Способ электромембранной регенерации раствора снятия кадмиевых покрытий и устройство для его осуществления

Изобретение относится к регенерации технологических растворов. Способ регенерации раствора для снятия кадмиевого покрытия, содержащего нитрат аммония 100-200 г/л, включает электролиз регенерируемого раствора в двухкамерном электролизере с катионообменной мембраной, катодом из нержавеющей стали и платинированным ниобиевым анодом. Электролиз осуществляют при плотности тока на электродах 1-3,5 А/дм2, в качестве анолита используют регенерируемый раствор, а в качестве католита - раствор, содержащий нитрат аммония, и в анолит подают выделяющийся на катоде газ. Способ осуществляют в устройстве, содержащем двухкамерный электролизер с катионообменной мембраной, катодом из нержавеющей стали и платинированным ниобиевым анодом, и барботер, установленный на дне анодной камеры и выполненный с возможностью подачи выделившегося на катоде газа в анолит. Изобретение позволяет осуществить регенерацию раствора для снятия кадмиевого покрытия и исключить возможность загрязнения регенерируемого раствора посторонними ионами. 2 н.п. ф-лы, 3 пр.

 

Изобретение относится к гальванотехнике, конкретно к способам регенерации раствора снятия кадмиевых покрытий на основе нитрата аммония и может быть использовано на участках кадмирования для предотвращения попадания ионов кадмия в сточные воды цеха. Отработанный раствор снятия кадмиевых покрытий на основе нитрата аммония (100-200 г/л) трудно поддается обезвреживанию ввиду образования устойчивых растворимых аммиачных комплексов с ионами кадмия. Известен способ регенерации хроматных растворов путем электрохимического переноса содержащихся в них катионов металлов через мембрану из хроматного раствора, находящегося в анодной камере двухкамерного электролизера, в катодную камеру, содержащую раствор серной кислоты [Kruglikov S.S., Metal Finishing, 2009, vol. 107, # 11, p. 13-15]. Этот способ применяется в настоящее время для регенерации растворов хроматирования цинковых и кадмиевых покрытий.

Наиболее близким по решаемой задаче и технической сущности является способ регенерации раствора черного хроматирования цинковых покрытий [RU 2481424, 28.07.230121], в котором ионы цинка и серебра извлекаются из регенерируемого раствора путем электрохимического переноса через катионообменную мембрану в католит - вспомогательный раствор, содержащий серную кислоту. Однако этот способ нельзя использовать для регенерации раствора снятия кадмиевых покрытий по следующим причинам:

1. Во избежание выхода из строя раствора снятия кадмиевых покрытий не допускается его загрязнение посторонними катионами и анионами. Это означает, что раствор серной кислоты нельзя использовать в качестве католита.

2. Сразу после включения тока в регенерируемом растворе, находящемся в анодной камере двухкамерного электролизера, начинается накопление свободной азотной кислоты. Это ведет к быстрому снижению скорости переноса ионов кадмия через мембрану, то есть эффективности процесса регенерации. Кроме того, накопление азотной кислоты свыше 10-15 г/л отрицательно сказывается на стойкости платинированного анода.

Технической задачей предлагаемого изобретения является устранение возможности загрязнения регенерируемого раствора посторонними катионами и анионами и предотвращение накопления азотной кислоты в анолите. В предлагаемом изобретении поставленная задача решается тем, что способ регенерации раствора для снятия кадмиевого покрытия, содержащего нитрат аммония 100-200 г/л, включает электролиз регенерируемого раствора в двухкамерном электролизере с катионообменной мембраной, катодом из нержавеющей стали и платинированным ниобиевым анодом, который осуществляют при плотности тока на электродах 1-3,5 А/дм2, при этом в качестве анолита используют регенерируемый раствор, а в качестве католита - раствор, содержащий нитрат аммония в той же концентрации, что и в анолите, причем в анолит подают выделяющийся на катоде газ.

Устройство регенерации раствора для снятия кадмиевого покрытия содержит двухкамерный электролизер с катионообменной мембраной, катодом из нержавеющей стали и платинированным ниобиевым анодом, и барботер, установленный на дне анодной камеры и выполненный с возможностью подачи выделившегося на катоде газа в анолит-регенерируемый раствор, при этом газовое пространство над катодной камерой герметизировано и сообщается с внешней атмосферой через гидрозатвор, высота столба жидкости в котором соответствует глубине погружения барботера.

В предлагаемом способе обеспечено сохранение материального баланса для катионных компонентов раствора в анодной камере благодаря принципу саморегулирования pH католита и анолита, что в свою очередь, стабилизирует скорость переноса ионов кадмия через мембрану.

