час жидкого потока с температурой 77°С. Этот жидкий поток по линии 21 направляют в аппарат 20, где он охлаждается до температуры 40°С. Охлажденный поток по линии 22 возвращается в линию 7 и далее на верх аппарата 6. С верха аппарата 6 по линии 8 выводят 8,09 кг/час газообразного потока, имеющего температуру 70°С, который направляют на дальнейшее охлаждение и частичную конденсацию непрямым контактом с охлаждающей водой в аппарат 9. Несконденсированный в аппарате 9 газ в количестве 5,06 кг/час, имеющий температуру 40°С, по линии 10 подают на дальнейшее охлаждение и частичную конденсацию непрямым контактом с хладагентом. Несконденсированный в аппарате 11 газ в количестве 3,93 кг/час, имеющий температуру 10°С, по линии 12 подают на компримирование и дальнейшую переработку. Конденсат, выходящий из аппарата 9 по линии 13 в количестве 3,03 кг/час, по линии 14 в количестве 2,94 кг/час подают на смешение с конденсатом, выходящим из аппарата 11 по линии 15 в количестве 1,13 кг/час. Объединенный конденсат в количестве 4,07 кг/час по линии 16 подают на дальнейшую переработку. Часть конденсата, выходящего по линии 13, по линии 19 в количестве 0,09 кг/час направляют на восполнение потерь от испарения циркулирующего потока 7, возвращаемого в аппарат 6.

Таким образом, при прямом контакте реакционная газообразная смесь охладилась до 70°С за счет испарения 0,55% потока, находящегося в жидкой фазе.

Во всех опытах наблюдалось постепенное повышение содержания олигомеров, полимеров, механических загрязнений и частиц катализатора в циркулирующем потоке. Вывод этих загрязнений из циркулирующего потока может быть осуществлен путем фильтрации, и/или отстоя, и/или сепарации.

Во всех опытах наблюдалось отсутствие олигомеров, полимеров, механических загрязнений и частиц катализатора в конденсате газообразного потока.

Задачей, решаемой настоящим изобретением, является повышение эффективности охлаждения, упрощение схемы переработки конденсата и исключение загрязнения конденсата частицами мелкодисперсного катализатора.

Эффективность охлаждения в предлагаемом способе повышается за счет использования прямого контакта с охлаждающей жидкостью, что позволяет в одном аппарате осуществлять охлаждение реакционной газообразной смеси в широком диапазоне температур.

Полностью исключается загрязнение конденсата реакционной газообразной смеси механическими примесями и частицами катализатора, что упрощает схему его дальнейшей переработки с доведением качества сточных вод до требуемых норм.

1. Способ получения бутадиена каталитическим превращением этанола, включающий охлаждение полученной газообразной реакционной массы в котле-утилизаторе за счет получения водяного пара, дальнейшее охлаждение и частичную конденсацию непрямым контактом последовательно с охлаждающей водой и хладагентом и компримирование несконденсировавшейся части, отличающийся тем, что перед непрямым контактом с охлаждающей водой осуществляют предварительное охлаждение газообразной реакционной массы до температуры 70-100°C путем прямого контакта с потоком, находящимся в жидкой фазе и более чем на 90% масс. состоящим из смеси воды и этанола, с испарением от 0,5 до 30% масс. этого потока.

2. Способ по п. 1, отличающийся тем, что конденсат, полученный при охлаждении реакционной массы непрямым контактом с охлаждающей водой, возвращают в поток, подаваемый на прямой контакт в жидкой фазе, в количестве, компенсирующем уменьшение этого потока в результате испарения.



 

Похожие патенты:

Изобретение относится к способу извлечения бутадиена из C4-фракции. Способ включает в себя: приведение в контакт потока C4-смеси, содержащего бутан, бутен и бутадиен, с растворителем, содержащим органический растворитель и воду, в колонне предварительного абсорбера бутадиена для того, чтобы извлечь головную фракцию, содержащую по меньшей мере часть бутана, бутена и воды, и первую кубовую фракцию, содержащую органический растворитель, бутадиен и по меньшей мере часть бутена; подачу первой кубовой фракции в установку экстракции бутадиена для того, чтобы извлечь бутеновую фракцию, фракцию сырого бутадиена и фракцию растворителя.

