Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления

Изобретение может быть использовано в медицине, кристаллографии, ядерной физике и т.д. Гибридный пиксельный фотоприемник согласно изобретению содержит первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, включающая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности пикселей расположены контактные электроды и она содержит вторую полупроводниковую подложку n-(p-) типа проводимости, содержащую на своей верхней (нижней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов, которые через контактные электроды соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на нижней (верхней) поверхности второй подложки, при этом вторая подложка одного n-(p-) типа проводимости является общей - анодной (катодной) областью и она образует с полупроводниковыми контактными электродами p+(n+) типа проводимости, являющимися одновременно катодными (анодными) электродами, матрицу p-i-n-диодов. Изобретение обеспечивает повышение координатной разрешающей способности. 2 н. и 3 з.п. ф-лы, 1 табл., 7 ил.

 

Изобретение относится к гибридным пиксельным полупроводниковым фотоприемникам - детекторам ионизирующих излучений (ГПДИИ) и может быть использовано в качестве приемника оптического, рентгеновского, гамма, электронного и других видов радиационных излучений и для получения видеоизображений различных объектов.

В частности, такой детектор может быть использован в медицине, таможенном контроле, контроле качества и неразрушающем контроле материалов, рентгеновской астрономии, спектроскопии, фундаментальных исследованиях синхротронных излучений и т.д.

Известны конструкции гибридных пиксельных детекторов, содержащие первую - кремниевую подложку - пластину, на нижней (верхней) поверхности которой расположена интегральная СБИС - микросхема, содержащая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности этих пикселей расположены контактные электроды, и вторую полупроводниковую подложку n-(p-) типа проводимости, выполненную из материала, оптимального для поглощения конкретного вида излучения, например германия (Ge) или арсенида галлия (AsGa) [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»; 2. G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398; 3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»; 4. United states patent US 5729020 «Hybrid type infrared detector»; 5. United states patent US 6204087 B1 Date of filing 20.03.2001 «Fabrication of three-dimensional architecture for solid state radiation detectors»; 6. United states patent US 2009 0045346 A1 Date of filing 19.02.2009 «Х-ray imaging device and method for the manufacturing thereof], содержащую на своей нижней (верхней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее верхней (нижней) поверхности расположена матрица пикселей p-i-n-диодов или диодов Шоттки, которые через контактные электроды (индиевые столбиковые выводы [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»; 2. G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398], либо иного материала [3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»]) соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на верхней (нижней) поверхности второй подложки. Недостатком таких конструкций детекторов является:

- ограничение координатной разрешающей способности из-за относительно больших размеров контактных электродов пиксель и необходимости топологического совмещения пиксель обеих пластин-подложек;

- относительно высокая стоимость из-за высокого процента брака при совмещении электродов пиксель пластин.

Наиболее близкой по технической сущности является широко распространенная конструкция гибридного пиксельного детектора, представленная в [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»] и [G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398], которая взята за прототип. Она содержит первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, содержащая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности этих пикселей расположены контактные электроды (столбиковые выводы), и вторую полупроводниковую подложку n-(p-) типа проводимости, содержащую на своей верхней (нижней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов, которые через контактные электроды (столбиковые выводы) соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на нижней (верхней) поверхности второй подложки.

Недостатком конструкции детектора-прототипа также является:

- ограничение координатной разрешающей способности детекторов из-за относительно больших размеров контактных электродов пикселей ввиду необходимости топологического совмещения пикселей обеих пластин.

Техническим результатом изобретения является повышение координатной разрешающей способности детекторов.

Цель достигается тем, что вторая подложка одного n-(p-) типа проводимости, является общей - анодной (катодной) областью и образует с полупроводниковыми контактными электродами n+(p+) типа проводимости, являющимися одновременно катодными (анодными) электродами, матрицу p-i-n-диодов.

