Способ пеленгования источника радиоизлучения

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала. Достигаемый результат - повышение точности пеленгования источника радиоизлучения широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов. Указанный результат достигается тем, что до приема пеленгуемого сигнала, используя источник тестового сигнала для различных частот калибровки и всех пеленгационных каналов, каждый из которых включает элемент антенной решетки, производят оценку калибровочных коэффициентов, каждый из которых определяет неидентичность амплитудно-фазовых характеристик соответствующего пеленгационного канала, в процессе пеленгования до вычисления пространственных спектров Фурье пеленгуемого сигнала выполняют оценку частоты калибровки, делят сигналы, принятые пеленгационными каналами, на соответствующие, по каналу и частоте, калибровочные коэффициенты. 2 табл., 3 ил.

 

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала и может быть использовано, например, в системах навигации, мониторинга и связи для пеленгования источников радиоизлучения (ИРИ) широкополосных сигналов.

С совершенствованием систем связи, использующих широкополосные сигналы, возникают проблемы, связанные с их поиском и пеленгацией с высокой точностью. Однако способы пеленгования, получившие развитие для пеленгования источников узкополосных сигналов, не являются эффективными при пеленговании ИРИ широкополосных сигналов.

Известен способ пеленгации ИРИ на одной частоте (1 - Патент РФ №2380719, МПК (2006.01) G01S 5/04. Способ пеленгации источников радиоизлучения на одной частоте, ГОУ ВПО “МГТУ им. Н.Э. Баумана”. Грешилов А.А. Публ. - 27.01.2010 г.), включающий в себя прием сигнала посредством многоэлементной антенной системы (АС), синхронное преобразование ансамбля принятых сигналов, зависящих от времени и номера элемента АС, в цифровые сигналы, преобразование цифровых сигналов в сигнал амплитудно-фазового распределения (АФР), описывающий распределение амплитуд и фаз на элементах АС, формирование из амплитуд комплексных сигналов АФР системы линейных алгебраических уравнений, описывающих амплитуды сигналов yi, …, yN, принятых элементами АС, где N - количество элементов АС, каждая строка системы алгебраических уравнений представляет собой сумму произведений коэффициентов полинома экспоненциальных функций Ci, где i=1, 2, …, K, K - количество ИРИ, и амплитуд сигналов yi, где i=1, 2, …, N, при этом каждое последующее уравнение в системе сформированных линейных алгебраических уравнений является сдвигом вправо на одну позицию по отношению к предыдущему уравнению, а экспоненциальная функция представляет собой

где i=1, 2, …, K;

j - мнимая единица ;

π - константа (π≈3,14159);

λ - длина волны сигналов ИРИ;

d - расстояние между соседними элементами антенной решетки;

θi - азимутальный пеленг ИРИ;

βi - угломестный пеленг ИРИ,

затем определяют корни полинома экспоненциальных функций, представляющие собой параметры экспоненциальных функций, посредством параметров экспоненциальных функций с помощью операций логарифмирования и арккосинуса определяют пеленги ИРИ. Он позволяет получить оценку пеленгов ИРИ на основе единственного синхронного измерения сигналов на выходах элементов АС, то есть по совокупности комплексных амплитуд сигналов, сформированных на выходах пеленгационных каналов в некоторый момент времени. Недостатком способа является невозможность пеленгования ИРИ широкополосных сигналов, поскольку экспоненциальные функции (1) непосредственно зависят от длины волны (частоты) сигналов ИРИ.

Известен способ пеленгования ИРИ (2 - С.Л. Марпл-мл. Цифровой спектральный анализ и его приложения. Пер. с англ. - М.: Мир, 1990, с. 74-76), включающий в себя вычисление пространственного спектра Фурье пеленгуемого сигнала, принятого элементами линейной эквидистантной антенной решетки (ЛЭАР), измерение пространственной частоты (волнового числа) сигнала, пеленгуемого ИРИ, и оценку азимутального пеленга источника сигнала в соответствии с выражением:

где k - волновое число [2, с. 76].

Метод позволяет получить оценку пеленгов по совокупности комплексных амплитуд сигналов, сформированных на выходах пеленгационных каналов в некоторый момент времени. Недостатком способа является невозможность пеленгования ИРИ широкополосных сигналов.