Таким образом, поставленная задача решена в предлагаемом способе и устройстве из католита в регенерируемый раствор (анолит) могут поступать только анионы нитрата, а рост концентрации азотной кислоты в анолите устраняется молекулами аммиака, поступающими в анолит в эквивалентном количестве.

Изобретение иллюстрируется следующими примерами.

Пример 1

Регенерацию раствора снятия кадмия проводили в двухкамерном электролизере с катионообменной мембраной, объемом анодной камеры 5 л, объемом катодной камеры 2 л. Электроды: катод - нержавеющая сталь, площадь 2 дм2, анод - платинированный ниобий, площадь 2 дм2.

Начальный состав анолита - раствор нитрата аммония 150 г/л, концентрация ионов кадмия 10 г/л.

Начальный состав католита раствор нитрата аммония 150 г/л.

Продолжительность электролиза 10 час при силе тока 5 А.

По окончании электролиза концентрация ионов кадмия в анолите снизилась до 7 г/л, в католите составила 1 г/л, а на катоде выделилось 8 г металлического кадмия.

После продолжения электролиза еще в течение 25 часов концентрация ионов кадмия в анолите снизилась до 5 г/л, в католите осталась на уровне 1 г/л, а на катоде выделилось еще 15 г металлического кадмия.

Пример 2

Описание электролизера приведено в Примере 1.

Начальный состав анолита - раствор нитрата аммония 100 г/л, концентрация ионов кадмия 3 г/л.

Начальный состав католита - раствор нитрата аммония 100 г/л. Сила тока 2 А.

Продолжительность электролиза 20 час. По окончании электролиза концентрация ионов кадмия в анолите снизилась до 1,4 г/л, в католите составила 0,8 г/л, а на катоде выделилось 6,4 г металлического кадмия.

Пример 3

Описание электролизера приведено в Примере 1.

Начальный состав анолита - раствор нитрата аммония 200 г/л, концентрация ионов кадмия 13 г/л.

Начальный состав католита - раствор нитрата аммония 200 г/л. Сила тока 7 А.

Продолжительность электролиза 7 час. По окончании электролиза концентрация ионов кадмия в анолите снизилась до 9 г/л, концентрация ионов кадмия в католите составила 1,5 г/л, а на катоде выделилось 17 г металлического кадмия.

Таким образом, предлагаемое изобретение позволяет регенерировать раствор снятия кадмиевых покрытий путем извлечения из него ионов кадмия и при этом не загрязнять его посторонними катионами и анионами, добавляемыми для стабилизации его кислотности, либо переносимыми в него из катодной камеры в результате электрохимического переноса или диффузии.

1. Способ регенерации раствора для снятия кадмиевого покрытия, содержащего нитрат аммония 100-200 г/л, включающий электролиз регенерируемого раствора в двухкамерном электролизере с катионообменной мембраной, катодом из нержавеющей стали и платинированным ниобиевым анодом, который осуществляют при плотности тока на электродах 1-3,5 А/дм2, при этом в качестве анолита используют регенерируемый раствор, а в качестве католита - раствор, содержащий нитрат аммония в той же концентрации, что и в анолите, причем в анолит подают выделяющийся на катоде газ.

2. Устройство для регенерации раствора для снятия кадмиевого покрытия, содержащее двухкамерный электролизер с катионообменной мембраной, катодом из нержавеющей стали и платинированным ниобиевым анодом и барботер, установленный на дне анодной камеры электролизера и выполненный с возможностью подачи выделившегося на катоде газа в анолит-регенерируемый раствор, при этом газовое пространство над катодной камерой электролизера изолировано и сообщено с внешней атмосферой через гидрозатвор, высота столба жидкости в котором соответствует глубине погружения барботера.



 

Похожие патенты:
Изобретение относится к гальванотехнике и может использоваться на участках гальванического хромирования. Способ регенерации раствора для снятия хромового покрытия, содержащего гидроксид и хромат натрия, включает проведение электрохимической обработки регенерируемого раствора в камерах двухкамерного электролизера с катионообменной мембраной и трехкамерного электролизера с катионообменной и анионообменной мембранами в следующей последовательности: сначала в анодной камере двухкамерного электролизера, затем в средней камере трехкамерного электролизера, затем в катодной камере двухкамерного электролизера и катодной камере трехкамерного электролизера.
Изобретение относится к способу извлечения золота из сернокислого электролита для электрополировки изделий, содержащего комплексное соединение иона золота с тиомочевиной.

Изобретение относится к электрохимической обработке металлов, в частности к регенерации отработанного электролита для анодной подготовки деталей на основе железа к железнению.