Известны способы изготовления гибридных пиксельных детекторов [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»; 2. G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398; 3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»; 4. United states patent US 5729020 «Hybrid type infrared detector»], включающие:

- подготовку первой - кремниевой подложки, изготовление на ее поверхности интегральной СБИС - микросхемы с матрицей пикселей с контактными электродами;

- подготовку второй подложки n-(p-) типа проводимости и формирование на ее поверхности n+(p+) сильно легированного слоя;

- утонение второй подложки и изготовление в ней матрицы пикселей - p-i-n-диодов с контактными электродами;

- соединение подложек с топологическим (геометрическим) совмещением соответствующих контактных электродов подложек.

Или способы изготовления детекторов [3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»; 4. United states patent US 5,729,020 «Hybrid type infrared detector»], включающие:

- подготовку первой - кремниевой подложки, изготовление на ней интегральной СБИС - микросхемы с матрицей пикселей, формирование на ней контактных электродов (столбиковых выводов);

- подготовку второй подложки и создание на ее нижней (верхней) поверхности сильно легированного n+(p+) слоя и общего контактного электрода, изготовление на ее верхней (нижней) поверхности матрицы пикселей p-i-n-диодов;

- соединение подложек с совмещением контактных электродов (столбиковых выводов) первой подложки с контактными электродами p-i-n-диодов второй подложки.

Недостатком таких способов изготовления гибридных пиксельных детекторов является: технологическая сложность (соответственно высокая стоимость технологии) создания большого числа межсоединений между пластинами из-за проблемы совмещения контактных электродов, особенно если пластины имеют значительную толщину (300 мкм).

Наиболее близким по технической сущности широко применяемым и обладающим наилучшей технологичностью является способ изготовления детектора, который взят за прототип [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»], включающий:

- подготовку первой - кремниевой подложки, изготовление на ней интегральной СБИС - микросхемы с матрицей пикселей с контактными электродами (столбиковыми выводами);

- подготовку второй подложки и создание на ее верхней (нижней) поверхности сильно легированного n+(p+) слоя и общего контактного электрода, изготовление на ее нижней (верхней) поверхности матрицы пикселей p-i-n-диодов;

- соединение подложек с совмещением контактных электродов (столбиковых выводов) первой подложки с контактными электродами p-i-n-диодов второй подложки.

Однако при таком способе также существует проблема совмещения соответствующих пикселей пластин.

Техническим результатом изобретения является уменьшение стоимости, повышение надежности и повышение разрешающей способности гибридных пиксельных детекторов.

Цель достигается тем, что контактные электроды первой подложки выполняются из полупроводникового материала сильно легированного примесью n+(p+) типа, при этом соединение подложек происходит при температуре интенсивной диффузии этой примеси из контактных электродов первой - кремниевой подложки во вторую подложку с одновременным формированием в ней p-i-n-диодов.

С целью надежности работы путем исключения утечек между p-i-n-диодами по поверхности второй подложки, например пластины германия, ее следует пассивировать путем смыкания под давлением, поверхности второй подложки - пластины германия с диэлектриком (оксидом кремния, нитридом кремния и т.д.), расположенном на кремниевом чипе. При этом возможны варианты, в частности, когда:

- контактные электроды выполняются из «твердого» материала, например, поликремния, который углубляется во вторую подложку (пластину) при соединении пластин;

- контактные электроды выполняются ниже уровня поверхности диэлектрика, а во вторую подложку (пластину) углубляется диэлектрик, расположенный на кремниевом чипе.

Изобретение поясняется фиг. 1-6.

На фиг. 1 показана конструкция детектора-прототипа, из которой видно, что раздельное изготовление пластин приводит к проблеме их совмещения и соответственно к браку либо к нежелательному увеличению площади пикселей (ухудшению разрешающей способности).