Известен способ пеленгования ИРИ (3 - Патент РФ №2192651, МПК G01S 3/00, G01S 3/14. Способ пеленгования источника сигнала, войсковая часть 11135. Тынянкин С.И., Апульцына И.В., Бурцев С.Ю. Публ. - 10.11.2002 г.), принятый за прототип, который включает в себя:

- вычисление пространственного спектра Фурье сигнала пеленгуемого ИРИ (пеленгуемого сигнала), принятого элементами двух ЛЭАР, при этом вторая антенная решетка, расположена перпендикулярно относительно первой ЛЭАР (фиг. 1);

- вычисление комплексно-сопряженного пространственного спектра Фурье пеленгуемого сигнала, принятого элементами второй ЛЭАР;

- преобразование масштабов обоих вычисленных пространственных спектров пеленгуемого сигнала по логарифмическому закону;

- выполнение корреляционного анализа и измерение относительного сдвига преобразованных пространственных спектров пеленгуемого сигнала;

- оценивание угловой координаты (пеленга) источника сигнала в соответствии с выражением

где Δ° - измеренный относительный сдвиг преобразованных пространственных спектров пеленгуемого сигнала.

Способ пеленгования обеспечивает возможность пеленгования ИРИ любого априорно неизвестного сигнала, в том числе широкополосного, поскольку он основан на взаимной корреляционной обработке пространственных спектров принимаемого сигнала и, следовательно, его помехоустойчивость определяется не видом, а энергией принимаемого сигнала.

Недостатком способа-прототипа является низкая точность оценки пеленга ИРИ при практической реализации способа-прототипа, связанная со сложностью создания многоканального пеленгатора с идентичными амплитудно-фазовыми характеристиками пеленгационных каналов для всего рабочего диапазона частот и условий его применения (4 - с. 332-333 - Радиомониторинг - задачи, методы, средства / Под ред. A.M. Рембовского. 2-е изд., перераб. и доп. - М.: Горячая линия-Телеком, 2010. - 624 с.).

Предлагаемый способ свободен от указанных недостатков и при этом сохраняет достоинство способа-прототипа - пеленгование ИРИ любого априорно неизвестного сигнала, в том числе широкополосного, на основе совокупности комплексных амплитуд сигналов, сформированных на выходах пеленгационных каналов в некоторый момент времени.

Задачей, на решение которой направлено изобретение, является повышение точности пеленгования ИРИ широкополосного сигнала по совокупности комплексных амплитуд, сформированных на выходах пеленгационных каналов в некоторый момент времени.

Для решения указанной задачи предлагается способ пеленгования ИРИ, при котором сигнал, пеленгуемого ИРИ (пеленгуемый сигнал), принимают элементами первой ЛЭАР и второй ЛЭАР, расположенной перпендикулярно относительно первой ЛЭАР, вычисляют пространственный спектр Фурье пеленгуемого сигнала, принятого элементами первой ЛЭАР, вычисляют комплексно-сопряженный пространственный спектр Фурье пеленгуемого сигнала, принятого элементами второй ЛЭАР, преобразуют масштабы обоих вычисленных пространственных спектров пеленгуемого сигнала по логарифмическому закону, производят корреляционный анализ и измеряют относительный сдвиг преобразованных пространственных спектров пеленгуемого сигнала, и оценивают угловую координату (пеленг) источника сигнала в соответствии с выражением θ=arctg(expΔ°), где Δ° - измеренный относительный сдвиг преобразованных пространственных спектров пеленгуемого сигнала.

Согласно изобретению, дополнительно, однократно до приема пеленгуемого сигнала, используя тестовый источник сигнала для различных частот калибровки и всех пеленгационных каналов, каждый из которых включает элемент антенной решетки, производят оценку калибровочных коэффициентов, каждый из которых определяет неидентичность амплитудно-фазовых характеристик соответствующего пеленгационного канала и в процессе пеленгования до вычисления пространственных спектров Фурье пеленгуемого сигнала производят оценку частоты калибровки и делят сигналы, принятые пеленгационными каналами, на соответствующие, по каналу и частоте, калибровочные коэффициенты.

Достигаемый технический результат заключается в повышении точности пеленгования ИРИ широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов.

