Реактивная двигательная установка и способ подачи топлива

Изобретение относится к области реактивных двигательных установок, а более конкретно к реактивной двигательной установке (1), в которой первый топливный контур (6) для подачи первого компонента топлива в основной двигатель (4) содержит отвод (13), расположенный ниже по потоку от насоса (8b) первого турбонасоса (8) и проходящий через первый регенеративный теплообменник (10) и турбину (8a) первого турбонасоса (8), а второй топливный контур (7) для подачи второго компонента топлива в основной двигатель (4) содержит отвод, расположенный ниже по потоку от насоса (9b) второго турбонасоса (9) и проходящий через второй регенеративный теплообменник (11) и турбину (9a) второго турбонасоса (9). Установка (1) дополнительно содержит по меньшей мере один вторичный двигатель (15), подсоединенный ниже по потоку от турбин (8a, 9a) первого и второго турбонасосов (8, 9). Изобретение обеспечивает повышение мощности двигателя. 3 н. и 7 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к области реактивных двигательных установок, а более конкретно, реактивных двигательных установок с двухкомпонентным топливом, то есть, в частности, ракетных двигателей.

Уровень техники

В нижеследующем описании термины «выше по потоку» и «ниже по потоку» определены относительно обычного направления потоков топлива в топливных контурах реактивной двигательной установки.

Начиная с самой зари космической эры, одна из основных технических проблем состояла в обеспечении подачи топлива в реактивные двигатели. В то время как применение жидкого ракетного топлива в отличие от твердого топлива обеспечивает возможность управляемой работы реактивного двигателя, такие жидкие топлива обычно необходимо впрыскивать в рабочую камеру двигателя под высоким давлением, чтобы преодолеть давление, существующее в такой камере во время работы двигательной установки. Если давление в рабочей камере не слишком высоко, эта задача может быть решена сравнительно простым образом путем нагнетания давления в топливных резервуарах. Однако если требуется увеличить удельную тягу реактивного двигателя, давление в рабочей камере двигателя должно быть поднято до уровня, превосходящего те значения, которые обычно можно получить путем нагнетания давления в топливных резервуарах. Поэтому для обеспечения подачи топлива в рабочую камеру двигателя под крайне высоким давлением обычно используют турбонасосы. Такой турбонасос, как правило, содержит по меньшей мере один насос и по меньшей мере одну турбину, связанную с таким насосом таким образом, что поток газа через турбину приводит в действие насос. Известны различные предложения конструкций турбонасосов. Так, в некоторых случаях одна и та же турбина приводит в действие два насоса, по одному на каждый из компонентов топлива, непосредственно или через посредство зубчатой передачи. В других случаях для подачи каждого из компонентов топлива может быть предусмотрен отдельный турбонасос. Как правило, газ, расширение которого используют для приведение в действие турбонасоса или турбонасосов, поступает из газогенератора, в частности, из газогенератора, также работающего на компонентах топлива.

Тем не менее такое решение также имеет некоторые недостатки. В частности, в связи с высокой реакционной способностью компонентов топлива, как правило, необходимо обеспечить в каждом из турбонасосов изоляцию газов сгорания от по меньшей одного из компонентов топлива. В частности, когда один из компонентов топлива представляет собой сильно окисляющую жидкость, например жидкий кислород, важно обеспечить надежное отделение потока жидкого кислорода от газов сгорания, производимых газогенератором, которые обычно представляют собой слабые восстановители.

В таких реактивных двигательных установках часто используют регенеративные рабочие камеры, в которых предусмотрены теплообменники, через которые проходит по меньшей мере один из жидких компонентов топлива с целью охлаждения стенок рабочей камеры и в то же время предварительного нагрева по меньшей мере части компонента топлива. Также известно предложение, в котором ниже по потоку от таких теплообменников по меньшей мере один из компонентов топлива, предварительно нагретый таким образом, используют для приведения в действие турбонасоса или турбонасосов подачи топлива в результате расширения по меньшей мере одного компонента топлива.

Так, французский патентный документ FR 2031047 раскрывает реактивную двигательную установку, содержащую основной двигатель с рабочей камерой, первый топливный контур с первым турбонасосом, содержащим турбину, соединенную с насосом, для подачи в рабочую камеру основного двигателя первого компонента топлива и второй топливный контур со вторым турбонасосом, также содержащим турбину, соединенную с насосом, для подачи в рабочую камеру основного двигателя второго компонента топлива. Рабочая камера основного двигателя представляет собой регенеративную камеру сгорания, содержащую первый теплообменник и второй теплообменник.