На фиг. 2 показана конструкция гибридного пиксельного детектора ионизирующих излучений. Она содержит первую - кремниевую подложку - 1 n-типа проводимости, вторую германиевую подложку - 2 n-типа проводимости. На верхней поверхности подложки - 2 расположена интегральная СБИС - микросхема, включающая матрицу пикселей - 3 с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности этих пикселей расположены контактные электроды - 4. Вторая германиевая подложка содержит на своей верхней поверхности сильно легированный n+-слой - 5 с расположенным на нем металлическим общим катодным электродом - 6, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов - 7, которые через контактные электроды - 4 соединены с соответствующими пикселями матрицы первой кремниевой подложки - 1. Матрица пикселей - 3 содержит n-МОП и р-МОП транзисторы, имеющие соответствующие области карманов - 8, стоков и истоков n-типа - 9, стоков и истоков р-типа - 10, затворов - 11, и выводам к ним - 12, на поверхности кремниевой подложки расположен диэлектрик - 13.

На фиг. 2 показана основная операция изготовления конструкции гибридного пиксельного детектора ионизирующих излучений.

Принцип действия гибридного пиксельного детектора

Квант ионизирующего излучения, например рентгеновского, взаимодействует с атомом материала детектирующей пластины-подложки и генерирует фотоэлектрон, который в свою очередь возбуждает определенное количество внешних электронов (порядка нескольких тысяч) с соседних атомов и таким образом создает облако электронов (и дырок) в области пространственного заряда соответствующего p-i-n-диода, которое под действием электрического поля, приложенного к пластине, создает импульс ионизационного тока.

Импульс тока поступает на вход пикселей матрицы микросхемы считывания, расположенной в кремниевой пластине. Здесь он усиливается КМОП электронными схемами и, если его величина превышает некое пороговое значение, суммируется в счетчике импульсов пикселей.

Различное количество одиночных импульсов, накопленных в матрице пикселей, формируют контрастный образ изображения, т.е. изображение объекта. В экспериментах по дифракции рентгеновских лучей одиночные импульсы пикселей формируют двумерную дифракционную картину рентгеновских лучей, а также они могут быть специально интегрированы или разбиты на интервалы для формирования дифрактограмм.

Пример конкретной технологической реализации

Гибридного пиксельного фотоприемника - детектора излучений состоит в следующих технологических операциях:

- формирование диффузией фосфора n+-контактной области в верхней германиевой (или кремниевой) пластине с низкой концентрацией примеси фосфора или бора (1014 см-3 - 1017 см-3) и осаждение на нее металла общего электрода из алюминия (A1) (фиг. 2, а);

- изготовление в кремниевой пластине КМОП интегральных схем, содержащих матрицы пикселей с входными электродами из сильно легированного бором поликремния (полигермания) (см. фиг. 2, б);

- соединение (сварка) пластин при температуре T=500-800°C интенсивной диффузии примеси из поликремния (полигермания) в германиевую подложку (см. фиг. 2, а).

С целью исключения утечек между p-i-n-диодами по поверхности германия ее можно улучшить - пассивировать - путем смыкания под давлением поверхности германия с диэлектриком (оксидом кремния, нитридом кремния и т.д.), расположенным на кремниевом чипе. При этом возможны варианты, в частности, когда:

- контактные электроды выполняются из «твердого» материала - например, поликремния, который углубляется в германий (фиг. 3);

- контактные электроды выполняются из «мягкого» материала, например, германия, а в германиевую пластину углубляется диэлектрик, расположенный на кремниевом чипе (фиг. 4).

Особенности и преимущества использования

1. Например, для регистрации рентгеновских квантов синхротронных излучений (фотонов) с низкими энергиями 3-10 кэВ возможна конструкция детектора, состоящая из двух кремниевых Si пластин, в которой кремниевая пластина, содержащая электронику, выполняется по технологии «кремний на изоляторе». В этом случае имеется возможность утонения кремниевой пластины до минимальных значений 0,2-0,5 мкм (до оксидного слоя - 14) (фиг. 5).

Для улучшения качества контактов к германию на его поверхность могут быть нанесены молекулярные эпитаксиальные слои кремния (фиг. 6).

2. Важным преимуществом предлагаемого детектора является также отсутствие экранирования излучения индиевыми электродами (столбиковыми выводами), которое имеется в традиционных гибридных детекторах.