Указанный технический результат достигается за счет введения новых операций:

- по использованию тестового источника сигнала (ТИС) для различных частот калибровки и всех пеленгационных каналов, каждый из которых включает элемент антенной решетки и по производству оценки калибровочных коэффициентов, каждый из которых определяет неидентичность амплитудно-фазовых характеристик соответствующего пеленгационного канала (до приема пеленгуемого сигнала);

- по производству оценки частоты калибровки (в процессе пеленгования до вычисления пространственных спектров Фурье пеленгуемого сигнала);

- по делению сигналов, принятых пеленгационными каналами, на соответствующие, по каналу и частоте, калибровочные коэффициенты (в процессе пеленгования до вычисления пространственных спектров Фурье пеленгуемого сигнала).

Сочетание отличительных признаков и свойств предлагаемого способа из литературы не известны, поэтому он соответствует критериям новизны и изобретательского уровня.

На фиг. 1 показано взаимное расположение ЛЭАР и источника сигнала.

На фиг. 2 приведена возможная функциональная схема устройства, реализующего предлагаемый способ пеленгования.

На фиг. 3 приведена зависимость среднеквадратичного отклонения (СКО) погрешности оценки пеленга ИРИ от степени компенсации амплитудно-фазовых искажений в пеленгационных каналах.

В практическом плане способ реализуется следующим образом.

До начала работы пеленгатора разбивают его рабочий диапазон частот (, - максимальная и минимальная частота рабочего диапазона) на M поддиапазонов (, , - максимальная и минимальная частота i-го поддиапазона, при этом , , , ).

Последовательно для каждого i-го поддиапазона:

- определяют частоту калибровки (центральную частоту i-го поддиапазона);

- в лабораторных условиях для всего рабочего диапазона частот , например, в безэховой камере, путем настройки обеспечивают идентичность между собой по амплитудно-фазовым характеристикам частей пеленгационных каналов, каждый из которых состоит из антенного элемента и высокочастотного кабеля, подключенного к нему.

В начале работы пеленгатора в рабочем диапазоне частот последовательно для каждого i-го поддиапазона (i=1, …, M):

- формируют с использованием ТИС гармонический сигнал с частотой ;

- подают тестовый сигнал через антенный коммутатор (АК) на вход многоканального радиоприемного устройства (МРПУ), на выходе которого формируется ансамбль сигналов {xn(t), n=1, …, N}, где n - номер антенного элемента, t - время;

- ансамбль сигналов xn(t) поступает в многоканальный аналого-цифровой преобразователь (МАЦП), где его синхронно преобразуют в цифровые сигналы , z=1, …, Z - номер временного отсчета сигнала, и далее используя дискретное преобразование Фурье, получают дискретные значения спектров сигналов ynz, z=1, …, Z;

- для n=1, …, N в соответствии с выражением определяют калибровочные коэффициенты для n-го пеленгационного канала на частоте .

После формирования оценок калибровочных коэффициентов {bin, i=1, …, M, n=1, …, N} подают сигнал управления на АК для отключения от пеленгационных каналов ТИС и подключения соответствующих антенных элементов. - 1.

Настраивают МРПУ на текущую рабочую полосу частот (, где , - максимальная и минимальная частота рабочей полосы, ), в которой осуществляется пеленгование ИРИ. Принимают пеленгуемый сигнал элементами двух взаимно ортогональных ЛЭАР. Принятые сигналы через АК поступают на входы МРПУ, с выходов которого ансамбль сигналов xn(t), n=1, …, N в момент времени t=z·Δt (Δt - шаг дискретизации по времени) поступает в МАЦП, где его синхронно преобразуют в цифровые сигналы Сформированный вектор цифровых сигналов с элементами , n=1, …, N описывает АФР входного сигнала на элементах АС и представляет собой выборку одномоментных когерентных отсчетов комплексных амплитуд на выходах широкополосных пеленгационных каналов, далее для любого произвольного момента времени t=z·Δt обозначаемый в виде . - 2.

Производят оценку частоты калибровки , где индекс ν определяется для двух возможных вариантов информированности о частотных характеристиках пеленгуемого сигнала:

- если известна полоса частот ИРИ (, - максимальная и минимальная частота ИРИ), то

,

где

- если неизвестна полоса частот ИРИ, то

.