В соответствии с данным известным решением первый топливный контур проходит ниже по потоку от первого теплообменника через турбину первого турбонасоса, а второй топливный контур проходит ниже по потоку от второго теплообменника через турбину второго турбонасоса. Таким образом, накачку каждого из компонентов топлива в рабочую камеру основного двигателя производит насос, приводимый в действие турбиной, которую приводит в действие расширение того же компонента топлива. Это избавляет от необходимости обеспечения полной изоляции насоса от турбины в каждом из турбонасосов.

Тем не менее, поскольку в такой известной конструкции предусмотрено расширение всего потока каждого из двух компонентов топлива в турбине соответствующего турбонасоса до впрыска в рабочую камеру, давление впрыска и, следовательно, давление в рабочей камере, как и удельная тяга двигателя, остаются ограниченными.

Раскрытие изобретения

Задача, на решение которой направлено настоящее изобретение, состоит в устранении описанных недостатков. В соответствии с по меньшей мере одним из вариантов осуществления изобретения для решения поставленной задачи предлагается решение, в котором первый топливный контур содержит отвод, расположенный ниже по потоку от насоса первого турбонасоса и проходящий через первый теплообменник и турбину первого турбонасоса, а второй топливный контур содержит отвод, расположенный ниже по потоку от насоса второго турбонасоса и проходящий через второй теплообменник и турбину второго турбонасоса, причем установка содержит по меньшей мере один вторичный двигатель, соединенный с указанными отводами ниже по потоку от турбин первого и второго турбонасосов. Таким образом, вместо расширения всего потока обоих компонентов топлива для приведения в действие турбонасосов, для приведения в действие соответствующего турбонасоса используют лишь вторичный поток каждого из компонентов топлива до его подачи в один или более вторичных двигателей. В результате основной поток каждого из компонентов топлива может быть подан непосредственно в рабочую камеру под высоким давлением, в то время как вторичные потоки обоих компонентов топлива могут быть расширены в турбинах двух турбонасосов с падением давления до значительно менее высокого, так как по меньшей мере один вторичный двигатель, который может представлять собой, например, двигатель управления ориентацией типа маневрового двигателя Вернье, не обязательно должен развивать высокую удельную тягу.

В частности, но не только в случае, когда указанный по меньшей мере один вторичный двигатель представляет собой двигатель управления ориентацией, такая двигательная установка может содержать клапаны, расположенные между указанными турбинами и указанным по меньшей мере одним вторичным двигателем и обеспечивающие возможность управления подачей компонентов топлива в указанный по меньшей мере один вторичный двигатель и, следовательно, его тягой. В таком случае такая двигательная установка может дополнительно содержать несколько вторичных двигателей, подсоединенных ниже по потоку от турбин первого и второго турбонасосов, в частности, для создания тяги, направленной вдоль нескольких разных осей. В то же время каждый отвод также может содержать клапан, расположенный выше по потоку от соответствующего теплообменника и позволяющий регулировать поступление компонентов топлива в указанные отводы, вместо клапанов, расположенных между турбинами и указанным по меньшей мере одним вторичным двигателем, или в дополнение к ним.

Кроме того, по меньшей мере в некоторых из вариантов осуществления изобретения указанный первый теплообменник и/или указанный второй теплообменник могут быть встроены во внешнюю стенку указанной рабочей камеры. В частности, первый и/или второй теплообменники, встроенные во внешнюю стенку рабочей камеры, содержат по меньшей мере один канал циркуляции компонента топлива, смежный с внешней стороной указанной стенки, что способствует теплообмену между внешней стенкой рабочей камеры и компонентами топлива, проходящими через теплообменник, в то же время ограничивая массу и сложность конструкции теплообменника.

В соответствии с настоящим изобретением также предлагается ракета-носитель, содержащая по меньшей мере одну такую реактивную двигательную установку, хотя данная установка также может быть использована для приведения в движение авиационных и/или космических аппаратов других типов.