3. При попадании рентгеновского излучения с лицевой стороны германиевой пластины имеется возможность получения максимально высокой квантовой эффективности (около 98%) и координатного разрешения (размера пикселей) - менее 20 мкм, что существенно превышает аналогичные параметры выпускаемых детекторов, мирового лидера - компании DECTRIS Ltd (соответственно 80% и 172 мкм) (https://www.dectris.com/products.html).

4. Использование германиевой Ge - детектирующей подложки позволяет получить для рентгеновских излучений диапазона 10-35 кэВ квантовую эффективность 98% и координатную разрешающую способность не хуже 20 мкм, а для диапазона 30-150 кэВ не хуже 80% и 100 мкм соответственно, что удовлетворяет предельным требованиям, предъявляемым к детекторам медицинского назначения (табл. 1).

5. Исключение совмещения пластин и отказ от дорогого материала индиевых столбов приводит к существенному уменьшению стоимости детектора и повышению качества полученных изображений.

На фиг. 7 показана блок-схема технологической реализации конструкции гибридного пиксельного детектора ионизирующих излучений.

1. Гибридный пиксельный фотоприемник, содержащий первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, включающая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности пикселей расположены контактные электроды и она содержит вторую полупроводниковую подложку n-(p-) типа проводимости, содержащую на своей верхней (нижней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов, которые через контактные электроды соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на нижней (верхней) поверхности второй подложки, отличающаяся тем, что вторая подложка одного n-(p-) типа проводимости является общей - анодной (катодной) областью и она образует с полупроводниковыми контактными электродами p+(n+) типа проводимости, являющимися одновременно катодными (анодными) электродами, матрицу p-i-n-диодов.

2. Способ изготовления гибридного пиксельного фотоприемника по п. 1, включающий подготовку первой - кремниевой подложки, изготовление на ней интегральной СБИС - микросхемы с матрицей пикселей, формирование контактных электродов, подготовку второй подложки, создание на ее верхней (нижней) поверхности сильно легированного n+(p+) слоя и общего контактного электрода, соединение подложки, отличающийся тем, что контактные электроды первой подложки выполняют из полупроводникового материала сильно легированного примесью p+(n+) типа, при этом соединение подложек происходит при температуре интенсивной диффузии этой примеси из контактных электродов первой - кремниевой подложки во вторую подложку с одновременным формированием в ней p-i-n-диодов.

3. Способ изготовления по п. 2, отличающийся тем, что поверхность второй подложки пассивируют путем смыкания (контактирования) поверхности второй подложки с диэлектриком, расположенным на кремниевой подложке.

4. Способ изготовления по п. 3, отличающийся тем, что контактные электроды выполняют из поликремния, который углубляют в материал второй подложки при соединении подложек.

5. Способ изготовления по п. 3, отличающийся тем, что контактные электроды выполняют ниже уровня поверхности диэлектрика, расположенного на кремниевой подложке, а во вторую подложку углубляется диэлектрик, расположенный на кремниевой подложке.



 

Похожие патенты:

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию. Предложена конструкция планарного преобразователя ионизирующих излучений, содержащая слаболегированную полупроводниковую пластину n (p) типа проводимости, в которой расположена сильнолегированная n+ (p+) область, на поверхности которой расположен электропроводящий электрод катода (анода), на верхней поверхности пластины расположена сильнолегированная p+ (n+) область, образующая с полупроводниковой пластиной p-n-переход, на поверхности p+ (n+) области расположен слой изолирующего диэлектрика и электропроводящий электрод анода (катода), являющийся радиоактивным изотопом, при этом на верхней и нижней поверхностях слаболегированной полупроводниковой пластины n- (p-) типа проводимости расположены сильнолегированные соответственно верхняя и нижняя горизонтальные p+ (n+) области, образующие с пластиной p-n-переходы p-i-n-диода, при этом они соединены между собой вертикальной р+ (n+) кольцевой областью, при этом верхняя горизонтальная p+ (n+) область образует со слоем изолирующего диэлектрика и электропроводящим электродом катода (анода) МОП структуру накопительного конденсатора, на верхней поверхности пластины также расположена n+ (p+) контактная область к пластине n- (p-) типа проводимости, на верхней и нижней поверхности горизонтальных p+ (n+) областей расположены соответственно слои верхнего и нижнего диэлектрика, содержащие контактные окна соответственно к n+ (p+) контактной области и нижней горизонтальной p+ (n+) области, на поверхности верхнего и нижнего диэлектриков расположены соответственно верхний и нижний слои радиоактивного изотопа - металла, образующие омические контакты соответственно с n+ (p+) контактной областью и нижней горизонтальной p+ (n+) областью, являющиеся электродами катода (анода) и анода (катода) соответственно p-i-n-диода.