Частоте соответствует вектор калибровочных коэффициентов bν∗. - 3.

Цифровые комплексные отсчеты , n=1, …, N делят на соответствующие элементы вектора калибровочных коэффициентов , n=1, …, N, устраняя неидентичность амплитудно-фазовых характеристик пеленгационных каналов. - 4.

Вычисляют пространственный спектр Фурье пеленгуемого сигнала, принятого элементами первой линейной эквидистантной антенной решетки, вычисляют комплексно-сопряженный пространственный спектр Фурье пеленгуемого сигнала, принятого элементами второй линейной эквидистантной антенной решетки:

,

,

где NЛЭАР1 - упорядоченное множество элементов первой ЛЭАР;

NЛЭАР2 - упорядоченное множество элементов второй ЛЭАР;

N1=µ(NЛЭАР1) - число элементов первой ЛЭАР;

N2=µ(NЛЭАР2) - число элементов второй ЛЭАР;

µ(Ξ) - обозначение мощности множества Ξ;

p1=1, …, N1;

p2=1, …, N2,

при этом , соответствуют пространственным спектрам пеленгуемого сигнала и имеют вид [3]: . - 5.

Осуществляют преобразование масштабов (аргументов) пространственных спектров по логарифмическому закону , (5 - Устройство для масштабирования. Авторское свидетельство СССР 1444757, МКИ G06F 7/548.). - 6.

Производят корреляционный анализ, измеряют относительный сдвиг Δ° преобразованных пространственных спектров пеленгуемого сигнала

,

и далее оценивают пеленг ИРИ в соответствии с выражением θ=arctg(expΔ°). - 7.

Периодически или при существенном изменении условий функционирования этап калибровки может быть повторен.

Другими возможными вариантами оценки частоты калибровки при отсутствии априорной информации о полосе частот ИРИ в операции (3), могут быть способы, основанные на формировании матрицы решений и применении критериев принятия решений в условиях неопределенности, реализуемые следующим образом.

После настройки МРПУ на текущую рабочую полосу частот , формируют множество калибровочных коэффициентов {b′(i′,n), i′=1, …, M′, n=1, …, N} для рабочей полосы частот (M - число частот калибровки выбранных для рабочей полосы частот МРПУ) из множества векторов {b(i,n), i=1, …, M, n=1, …, N}.

Множество {b′(i′,n), i′=1, …, M′, n=1, …, N} определяется множеством частот калибровки с элементами , i′=1, …, M′, , которое включает:

- частоту, ближайшую к нижней границе текущей рабочей полосы МРПУ, не принадлежащую множеству

, если

, ,

- множество частот, принадлежащих рабочей полосе частот МРПУ

, , если ,

или

, , если ;

- частоту, ближайшую к верхней границе рабочей полосы частот МРПУ, не принадлежащую множеству ,

, если и ,

или

, если и .

Таким образом, множество калибровочных коэффициентов для текущей рабочей полосы частот определяется выражением

b′(i′,n)=b(i′+imin-2,n), i′=1, …, M′, n=1, …, N, если ,

или

b′(i′,n)=b(i′+imin-1,n), i′=1, …, M′, n=1, …, N, если .

Далее весь сектор азимутальных углов пеленгования ИРИ Ωθ=[0°,360°] разбивается J значениями, например, в соответствии с выражением θγ=360°·(γ-1)/J, γ=1, …, J. После чего для каждого значения θγ, γ=1, …, J:

1. На ПЭВМ осуществляют моделирование сигнала ИРИ на выходах пеленгационных каналов {R(i′,n), i′=1, …, M′, n=1, …, N}, с элементами АС, расположенными на плоскости в точках с координатам (X′(n), Y′(n)), n=1, …, N, для всех частот , i′=1, …, M′:

,

где c - скорость распространения сигнала в среде.

Для каждой i′-й частоты калибровки (i′=1, …, M′) в сигнал {R(i′,n), n=1, …, N} вносят амплитудно-фазовые искажения, соответствующие {b′(i′,n), n=1, …, N}:

U(i′,n)=R(i′,n)·b′(i′,n), i′=1, …, M′, n=1, …, N.