Изобретение относится к травлению медных покрытий, в частности, в производстве печатных плат, а именно к процессам выделения меди в виде металла из отработанных растворов травления с одновременной регенерацией раствора для дальнейшего использования.

Изобретение относится к электрохимическому производству и может быть использовано для регенерации отработанных травильных растворов в производстве печатных плат.

Изобретение относится к способам регенерации соляной кислоты из отработанных травильных растворов (ОТР), содержащих кроме неиспользованной травильной кислоты (HCl) и хлористого железа (FeCL2) высокий процент хлорного железа (FeCl3) и органические поверхностно-активные вещества.

Изобретение относится к конструкциям электролизеров и позволяет увеличить степень регенерации и снизить расход электроэнергии. .

Изобретение относится к гальваностегии , в частности к способам регенерации отработанных растворов, содержащих аммиачные комплексы меди. .

Изобретение относится к области кислотного травления поверхности металлического титана и его сплавов и может быть использовано при регенерации и обезвреживании отработанных кислотных травильных растворов (ОКТР) титанового производства.
Изобретение относится к гальванотехнике и может использоваться на участках гальванического хромирования. Способ регенерации раствора для снятия хромового покрытия, содержащего гидроксид и хромат натрия, включает проведение электрохимической обработки регенерируемого раствора в камерах двухкамерного электролизера с катионообменной мембраной и трехкамерного электролизера с катионообменной и анионообменной мембранами в следующей последовательности: сначала в анодной камере двухкамерного электролизера, затем в средней камере трехкамерного электролизера, затем в катодной камере двухкамерного электролизера и катодной камере трехкамерного электролизера.

Способ извлечения меди (+2) из отработанных растворов относится к промышленной экологии и к химической технологии органических веществ. Способ может быть использован для утилизации жидких отходов производства, в частности отработанных растворов анодного оксидирования алюминия и его сплавов, отработанных растворов гальванического меднения, отработанных растворов травления меди и ее сплавов, отработанных растворов травления печатных плат.
Изобретение может быть использовано в неорганической химии. Способ получения гидроксохроматов меди(+2) включает приготовление реакционного водного раствора, содержащего хром(+6) и медь(+2), образование осадка гидроксохроматов меди(+2) и его отделение от раствора.

Изобретение относится к установкам для регенерации соляной кислоты из отработанного травильного раствора, образующегося при очистке поверхности стального проката, работающим в замкнутом цикле, путем термического разложения раствора и последующей абсорбции образующегося при этом хлороводорода водой.

Изобретение относится к очистке поверхности полупроводниковых пластин от металлических загрязнений, а также к регенерации отработанных травильных растворов и может быть использовано в радиотехнической, электротехнической и других отраслях промышленности.

Изобретение относится к технологии утилизации отходов, включающих соединения титана, и может быть использовано для улучшения экологии путем переработки техногенных отходов, возникающих в процессе производства полуфабрикатов и изделий из сплавов на основе титана, а также для получения товарного продукта - гексафторотитаната калия (K2ТiF6).

Изобретение относится к утилизации отработанных кислых (солянокислых и сернокислых) травильных растворов сталепрокатных заводов и может быть применено в металлургической промышленности, промышленной экологии, а также в процессах водоочистки с использованием коагулянтов.

Изобретение относится к области металлургии молибдена, в частности к извлечению молибдена из кислых растворов, содержащих смесь азотной и серной кислоты и молибден в широком диапазоне концентраций, а также другие примеси, и может быть использовано при извлечении молибдена из отходов электролампового, электронного и гидрометаллургического производств.
Изобретение относится к очистке отработанных щелочных растворов меднения регенерацией катионов меди (II) и комплексонов и может быть применено в гальванотехнике и в промышленной экологии.
Изобретение относится к гальванотехнике. Способ включает электрохимическую обработку регенерируемого медно-аммиачного травильного раствора в трехкамерном электролизере с двумя катодными камерами и двумя катионообменными мембранами, причем сначала регенерируемый раствор подвергают электрохимической обработке в первой катодной камере при плотности тока 4–6 А/дм2, затем во второй катодной камере при плотности тока 2–3 А/дм2, а после – в анодной камере при плотности тока 0,5–1,0 А/дм2. При этом в качестве катодов используют титан или нержавеющую сталь, а в качестве анода – графит, титан или ниобий с платиновым или оксидно-рутениевым покрытием. Способ позволяет без постоянного контроля и обслуживания установки регенерации снизить содержание ионов меди в медно-аммиачном травильном растворе с начального 120–150 г/л до требуемой величины – 70–90 г/л.
Наверх