В соответствии с настоящим изобретением также предлагается способ подачи компонентов топлива в реактивную двигательную установку. В соответствии с по меньшей мере одним из вариантов осуществления данного способа основной поток первого компонента топлива подают в рабочую камеру основного двигателя через первый топливный контур, где подачу первого компонента топлива обеспечивает насос первого турбонасоса. Основной поток второго компонента топлива также подают в рабочую камеру основного двигателя через второй топливный контур, где подачу второго компонента топлива обеспечивает насос второго турбонасоса. Вторичный поток первого компонента топлива отводят от основного потока первого компонента топлива ниже по потоку от насоса первого турбонасоса, нагревают в первом теплообменнике за счет рабочей камеры основного двигателя и расширяют в турбине, приводя в действие первый турбонасос, а вторичный поток второго компонента топлива отводят от основного потока второго компонента топлива ниже по потоку от насоса второго турбонасоса, нагревают во втором теплообменнике за счет рабочей камеры основного двигателя и расширяют в турбине, приводя в действие второй турбонасос. Наконец, вторичные потоки первого и второго компонентов топлива подают после их расширения в турбинах первого и второго турбонасосов в по меньшей мере один вторичный двигатель.

Тяга указанного по меньшей мере одного вторичного двигателя может быть использована, в частности, для управления ориентацией, в результате чего применение данной установки в рабочем режиме позволяет задавать траекторию устройства, снабженного указанной установкой. В частности, но не исключительно в данном случае, регулирование потока компонентов топлива, подаваемого в каждый из вторичных двигателей, может быть обеспечено клапанами, расположенными между указанными турбинами и по меньшей мере одним вторичным двигателем. Вместо таких средств индивидуального управления потоком, установленных ниже по потоку турбин, или в дополнение к ним управление указанными вторичными потоками также может быть осуществлено посредством клапанов, расположенных выше по потоку от теплообменников.

Для обеспечения особенно высокой эффективности охлаждения внешней стенки рабочей камеры указанные первый и/или второй компоненты топлива могут являться жидкими выше по потоку от первого и/или второго теплообменника и газообразными ниже по потоку от них. Такое испарение компонентов топлива в теплообменниках обладает тем дополнительным преимуществом, что оно увеличивает мощность, которая может быть извлечена из потока компонента топлива при его расширении в расположенной ниже по потоку турбине.

Краткое описание чертежей

Изобретение станет более ясно, а его преимущества - более очевидны, из нижеследующего подробного описания одного из вариантов осуществления изобретения, приведенного в качестве примера и не накладывающего каких-либо ограничений. Описание приведено со ссылками на прилагаемый чертеж фиг. 1, схематически иллюстрирующий реактивную двигательную установку по одному из вариантов осуществления изобретения.

Осуществление изобретения

На фиг. 1 представлена реактивная двигательная установка 1 по одному из вариантов осуществления изобретения, в которую подают жидкие компоненты топлива из двух резервуаров 2, 3, содержащих первый и второй компоненты топлива (например, жидкие водород и кислород) соответственно. Установка 1 содержит основной двигатель 4 с рабочей камерой 5, первый топливный контур 6, соединенный с первым резервуаром 2 и с рабочей камерой 5 для подачи первого компонента топлива в рабочую камеру 5, и второй топливный контур 7, соединенный со вторым резервуаром 3 и с рабочей камерой 5 для подачи второго компонента топлива в рабочую камеру 5. Первый топливный контур 6 содержит первый турбонасос 8, содержащий турбину 8a, соединенную с насосом 8b. Второй топливный контур 7 содержит второй турбонасос 9, отдельный от первого турбонасоса 8 и также содержащий содержащий турбину 9a, соединенную с насосом 9b. Рабочая камера 5 представляет собой регенеративную рабочую камеру, содержащую первый теплообменник 10 и второй теплообменник 11. Первый и второй теплообменники 10, 11 могут быть образованы, например, каналами циркуляции компонентов топлива, обернутыми вокруг внешней стенки 12 рабочей камеры 5, и/или змеевиками, встроенными в указанную внешнюю стенку 12.