Изобретение относится к способу извлечения одного или нескольких мономеров из потока (1) газа, включающему следующие стадии: в одной и той же первой экстракционной колонне С1: а) стадию экстрагирования путем приведения потока (1) газа в экстракционной колонне (С1) в контакт с органическим экстракционным растворителем (2), при этом указанный экстракционный растворитель (2) абсорбирует указанный мономер или мономеры, и b) стадию отгонки или десорбции инертными газом в экстракционной колонне (С1) путем подачи в нижней части колонны (С1) ниже точки подачи потока (1), содержащего мономеры газа, потока инертного газа(12), при этом поток (3) жидкости, содержащий экстракционный растворитель и мономер или мономеры, отводят снизу колонны (С1), а поток (4) отходящего газа отводят сверху колонны (С1), после чего во второй регенерационной колонне С2: с) стадию извлечения указанного мономера или мономеров, на которой указанный мономер или мономеры отделяют от экстракционного растворителя путем перегонки в регенерационной колонне (С2), в которую подают поток (3) жидкости, отведенный снизу колонны (С1), при этом поток, содержащий концентрированный мономер или мономеры (5), отводят сверху колонны (С2), а поток (2) жидкости, содержащий экстракционный растворитель, отводят снизу колонны (С2), после чего рециркулируют в верхнюю часть колонны (С1); причем мономер или мономеры выбраны из диенов, винилароматических соединений и изобутена.

Изобретение относится к способу разделения путем абсорбции пиролизного газа от получения низших олефиновых углеводородов, в котором первичный абсорбент и вторичный абсорбент подают в деметанизатор, чтобы разделить путем абсорбции сырье деметанизатора путем противоточного контактирования с ними при умеренных температуре и давлении, причем указанное сырье подают в среднюю часть или нижнюю часть деметанизатора, указанный первичный абсорбент подают только в среднюю часть деметанизатора или одновременно в среднюю часть и нижнюю часть деметанизатора, указанный вторичный абсорбент подают в верхнюю часть деметанизатора.

Изобретение относится к способу извлечения моноалкилбензола из газового потока, содержащего кислород и моноалкилбензол. При этом газовый поток, содержащий кислород и моноалкилбензол, вступает в контакт с жидким потоком, включающим полиалкилбензол, соединение, содержащее две фенильные группы, соединенные между собой через алкиленовый мостик C1-С3, или их смесь.

Настоящее изобретение относится к способу выделения моноалкилбензола из газового потока, включающего кислород и моноалкилбензол, в котором газовый поток, включающий кислород и моноалкилбензол, вступает в контакт с жидким потоком, включающим нафталиновое соединение.

Изобретение относится к способу выделения этилена полимеризационной чистоты из сухих газов каталитического крекинга, включающему предварительную очистку от примесей, компримирование и низкотемпературное охлаждение.

Изобретение может быть использовано в газовой промышленности для подготовки углеводородного газа к однофазному транспорту. Способ включает очистку углеводородного газа от тяжелых компонентов путем абсорбции абсорбентом.

Изобретение относится к способу очищения биогаза для извлечения метана, в котором компоненты, содержащиеся в биогазе, такие как диоксид углерода, соединения серы и аммиака, отделяются в ходе нескольких этапов процесса, и к соответствующей системе для осуществления способа.
Изобретение относится к способу извлечения ароматических углеводородов из коксового газа. .

Изобретение относится к способу подготовки углеводородного газа, включающий ступенчатую сепарацию, охлаждение газа между ступенями сепарации, отделение углеводородного конденсата начальных ступеней сепарации, охлаждение его конденсатом последней низкотемпературной ступени сепарации и использованием в качестве абсорбента.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов преобразования метанола в углеводороды, и может быть с успехом реализовано на предприятиях химической промышленности, в том числе для получения топлив.

Предложены катализатор расщепления алкил-трет-алкиловых эфиров или третичных спиртов, их применение в качестве катализатора расщепления алкил-трет-алкиловых эфиров или третичных спиртов, а также способ расщепления алкил-трет-алкиловых эфиров или третичных спиртов до изоолефинов и спирта или воды.

Изобретение относится к области получения ароматических углеводородов из спиртов, а именно к катализатору конверсии этанола, метанола или их смеси в ароматические углеводороды.
Изобретение относится к способам получения алкена из оксигената, включающим взаимодействие потока исходных реагентов, содержащего не менее одного реагента-оксигената и воду, с катализатором из гетерополикислоты на подложке при температуре, равной не менее 170°C.

Изобретение относится к двум вариантам способа конверсии алканолов в ароматические углеводороды. Один из вариантов включает: частичное дегидрирование C1-С6 алканольного исходного материала в присутствии катализатора дегидрирования при температуре дегидрирования и давлении дегидрирования с получением водорода и смеси оксигенатных компонентов, содержащей (а) непрореагировавший С1-С6 алканол и (b) карбоновую кислоту, альдегид, сложный эфир или любое их сочетание; причем по меньшей мере часть оксигенатных компонентов в данной смеси имеет соотношение водорода к полезному углероду менее 1,6, а степень частичного дегидрирования приводит к получению смеси оксигенатных компонентов, имеющей общее соотношение водорода к полезному углероду от 1,2 до 1,8; и воздействие на оксигенатный компонент катализатора конверсии оксигенатов при температуре конверсии оксигенатов и давлении конверсии оксигенатов с получением ароматических углеводородов.