2. Последовательно делят сигналы {U(i′,n), i′=1, …, M′, n=1, …, N} на соответствующие им по индексу n коэффициенты {b′(i″,n), i″=1, …, M″, n=1, …, N}:

Q(i′,i″,n)=U(i′,n)/b(i″,n), i′=1, …, M′, i″=1, …, M″, n=1, …, N.

3. Получают оценки пеленгов в соответствии с преобразованием:

,

где отображение Ψ соответствует выполнению группы операций в соответствии с операциями (5-7) и формируют матрицу оценок пеленга.

4. Вычисляют элементы матрицы погрешностей оценок пеленгов Δθγ, связанных с неопределенностью значений действительных границ полосы частот сигнала пеленгуемого ИРИ:

.

В результате матрица решений Δθ формируется как усреднение элементов матриц Δθγ, γ=1, …, J:

, i′=1, …, M′, i″=1, …, M′.

На основе полученной матрицы решений Δθ и различных критериев принятия решения в условиях неопределенности (6 - Мушик Э., Мюллер П. Методы принятия технических решений. Пер. с нем. - М.; Мир, 1990. - 208 с.), реализуют процедуру окончательного выбора частоты калибровки и, следовательно, соответствующего ей вектора калибровочных коэффициентов с желаемыми свойствами принятого решения.

В частности, применение минимаксного критерия [6, с. 22] позволяет получить наилучший гарантированный результат с возможной ошибкой оценки пеленга, связанной с неопределенностью значений действительных границ полосы частот сигнала пеленгуемого ИРИ, не больше, чем

,

при использовании калибровочных коэффициентов {, n=1, …, N}, где

,

соответствующих частоте калибровки .

Применение критерия Байеса-Лапласа [6, с. 23-24] позволяет получить более оптимистическую (средневзвешенную) оценку ошибки пеленга, чем минимаксный критерий, в соответствии с выражением

,

где q(i″) - вероятность (субъективная) появления сигнала ИРИ с частотой ,

при использовании калибровочных коэффициентов {, n=1, …, N}, где

,

соответствующих частоте калибровки .

В общем случае ΔθБЛ≤ΔθММ, однако, применение критерия Байеса-Лапласа предполагает более высокий уровень информированности (в части возможных значений действительных границ полосы частот сигнала пеленгуемого ИРИ - значений q(i″)) и достаточно большое число реализаций описанной процедуры выбора для минимизации вероятности получения среднего по числу применений результата хуже, чем ΔθММ.

Применение критерия Ходжа-Лемана [6, с. 31-32] опирается одновременно на минимаксный критерий и критерий Байеса-Лапласа. Для него

, 0≤ν≤1,

при использовании калибровочных коэффициентов {, n=1, …, N}, где

,

соответствующих частоте калибровки .

Значение индекса ν вектора калибровочных коэффициентов bν∗ по определяется на основе преобразования вида

Предлагаемый способ, также как и прототип, обладает возможностью пеленгования любого априорно неизвестного сигнала (в том числе широкополосного) на основе совокупности комплексных амплитуд сигналов, сформированных на выходах пеленгационных каналов в некоторый момент времени. Кроме того, он имеет большую точность пеленгования, поскольку учитывает неидентичность амплитудно-фазовых характеристик пеленгационных каналов и корректно выделяет энергию ИРИ.

Таким образом, предлагаемый способ имеет следующие отличительные признаки в последовательности его реализации от способа-прототипа, которые представлены в таблице 1.

Из представленной таблицы сравнения последовательности реализации способа-прототипа и предлагаемого способа видно, что в предлагаемом способе, относительно способа-прототипа, введена новая совокупность операций по калибровке пеленгационных каналов, позволяющая корректно использовать всю энергию пеленгуемого сигнала, приходящего на приемную систему, что повышает точность способа пеленгования.

Устройство, реализующее предлагаемый способ пеленгования (фиг. 2), включает в себя вертикальную ЛЭАР-ЛЭАР1 (1), горизонтальную ЛЭАР-ЛЭАР2 (2), АК (3), первое МРПУ-МРПУ1 (4), второе МРПУ-МРПУ2 (5), первый МАЦП-МАЦП1 (6), второй МАЦП-МАДП2 (7), вычислительное устройство управления (ВУУ) (8), реализованное на ПЭВМ, ТИС (9).