Первый топливный контур 6 содержит расположенный ниже по потоку от насоса 8b отвод 13, проходящий через первый теплообменник 10 и турбину 8a, а второй топливный контур 7 содержит расположенный ниже по потоку от насоса 9b отвод 14, проходящий через второй теплообменник 11 и турбину 9a второго турбонасоса 9. Кроме того, установка 1 содержит несколько вторичных двигателей 15, каждый из которых соединен с указанными отводами 13, 14 ниже по потоку от указанных турбин 8a, 9a через управляющие клапаны 16. Другие управляющие клапаны 19 расположены выше по потоку от теплообменников 10, 11 для обеспечения возможности управления расходом вторичных потоков, циркулирующих через отводы 13, 14. Вторичные двигатели 15 могут быть ориентированы вдоль разных осей и/или установлены с возможностью изменения ориентации так, чтобы обеспечить возможность их использования в качестве двигателей управления ориентацией (двигателей Вернье) для управления ориентацией средства, приводимого в движение установкой 1. С этой целью клапаны 16, 19 также могут быть соединены, как показано на чертеже, с модулем 17 управления, выполненным с возможностью приема внешних команд и сигналов от датчиков, регистрирующих, например, скорость, положение, ускорение и/или ориентацию, для управления вторичными двигателями 15.

Во время работы установки насос 8b обеспечивает поступление основного потока первого компонента топлива через первый топливный контур 6 из первого резервуара 2 в инжекционную пластину 18. Насос 9b обеспечивает поступление основного потока второго компонента топлива через второй топливный контур 7 из второго резервуара 3 в инжекционную пластину 18. Таким образом, инжекционная пластина 18 обеспечивает впрыск обоих компонентов топлива в рабочую камеру 5, а в результате их реакции внутри этой камеры получают горячие газы, расширение которых в реактивном сопле рабочей камеры 5 создает тягу основного двигателя 4. В то время как основной поток каждого из компонентов топлива впрыскивают в рабочую камеру 5, вторичный поток каждого из компонентов топлива, управляемый клапанами 19, проходит по отводам 13, 14 и протекает через теплообменники 10, 11, испаряется в теплообменниках 10, 11, после чего, уже в газообразном состоянии, поступает в турбины 8a, 9a и, расширяясь, приводит в действие насосы 8b, 9b. Испарение компонентов топлива в теплообменниках 10, 11 также вызывает охлаждение внешней стенки 12 рабочей камеры 5, компенсируя выделение тепла при взаимодействии компонентов топлива внутри рабочей камеры 5.

После расширения в турбинах 8a, 9a вторичные потоки обоих компонентов топлива, управляемые клапанами 16, поступают во вторичные двигатели 15. Модуль 17 управления осуществляет управление клапанами 16 в соответствии с внешними командами и/или сигналами, подаваемыми различными датчиками, для управления ориентацией средства, приводимого в движение установкой 1.

Хотя настоящее изобретение было описано выше со ссылками на конкретные примеры его осуществления, в такие примеры, очевидно, могут быть внесены различные модификации и изменения, не выходящие за пределы общего объема охраны изобретения, определенного в нижеследующих пунктах формулы изобретения. Например, управление вторичными потоками обоих компонентов топлива может быть осуществлено только клапанами, расположенными ниже по потоку от турбин, или только клапанами, расположенными выше по потоку от теплообменников. В связи с этим описание и прилагаемые чертежи следует рассматривать как иллюстрацию, не накладывающую каких-либо ограничений.

1. Реактивная двигательная установка (1), содержащая по меньшей мере
основной двигатель (4) с рабочей камерой (5);
первый топливный контур (6) с первым турбонасосом (8), содержащим по меньшей мере турбину (8а), соединенную с насосом (8b), для подачи первого компонента топлива в рабочую камеру (5) основного двигателя (4);
второй топливный контур (7) со вторым турбонасосом (9), также содержащим по меньшей мере турбину (9а), соединенную с насосом (9b), для подачи второго компонента топлива в рабочую камеру (5) основного двигателя (4);
причем указанная рабочая камера (5) основного двигателя (4) представляет собой регенеративную рабочую камеру, содержащую первый теплообменник (10) и второй теплообменник (11); и
отличающаяся тем, что указанный первый топливный контур (6) содержит отвод (13), расположенный ниже по потоку от насоса (8b) первого турбонасоса (8) и проходящий через первый теплообменник (10) и турбину (8а) первого турбонасоса (8), а указанный второй топливный контур (7) содержит отвод (14), расположенный ниже по потоку от насоса (9b) второго турбонасоса (9) и проходящий через второй теплообменник (11) и турбину (9а) второго турбонасоса (9), и тем, что дополнительно содержит по меньшей мере один вторичный двигатель (15), соединенный с указанными отводами (13, 14) ниже по потоку от турбин (8а, 9а) первого и второго турбонасосов (8, 9).