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые резисторы, дополнительные p-МОП и n-МОП транзисторы и оригинальной конструкции ячейки координатного фотоприемника-детектора.

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с). Согласно изобретению предложен кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности вертикальными одиночными n+-p--p+(p+-n--n+) переходами и расположенными в диодных ячейках параллельно к светопринимающей поверхности горизонтальными n+-p-(p+-n-) переходами, причем все переходы соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными соответственно на поверхности областей n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом он содержит в диодных ячейках дополнительные вертикальные n+-p-(p+-n-) переходы, причем их области n+(p+) типа подсоединены соответственно областями n+(p+) типа n+-p-(p+-n-) горизонтальных переходов к областям - n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом на его нижней и боковых поверхностях расположен слой диэлектрика толщиной менее длины пробега радиационных частиц в диэлектрике, на поверхности которого размещен слой радиоактивного металла толщиной, равной длине пробега электронов в металле, при этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц.

Изобретение относится к области полупроводниковых оптоэлектронных устройств, в частности к фотодетекторам с высокой эффективностью регистрации света. Ячейка для фотоэлектронного умножителя на основе кремния согласно изобретению содержит первый слой (2) первого типа проводимости, второй слой (3) второго типа проводимости, сформированный на первом слое (2), причем первый слой (2) и второй слой (3) формируют первый p-n-переход.

Изобретение может найти применение для регистрации излучений в ядерной физике, в физике высоких энергий, а также при создании цифровых рентгеновских аппаратов, преимущественно маммографов.

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. МОП диодная ячейка монолитного детектора излучений содержит МОП транзистор, шину высокого положительного (отрицательного) напряжения питания и выходную шину, при этом для повышения качества детектирования, т.е.

Изобретение относится к области детектирования ионизирующих излучений с использованием полупроводниковых устройств и может быть использовано в научно-исследовательском оборудовании и средствах радиационной защиты.

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. .

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. .

Изобретение относится к твердотельному датчику изображения и системе восприятия изображения. Датчик содержит блок восприятия изображения, включающий в себя блоки пикселов, и блок считывания для считывания сигнала из блока восприятия изображения.

Твердотельное устройство формирования изображений согласно настоящему варианту осуществления включает в себя второй датчик изображений, имеющий органическую пленку фотоэлектрического преобразования, пропускающую конкретный свет, и первый датчик изображений, который уложен в слои на той же полупроводниковой подложке, что и подложка второго датчика изображений, и который принимает конкретный свет, пропущенный вторым датчиком изображений, в котором пиксель для обнаружения фокуса обеспечивается во втором датчике изображений или первом датчике изображений.