При выполнении процедуры калибровки пеленгационных каналов, которая осуществляется до приема сигнала от пеленгуемого ИРИ, производится следующая последовательность действий. ВУУ (8) разбивает рабочий диапазон частот пеленгатора на M поддиапазонов и для каждого поддиапазона определяет центральную частоту. Последовательно для каждого i-го (i=1, …, M) поддиапазона ВУУ (8) подает сигнал управления для формирования ТИС (9) гармонического сигнала, соответствующего i-й центральной частоте. Через АК (3) тестовый сигнал поступает на вход МРПУ1 (4) и МРПУ2 (5). С выходов МРПУ1 (4), МРПУ2 (5) сигналы поступают на соответствующие входы МАЦП1 (6), МАЦП2 (7), где входные сигналы синхронно преобразуют в цифровую форму. Полученные значения поступают на соответствующие входы ВУУ (8). В функции ВУУ (8) при выполнении процедуры калибровки пеленгационных каналов входят процедуры накопления временного сигнала, расчета временного спектра Фурье для каждого пеленгационного канала, определение максимумов спектров, формирование из значений максимумов спектров вектора калибровочных коэффициентов, соответствующего частоте излучения тестового сигнала. После формирования калибровочных коэффициентов для всех пеленгационных каналов и частот, ВУУ (8) подает сигнал управления на АК (3) для его отключения от ТИС (9) и подключения соответствующих антенных элементов ЛЭАР1 (1), ЛЭАР2 (2).

При приеме сигнала пеленгуемого ИРИ выполняется следующая последовательность операций. Принимаемые ЛЭАР1 (1) и ЛЭАР2 (2) сигналы поступают на соответствующие входы АК (3). АК (3) обеспечивает подключение выхода каждого антенного элемента к входам МРПУ1 (4), МРПУ2 (5). С выходов МРПУ1 (4), МРПУ2 (5) сигналы поступают на соответствующие входы МАЦП1 (6), МАЦП2 (7), где входные сигналы синхронно преобразуют в цифровую форму. Полученные значения поступают на соответствующие входы ВУУ (8). В функции ВУУ (8) при выполнении пеленгования ИРИ входят процедуры оценки частоты калибровки, деления входных сигналов на соответствующие им калибровочные коэффициенты для оцененной частоты, расчета пространственного спектра Фурье для каждой ЛЭАР, преобразование масштабов обоих вычисленных пространственных спектров по логарифмическому закону, выполнение корреляционного анализа и измерение относительного сдвига Δ° преобразованных пространственных спектров, оценка пеленга ИРИ соответствии с выражением (3).

Выполним сравнительную оценку способа-прототипа и предлагаемого способа по абсолютной величине СКО погрешности пеленга источника гармонического сигнала, обусловленному амплитудно-фазовыми искажениями в пеленгационных каналах. Расчет оценки СКО погрешности пеленга ИРИ реализуем методом имитационного моделирования для следующих условий:

- частота сигнала ИРИ

МГц;

- число элементов ЛЭАР

N1=N2=12;

- расстояние между соседними элементами в каждой ЛЭАР

d=10 см;

- расположение элементов первой ЛЭАР

- расположение элементов второй ЛЭАР

- действительное азимутальное положение ИРИ

θД=40°;

- частота калибровки

МГц;

- объем имитационных экспериментов - 10000;

- моделируемые случайные величины - амплитуды (A) и фазы (φ) амплитудно-фазовых искажений в пеленгационных каналах n=1, …, 24, т.е.

, n=1, …, 24,

где A[b1n] и φ[b1n] - независимые случайные величины, распределенные по нормальному закону с , M[φ[bn]]=0, , , M[∗] - обозначение операции математического ожидания; σ[∗] - обозначение операции СКО, , ;

- калибровочные коэффициенты для каждой реализации определяются выражением

, n=1, …, 24,

где w - параметр, характеризующий степень компенсации амплитудно-фазовых искажений в пеленгационных каналах, w∈[0,1], при w=0 амплитудно-фазовые искажения в пеленгационных каналах полностью не компенсируются (что соответствует применению способа-прототипа), при w=1 амплитудно-фазовые искажения в пеленгационных каналах отсутствуют, т.е. полностью скомпенсированы (что соответствует применению предлагаемого способа);

- выходная случайная величина имитационной модели - погрешность оценки азимутального пеленга;

- анализируемая статистическая характеристика - СКО погрешности оценки азимутального пеленга.