2. Установка (1) по п. 1, отличающаяся тем, что содержит клапаны (16), установленные между указанными турбинами (8а, 9а) и указанным по меньшей мере одним вторичным двигателем (15).

3. Установка (1) по п. 1, отличающаяся тем, что содержит несколько вторичных двигателей (15), подсоединенных ниже по потоку от турбин (8а, 9а) первого и второго турбонасосов (8, 9).

4. Установка (1) по п. 1, отличающаяся тем, что указанный первый теплообменник (10) и/или указанный второй теплообменник (11) встроены во внешнюю стенку (12) указанной рабочей камеры (5).

5. Установка (1) по п. 4, отличающаяся тем, что первый и/или второй теплообменники (10, 11), встроенные во внешнюю стенку (12) рабочей камеры (5), содержат по меньшей мере один канал циркуляции компонента топлива, смежный с внешней стороной указанной стенки (12).

6. Ракета-носитель, содержащая по меньшей мере одну реактивную двигательную установку (1) по любому из предшествующих пунктов.

7. Способ подачи компонентов топлива в реактивную двигательную установку (1), в котором:
основной поток первого компонента топлива подают в рабочую камеру (5) основного двигателя (4) через первый топливный контур (6), где подачу первого компонента топлива обеспечивает насос (8b) первого турбонасоса (8); и
основной поток второго компонента топлива подают в рабочую камеру (5) основного двигателя (4) через второй топливный контур (7), где подачу второго компонента топлива обеспечивает насос (9b) второго турбонасоса (9);
отличающийся тем, что
вторичный поток первого компонента топлива отводят от основного потока первого компонента топлива ниже по потоку от насоса (8b) первого турбонасоса (8), нагревают в первом теплообменнике (10) за счет рабочей камеры (5) основного двигателя (4) и расширяют в турбине (8а), приводя в действие первый турбонасос (8);
вторичный поток второго компонента топлива отводят от основного потока второго компонента топлива ниже по потоку от насоса (9b) второго турбонасоса (9), нагревают во втором теплообменнике (11) за счет рабочей камеры (5) основного двигателя (4) и расширяют в турбине (9а), приводя в действие второй турбонасос (9); и
указанные вторичные потоки первого и второго компонентов топлива подают после их расширения в турбинах (8а, 9а) первого и второго турбонасосов (8, 9) в по меньшей мере один вторичный двигатель (15).

8. Способ по п. 7, отличающийся тем, что тягу указанного по меньшей мере одного вторичного двигателя (15) используют для управления ориентацией.

9. Способ по п. 7, отличающийся тем, что потоки компонентов топлива, подаваемые в каждый из вторичных двигателей (15), регулируют клапанами (16), расположенными между указанными турбинами (8а, 9а) и указанным по меньшей мере одним вторичным двигателем (15).

10. Способ по любому из пп. 7-9, отличающийся тем, что указанные первый и/или второй компоненты топлива являются жидкими выше по потоку от первого и/или второго теплообменника (10, 11) и газообразными ниже по потоку от них.



 

Похожие патенты:

Изобретение относится к области двигательных установок на криогенном топливе, и в частности к криогенной двигательной установке (1), содержащей по меньшей мере один маршевый двигатель (6) многократного запуска, первый криогенный бак (2), соединенный с маршевым двигателем (6) для его питания первым компонентом топлива, первый газовый бак (4), по меньшей мере один осаждающий топливо двигатель (7, 8) и первый питающий контур (16) для питания первого газового бака (4).

Изобретение относится к ракетной технике и может быть использовано преимущественно в силовых блоках ракет-носителей (РН) для управления вектором тяги. .

Изобретение относится к ракетной технике и может быть использовано преимущественно в жидкостных ракетных двигателях. .

Изобретение относится к жидкостным ракетным двигателям. .

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива с изменяемым в полете значением суммарного импульса тяги.

Изобретение относится к ракетной технике и может быть использовано при проектировании твердотопливных двигателей с обнулением или реверсом тяги, например противоштопорных ракет для испытаний самолетов.