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала, имеющий, по меньшей мере, первую и вторую базовые области, изолированные друг от друга и от подложки, по меньшей мере, первый набор встречно включенных дискретных диодов, сформированных в первой и второй базовых областях вдоль внутреннего края каждой базовой области у линии их раздела, по меньшей мере, первую делительную шину, сигнальную шину, по меньшей мере, первый и второй источники питания, а также преобразователь ток-напряжение, фильтр высоких частот, синхронный детектор, интегратор, генератор и регистрирующее устройство, положительный выход первого источника питания соединен с отрицательным выходом второго источника питания, образуя первый общий контакт, другими выходами первый и второй источники питания соединены с первой делительной шиной, вход преобразователя ток-напряжение соединен с сигнальной шиной, выход преобразователя ток-напряжение соединен с входом фильтра высоких частот, выход фильтра высоких частот соединен с первым входом синхронного детектора, выход синхронного детектора соединен с входом интегратора, выход интегратора соединен с общим контактом первого и второго источников питания и регистрирующим устройством, выход генератора соединен со вторым входом синхронного детектора и источником модулированного оптического сигнала, дополнительно введены третья базовая область, второй набор встречно включенных дискретных диодов, сформированных во второй и третьей базовых областях вдоль линии их раздела, вторая делительная шина, созданная вдоль внешнего края второй базовой области, третий и четвертый источники питания, сигнальная шина сформирована посередине третьей базовой области, положительный выход третьего источника соединен с отрицательным выходом четвертого источника, образуя второй общий контакт, другими выходами третий и четвертый источники питания соединены со второй делительной шиной, а выход интегратора соединен с первым и вторым общими контактами и регистрирующим устройством.

Твердотельное устройство формирования изображения содержит первую полупроводниковую область первого типа проводимости, обеспеченную на подложке методом эпитаксиального выращивания, вторую полупроводниковую область первого типа проводимости, обеспеченную на первой полупроводниковой области, и третью полупроводниковую область второго типа проводимости, обеспеченную во второй полупроводниковой области так, чтобы образовать p-n-переход со второй полупроводниковой областью, причем первая полупроводниковая область сформирована так, что концентрация примеси уменьшается от стороны подложки к стороне третьей полупроводниковой области, и распределение концентрации примеси во второй полупроводниковой области формируется методом ионной имплантации.

Использование: для формирования изображения. Сущность изобретения заключается в том, что устройство формирования изображений содержит полевой транзистор с p-n-переходом, обеспеченный на полупроводниковой подложке, при этом полевой транзистор с p-n-переходом включает в себя область канала первого типа проводимости, истоковую область первого типа проводимости, первую область затвора второго типа проводимости, вторую область затвора второго типа проводимости, третью область затвора второго типа проводимости и четвертую область затвора второго типа проводимости, первая область затвора и вторая область затвора расположены в направлении вдоль поверхности полупроводниковой подложки, третья область затвора и четвертая область затвора расположены в направлении вдоль поверхности полупроводниковой подложки, первая область затвора и третья область затвора расположены в направлении глубины полупроводниковой подложки, первая область затвора расположена между упомянутой поверхностью и третьей областью затвора, вторая область затвора и четвертая область затвора расположены в направлении глубины, вторая область затвора расположена между упомянутой поверхностью и четвертой областью затвора, область канала включает в себя первую область, которая расположена между первой областью затвора и третьей областью затвора, и вторую область, которая расположена между второй областью затвора и четвертой областью затвора, истоковая область расположена между первой областью затвора и второй областью затвора, и полупроводниковая область второго типа проводимости, имеющая концентрацию примеси, которая ниже, чем концентрация примеси третьей области затвора, и ниже, чем концентрация примеси четвертой области затвора, расположена между третьей областью затвора и четвертой областью затвора.

Настоящее изобретение обеспечивает твердотельный датчик изображения, который является простым в изготовлении и имеет структуру, эффективную в отношении увеличения количественного показателя насыщенности зарядов, и камеру, включающую в себя такой датчик.