На фиг. 3 приведены результаты моделирования - график зависимости СКО погрешности оценки пеленга ИРИ от степени компенсации амплитудно-фазовых искажений в пеленгационных каналах w. Из анализа графика следует, что для рассматриваемых исходных данных величина СКО погрешности оценки пеленга, обусловленной амплитудно-фазовыми искажениями в пеленгационных каналах, при применении способа-прототипа на 5,6° больше, чем при применении предлагаемого способа.

Кроме того, при единичной реализации амплитудно-фазовых искажений в пеленгационных каналах абсолютная величина погрешности оценки при применении способа-прототипа может быть значительной. Например, для искажений, представленных в таблице 2, абсолютная величина погрешности единичной оценки пеленга в условиях рассматриваемого примера составляет .

Таким образом, предлагаемый способ позволяет уменьшить СКО погрешности оценки пеленга любого (в том числе и широкополосного) сигнала, по совокупности комплексных амплитуд сигналов в некоторый момент времени, за счет учета неидентичности амплитудно-фазовых характеристик пеленгационных каналов.

Способ пеленгования источника радиоизлучения, при котором сигнал пеленгуемого источника радиоизлучения, пеленгуемый сигнал, принимают элементами первой линейной эквидистантной антенной решетки и второй линейной эквидистантной антенной решетки, расположенной перпендикулярно относительно первой линейной эквидистантной антенной решетки, вычисляют пространственный спектр Фурье пеленгуемого сигнала, принятого элементами первой линейной эквидистантной антенной решетки, вычисляют комплексно-сопряженный пространственный спектр Фурье пеленгуемого сигнала, принятого элементами второй линейной эквидистантной антенной решетки, преобразуют масштабы обоих вычисленных пространственных спектров пеленгуемого сигнала по логарифмическому закону, производят корреляционный анализ и измеряют относительный сдвиг преобразованных пространственных спектров пеленгуемого сигнала, и оценивают угловую координату, пеленг, источника сигнала в соответствии с выражением θ=arctg(expΔ°), где Δ° - измеренный относительный сдвиг преобразованных пространственных спектров пеленгуемого сигнала, отличающийся тем, что дополнительно однократно до приема пеленгуемого сигнала, используя тестовый источник сигнала для различных частот калибровки и всех пеленгационных каналов, каждый из которых включает элемент антенной решетки, производят оценку калибровочных коэффициентов, каждый из которых определяет неидентичность амплитудно-фазовых характеристик соответствующего пеленгационного канала и в процессе пеленгования до вычисления пространственных спектров Фурье пеленгуемого сигнала производят оценку частоты калибровки и делят сигналы, принятые пеленгационными каналами, на соответствующие, по каналу и частоте, калибровочные коэффициенты.



 

Похожие патенты:

Изобретение относится к области систем для контроля за возникновением опасных условий, связанных с утечками газа, которые способны определять местонахождение носимых датчиков содержания газа в пределах контролируемой зоны.

Изобретение относится к области радиотехнической разведки. Достигаемый технический результат - оперативная оценка наличия и характера траектории полета воздушного объекта.

Изобретение относится к системам определения местоположения. Технический результат заключается в усовершенствовании способа определения местоположения в закрытых помещениях.

Изобретения относятся к радиотехнике и могут быть использованы для определения координат источников радиоизлучений в ультракоротковолновом (УКВ) и сверхвысокочастотном (СВЧ) диапазонах радиоволн, использующих узкополосные сигналы.

Изобретение относится к области локационной техники и может быть использовано в системах поиска объектов. Достигаемый технический результат - повышение точности определения направления на импульсные излучатели.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения и скорости априорно неизвестного источника радиоизлучения (ИРИ). Достигаемый технический результат - определение за один этап обработки одновременно координат и скорости ИРИ.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - отсутствие ограничений на применение способа по рабочему сектору углового положения источников радиоизлучений (ИРИ) и совокупности полученных реальных измерений; упрощение процесса получения интервальных оценок углового положения ИРИ; повышение адекватности интервальных оценок углового положения ИРИ при сохранении повышенного быстродействия (скорости) обработки сигналов при пеленгации радиосигналов нескольких ИРИ, работающих на одной частоте, с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов).