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками.

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде.

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками.

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло.

Изобретение относится к жидкостным ракетным двигателям (ЖРД) и может быть использовано при их огневой стендовой отработке для повышения надежности работы камеры сгорания.

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования.

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде.

Изобретение относится к области ракетной техники может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит смесительную головку, внутреннюю профилированную оболочку, на внешней поверхности которой выполнены ребра тракта охлаждения, наружную профилированную оболочку, установленную на внутреннюю и скрепленную с ней по вершинам ребер тракта охлаждения, причем упомянутые оболочки и ребра образуют каналы охлаждения.

Изобретение относится к устройствам, предназначенным для создания потока перегретого водяного пара за счет сжигания водород-кислородной смеси в паровой среде. Может использоваться в ракетных двигателях, циклах комбинированных и паротурбинных энергетических установок.

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении.

Блок сопел // 2587729
Изобретение относится к арматуростроению, а именно к нормально закрытым клапанам, и может быть использовано в машиностроении, например в ракетной технике. Блок сопел состоит из корпусов, герметично соединенных между собой общим патрубком входа сваркой.

Изобретение относится к области жидкостных ракетных двигателей (ЖРД) с дожиганием окислительного генераторного газа. Газовый тракт на выходе из газогенератора и в корпусе турбины ТНА снабжен гальваническим никелевым и медным покрытиями, повышающими стойкость агрегатов к возгоранию, единый концевой участок изогнутого трубопровода двигателя в полетной комплектации снабжен смотровым отверстием и приваренным к нему резьбовым штуцером осмотра колеса турбины с установленной на нем заглушкой и уплотнительным кольцом, в патрубках на выходе из единого концевого участка изогнутого трубопровода смонтированы резьбовые штуцеры с установленными в них тремя термопарами, имеющими различную длину чувствительного элемента, и уплотнительными прокладками, на прямолинейных участках разветвленного изогнутого трубопровода установлены теплообменники, снабженные штуцерами подвода и отвода газа наддува, причем штуцер подвода газа наддува расположен ниже по потоку окислительного генераторного газа.

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям, работающим на криогенном окислителе и на углеводородном горючем. Жидкостный ракетный двигатель, содержащий газогенератор, имеющий головку и расположенный под ним турбонасосный агрегат, содержащий, в свою очередь, основную турбину и насосы окислителя и горючего, дополнительный насос горючего и пусковую турбину с по меньшей мере одним источником высокого давления, содержащим пирозаряд, при этом выход из насоса окислителя соединен трубопроводом, содержащим клапан окислителя с головкой газогенератора, при этом на источнике высокого давления выполнена торцовая стенка с отверстиями, число которых соответствует числу пирозарядов, при этом установлено не менее двух пирозарядов, пусковая турбина выполнена с по меньшей мере двумя сопловыми аппаратами, закрытыми заслонкой, имеющей возможность поочередного открытия отверстий и их совмещения с одним из сопловых аппаратов, а трубопровод в месте соединения с газогенератором установлен радиально.

Изобретение относится к турбонасосостроению и может быть использовано в турбонасосных агрегатах (ТНА) ЖРД верхних ступеней ракет многоразового включения. Изобретение решает задачу работоспособности подшипников ТНА в условиях воздействия вакуума при многократном включении ЖРД, что достигается уменьшением нагрева подшипников. Для этого турбонасосный агрегат включает корпус 1, ротор с центробежным насосом 2, турбину 3, подшипниковую опору 4, входной патрубок насоса низкого давления 5, выход из насоса высокого давления 6, камеру высокого давления 7, трубопровод 8, обратный клапан 9 и жиклер 10.

Изобретение относится к жидкостным ракетным двигателям. Жидкостный ракетный двигатель, содержащий камеру сгорания, турбонасосный агрегат, дренажную полость, соединенную с дренажным трубопроводом, баллон со сжатым газом, причем дренажная полость расположена между насосом окислителя и турбиной, а дренажный трубопровод снабжен газовым эжектором, согласно изобретению между турбиной и насосом окислителя и между насосом окислителя и насосом горючего выполнены по две дренажные полости, а газовый эжектор соединен трубопроводом с полостью за турбиной.
Наверх