Изобретение относится к изготовлению фокальных матричных приемников. Способ изготовления фокального матричного приемника, содержащего один или более пикселей, включает подготовку первой пластины с находящимся на ее поверхности чувствительным материалом, покрытым первым жертвенным слоем, подготовку второй пластины, снабженной считывающей интегральной схемой (ROIC) и контактной площадкой, покрытой вторым жертвенным слоем, в котором сформированы опорные ножки, находящиеся в контакте с контактными площадками и покрытые дополнительным жертвенным слоем, сращивание жертвенных слоев первой и второй пластин таким образом, что после удаления с первой пластины объемного жертвенного слоя чувствительный материал переносится с первой пластины на вторую пластину, формирование пикселя в чувствительном материале над каждой опорной ножкой или каждой группой опорных ножек и образование в каждом формируемом пикселе сквозной перемычки для обеспечения электрического соединения между верхней поверхностью пикселя и его опорной ножкой или опорными ножками и удаление жертвенных слоев с открыванием одного или более пикселей, причем единственный или каждый пиксель формируют таким образом, что его опорные ножки находятся полностью под чувствительным материалом пикселя.

Изобретение относится к изготовлению фокальных матричных приемников. Способ изготовления фокального матричного приемника, содержащего по меньшей мере один пиксель, включает следующие этапы: формирование первой пластины с находящимся на ее поверхности чувствительным материалом, покрытым первым жертвенным слоем, при этом чувствительный материал формирует на первой пластине один или более пикселей, выполнение опорных ножек для по меньшей мере одного пикселя внутри первого жертвенного слоя и формирование в поверхности первого жертвенного слоя первых проводящих участков, которые находятся в контакте с опорными ножками, формирование второй пластины, снабженной считывающей интегральной схемой (ROIC), при этом вторая пластина покрыта вторым жертвенным слоем, в котором сформированы вторые проводящие участки, находящиеся в контакте с ROIC, приведение жертвенных оксидных слоев первой и второй пластин в контакт друг с другом таким образом, чтобы первые и вторые контактные участки совместились между собой и вместе образовали проводящую перемычку, и сращивание указанных первой и второй пластин друг с другом так, что после удаления объемного жертвенного слоя с первой пластины чувствительный материал переносится с первой пластины на вторую, и удаление жертвенных оксидных слоев с открыванием по меньшей мере одного пикселя, причем опорные ножки находятся полностью между чувствительным материалом своего пикселя и второй пластиной.

Изобретение относится к фоточувствительным приборам, предназначенным для обнаружения и регистрации инфракрасного (ИК) излучения в нескольких спектральных поддиапазонах инфракрасной области спектра от 3,5 до 12,7 мкм.

Изобретение относится к мультиспектральному считывающему устройству для считывания инфракрасных, монохромных и цветных изображений. Мультиспектральное фоточувствительное устройство содержит базовый слой со множеством макроблоков из составных считывающих пикселов, по меньшей мере, один составной считывающий пиксел содержит, по меньшей мере, два базовых считывающих пиксела, размещенных в слоях вдоль направления испускания света, причем каждый слой имеет один базовый считывающий пиксел, и базовые считывающие пикселы распределены на верхней стороне или нижней стороне, либо на верхней стороне и нижней стороне базового слоя, и каждая сторона содержит самое большее два слоя, причем полосы спектра, считываемые посредством базовых считывающих пикселов в одних и тех же составных считывающих пикселах, соответственно, являются ортогональными друг другу.

Изобретение относится к устройству фотоэлектрического преобразования и системе регистрации изображения. Устройство фотоэлектрического преобразования включает в себя фотоэлектрический преобразователь, транзистор, на затвор которого подается напряжение, соответствующее зарядам, генерируемым фотоэлектрическим преобразователем, линию управления, подключенную к первому главному электроду транзистора, и блок считывания, выполненный с возможностью считывания сигнала, соответствующего напряжению затвора, и регулятор напряжения, выполненный с возможностью изменения напряжения линии управления. Блок считывания генерирует цифровой сигнал, соответствующий напряжению затвора, на основании тока, текущего через второй главный электрод транзистора в течение периода, когда регулятор напряжения изменяет напряжение линии управления. Изобретение обеспечивает устройство фотоэлектрического преобразования, пригодное для упрощения конфигурации схемы каждого пикселя и получения многопиксельной конфигурации. 2 н. и 27 з.п. ф-лы, 20 ил.
Наверх