Изобретение относится к радиотехнике, в частности к односигнальной радиопеленгации источника радиоизлучения (ИРИ). Достигаемый технический результат - повышение скорости и точности определения азимутальных и угломестных составляющих пеленгов и начальной фазы сигнала ИРИ.

Изобретения относятся к радиотехнике и могут быть использованы для определения местоположения источника радиоизлучения (ИРИ) с летно-подъемного средства (ЛПС) угломерно-дальномерным способом.

Изобретение относится к области ближней локации и может быть использовано в информационно-измерительных средствах и системах, работающих в режимах активного распознавания слабоконтрастных целей с блестящими точками на фоне широкополосных и распределенных в пространстве помех, а также в условиях работы ретрансляторов, имитирующих сигнал, отраженный от цели.

Изобретение относится к системам обнаружения объектов и определения их местоположения. Технический результат состоит в уменьшении или компенсации ошибок определения направления (пеленга) и местоположения объекта, с которого излучаются оптические сигналы, для этого при определении направления на источник оптического излучения по рассеянной в атмосфере составляющей обнаруживают рассеянное в атмосфере излучение оптической системы сканирования земной поверхности элементами системы из четырех матричных фотоприемников, установленных таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определении линейки элементов, в которых обнаружены сигналы, и решении задачи восстановления угловых координат источника оптического излучения по линии пересечения двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях прямоугольного параллелепипеда.

Изобретение относится к области радиотехники. Достигаемый технический результат - повышение точности измерения угла места объекта и сокращение времени пеленгования.

Изобретение может использоваться в радиоразведке, радиомониторинге, при поиске специальных электронных устройств перехвата информации для определения местоположения источника радиоизлучения (ИРИ).

Изобретение относится к области радиотехники и может быть использовано в фазовых и амплитудных пеленгатора сверхвысокочастотного диапазона. Достигаемый технический результат - увеличение точности пеленгования и расширение рабочего диапазона в сторону высоких частот.

Изобретение относится к области радиопеленгации и предназначено для измерения пространственно-частотного распределения систематической ошибки пеленгования (СОП) в ходе испытаний, экспериментальных исследований, эксплуатации радиопеленгаторных систем (РПС).

Изобретение относится к области радиосвязи и может быть использовано при решении задач, связанных с местоопределением источников радиоизлучений. .

Изобретение относится к радиолокации и может быть использовано в каналах углового сопровождения цели радиолокационных станций и координаторах ракет. .

Изобретение относится к радиолокации и может быть использовано в каналах углового сопровождения цели радиолокационных станций и в координаторах ракет. .

Изобретение относится к радиолокационному обнаружению и измерению дальности до целей на фоне пассивных помех и может найти применение в РЛС, использующих высокую частоту следования зондирующих импульсов.

Изобретение относится к радиолокации и может быть использовано в каналах углового сопровождения цели радиолокационных станций и координаторах ракет. .

Изобретение относится к радиотехнике и может использоваться при построении фазовых пеленгаторов в составе радиоизмерительных устройств, систем и комплексов сверхвысокочастотного (СВЧ) диапазона. Достигаемый технический результат - исключение неопределенности фазовой неидентичности приемных радиоканалов, что позволяет исключить необходимость предварительной регулировки приемных радиоканалов. Указанный результат достигается за счет того, что пеленгатор СВЧ диапазона содержит N приемных радиоканалов (состоящих из приемной антенны, узла связи, преобразователя частоты и усилителя промежуточной частоты), частотно-генерирующее устройство (ЧГУ), первый, второй и третий двухканальные коммутаторы, кроме первого, нагруженные соответственно первой и второй согласованными нагрузками, гетеродин, подключенный к гетеродинным входам преобразователей частоты, блок обработки сигналов и управления (БОСУ), при этом ЧГУ формирует М сигналов калибровки на отличных друг от друга частотах, которые выбираются таким образом, чтобы на соседних частотах приращение разностей фаз сигнала калибровки с выходов приемных радиоканалов, для которых определяется фазовая неидентичность, не превышало по модулю значения π. БОСУ выполнен с возможностью управления алгоритмом работы частотно-генерирующего устройства. 3 з.п. ф-лы, 3 ил.
Наверх