Изобретение относится к способу получения 4,4-диметил-1,3-диоксана конденсацией изобутилена с формальдегидом в присутствии кислотного катализатора. Способ характеризуется тем, что в качестве кислотного катализатора используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами.

Изобретение относится к способу очистки технического метил-трет-бутилового эфира (МТБЭ). Способ включает следующие стадии: a) приготовление технического МТБЭ (I), содержащего по меньшей мере МТБЭ, метанол, С4-углеводороды, С5-углеводороды и ацетон, b) дистилляционное разделение технического МТБЭ (I) на содержащий С4- и С5-углеводороды головной продукт (II), содержащий ацетон, метанол и МТБЭ боковой поток (III) и содержащий МТБЭ кубовый продукт (IV).

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: Na2O - 0,1÷0,3, MgO - 30÷40, SiO2 - остальное и другой катализатор получения алкадиенов из низших спиртов состава, мас.%: K2O - 0,1÷0,3, ZnO - 25÷35, γ-Al2O3 - остальное.

Изобретение относится к способу изготовления катализатора на основе цеолита, включающему следующие стадии: (a) добавление оксида алюминия и кислоты к порошку цеолита типа пентасила, где порошок цеолита имеет атомное отношение Si/Al от 50, до 250, и необязательно перемешивание и гомогенизация этой смеси, (b) формирование, сушка и прокаливание смеси, полученной на стадии (а) с получением сформированного материала, (c) пропитка сформированного материала стадии (b) фосфорным соединением с получением фосфорсодержащего продукта, и (d) прокаливание фосфорсодержащего продукта стадии (с) при температурном интервале от 150°C до 800°C с получением фосфорсодержащего катализатора.

Изобретение относится к способу получения катализатора на основе цеолита, включающего следующие стадии: (а) добавление первого фосфорсодержащего соединения к порошку цеолита типа пентасила для получения модифицированного фосфором цеолита, (b) добавление оксида алюминия и кислоты к модифицированному фосфором цеолиту стадии (а), и необязательно перемешивание и гомогенизация этой смеси, (c) формирование, сушку и прокаливание смеси, полученной на стадии (b) с получением сформированного материала, и (d) пропитку сформированного материала стадии (с) вторым фосфорсодержащим соединением для получения модифицированного фосфором катализатора и (e) прокаливание модифицированного фосфором катализатора, полученного на стадии (d).

Изобретение относится к способу извлечения 1,3-бутадиена из фракции C4. Способ включает: подачу углеводородной фракции, содержащей бутаны, бутены, 1,2-бутадиен, 1,3-бутадиен, C4 ацетилены, C3 ацетилены и С5+ углеводороды, в установку экстрактивной перегонки; приведение в контакт углеводородной фракции с растворителем в установке экстрактивной перегонки для селективного растворения части углеводородной фракции; извлечение паровой фракции, содержащей первую часть бутанов и бутенов, из установки экстрактивной перегонки; извлечение фракции обогащенного растворителя, содержащей 1,3-бутадиен, 1,2-бутадиен, C4 ацетилены, C3 ацетилены, C5+ углеводороды и вторую часть бутанов и бутенов; подачу фракции обогащенного растворителя в ректификатор для по меньшей мере частичной дегазации обогащенного растворителя; извлечение второй части бутанов и бутенов из ректификатора в виде головной фракции; извлечение C3 и C4 ацетиленов, 1,3-бутадиена, 1,2-бутадиена и C5+ углеводородов из ректификатора в виде боковой фракции; извлечение частично дегазированного растворителя, содержащего 1,2-бутадиен и C4 ацетилены, из ректификатора в виде донной фракции; подачу по меньшей мере части частично дегазированного растворителя в дегазатор для дополнительной дегазации растворителя; извлечение головной фракции, содержащей по меньшей мере одно из C4 ацетиленов и 1,2-бутадиена, из дегазатора; извлечение боковой фракции, содержащей C4 ацетилены, из дегазатора; извлечение донной фракции, содержащей дегазированный растворитель, из дегазатора; сжатие головной фракции дегазатора с помощью компрессора с жидкостным кольцом; и рециркуляцию по меньшей мере части сжатой головной фракции дегазатора в ректификатор.
Наверх