Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу

Изобретение относится измерительным информационным системам, в частности к системам для измерения емкости и сопротивления и может быть использовано для измерения неэлектрических величин резистивными и емкостными датчиками в беспроводных системах контроля и управления. Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу содержит микроконтроллер 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Cx), резистивный датчик 4 (Rx), образцовый конденсатор 5 (Co), первый резистор 6 и второй резистор 7 резистивного делителя напряжения, радиопередатчик 8 с двухуровневой амплитудной манипуляцией. Первые выводы образцового резистора 2, резистивного датчика 4, емкостного датчика 3 и образцового конденсатора 5 подключены к первому входу аналогового компаратора (на фиг. аналоговый компаратор не показан) микроконтроллера 1, первые выводы резисторов 6 и 7 подключены к второму входу аналогового компаратора микроконтроллера 1. Вторые выводы образцового резистора 2, емкостного датчика 3, резистивного датчика 4, образцового конденсатора 5, резистора 6 и резистора 7 подключены, соответственно, к первому, второму, третьему, четвертому, пятому и шестому дискретным выходам микроконтроллера 1. Выход широтно-импульсного модулятора микроконтроллера 1 подключен к модулирующему входу радиопередатчика 8. Седьмой дискретный выход микроконтроллера 1 подключен к выводу питания радиопередатчика 8, общий вывод радиопередатчика 8 подключен к общему выводу микроконтроллера 1. Технический результат заключается в расширении функциональных возможностей. 1 ил.

 

Изобретение относится к измерительным информационным системам, в частности к системам для измерения емкости и сопротивления и может быть использовано для измерения неэлектрических величин резистивными и емкостными датчиками в беспроводных системах контроля и управления.

Известно устройство для измерения электрической емкости, содержащее два одновибратора, включенные по схеме кольцевого автогенератора, два RC-фильтра, подключенные к выходам соответствующих одновибраторов, блок индикации, включенный между выходами RC-фильтров, во времязадающие цепи одновибраторов включены конденсаторы, соответственно, образцовой и измеряемой емкости (см. пат. РФ №2156472, кл. G01R 27/26).

Недостаток известного решения - отсутствует функция энергосбережения, что не позволяет использовать данное решение для построения радиодатчиков, работающих от автономных источников питания.

Известно устройство для измерения неэлектрических величин конденсаторными датчиками, содержащее первый и второй генераторы, микроконтроллер и цифровой индикатор, во времязадающие цепи генераторов включены, соответственно, конденсаторный датчик измеряемой емкости и конденсатор образцовой емкости, времязадающие резисторы включены по известным схемам, выходы генераторов подключены к счетным входам, соответствующих счетчиков микроконтроллера, один из выводов микроконтроллера подключен к входам разрешения генерирования обоих генераторов, цифровой индикатор подключен к дискретным выходам микроконтроллера (см. пат. РФ №2214610, кл. G01R 27/26).

Недостаток известного решения - отсутствует функция энергосбережения, что не позволяет использовать данное решение для построения радиодатчиков, работающих от автономных источников питания.

Наиболее близким по технической сущности к заявляемому техническому решению и принятым авторами за прототип является микроконтроллерный измерительный преобразователь емкости и сопротивления в двоичный код, содержащий: микроконтроллер, емкостный датчик, образцовый конденсатор, образцовый резистор, измеряемый резистор, резистивный делитель напряжения, причем образцовый и измеряемый резисторы первыми выводами подключены к первым обкладкам, соответственно, емкостного датчика и конденсатора образцовой емкости, первые выводы резисторов делителя напряжения подключены к первому входу аналогового компаратора микроконтроллера, а вторые выводы подключены, соответственно к выводам питания микроконтроллера, первые выводы образцового и измеряемого резисторов подключены к второму входу аналогового компаратора микроконтроллера, вторые выводы образцового и измеряемого резисторов подключены, соответственно, к первому и второму дискретным выходам микроконтроллера, вторые обкладки емкостного датчика и образцового конденсатора подключены, соответственно, к третьему и четвертому дискретным выходам микроконтроллера (см. пат. РФ №2391677, кл. G01R 27/26).

Недостаток известного решения - ограничены функциональные возможности, отсутствует функция передачи результата преобразования по радиоканалу и энергосберегающая функция, обусловленная непрерывным потреблением тока резистивным делителем. Известно, что для мобильных устройств, например радиодатчиков, функция энергосбережения является одной из наиболее важных.

Технический результат, который может быть достигнут с помощью предлагаемого изобретения сводится к расширению его функциональных возможностей.

Технический результат достигается тем, что микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу, содержащий: микроконтроллер, емкостный датчик, образцовый конденсатор, резистивный датчик, образцовый резистор, резистивный делитель напряжения, причем первые выводы первого и второго резисторов делителя напряжения подключены к первому входу аналогового компаратора микроконтроллера, первые выводы резистивного датчика, образцового резистора, емкостного датчика и образцового конденсатора подключены к второму входу аналогового компаратора микроконтроллера, вторые выводы образцового резистора, емкостного датчика, резистивного датчика и образцового конденсатора подключены, соответственно, к первому, второму, третьему и четвертому дискретным выходам микроконтроллера, дополнительно содержит радиопередатчик, причем вторые выводы первого и второго резисторов делителя напряжения подключены, соответственно к пятому и шестому дискретным выходам микроконтроллера, модулирующий вход радиопередатчика подключен к выходу широтно-импульсного модулятора микроконтроллера, вывод питания радиопередатчика подключен к седьмому дискретному выходу микроконтроллера, общий вывод радиопередатчика подключен к общему выводу микроконтроллера.

На чертеже представлена структурная схема микроконтроллерного измерительного преобразователя для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу.

Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу содержит: (чертеж) микроконтроллер 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Cx), резистивный датчик 4 (Rx), образцовый конденсатор 5 (Co), первый резистор 6 и второй резистор 7 резистивного делителя напряжения, радиопередатчик 8 с двухуровневой амплитудной манипуляцией.

Первые выводы образцового резистора 2, резистивного датчика 4, емкостного датчика 3 и образцового конденсатора 5 подключены к первому входу аналогового компаратора (на чертеже аналоговый компаратор не показан) микроконтроллера 1, первые выводы резисторов 6 и 7 подключены к второму входу аналогового компаратора микроконтроллера 1. Вторые выводы образцового резистора 2, емкостного датчика 3, резистивного датчика 4, образцового конденсатора 5, резистора 6 и резистора 7 подключены, соответственно, к первому, второму, третьему, четвертому, пятому и шестому дискретным выходам микроконтроллера 1. Выход широтно-импульсного модулятора (ШИМ) (на чертеже ШИМ не показан) микроконтроллера 1 подключен к модулирующему входу радиопередатчика 8. Седьмой дискретный выход микроконтроллера 1 подключен к выводу питания радиопередатчика 8, общий вывод радиопередатчика 8 подключен к общему выводу микроконтроллера 1.

Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу работает следующим образом.

Микроконтроллер 1 способен находиться в одном из двух режимов - в энергосберегающем или в рабочем. В рабочем режиме многократно возрастает потребление энергии микроконтроллером 1 от автономного источника питания. Переход из одного режима в другой, а также время нахождения микроконтроллера 1 в каждом из указанных режимов определяется его программой. Процесс преобразования осуществляется в рабочем режиме по следующему алгоритму.

Микроконтроллер 1 после выхода из энергосберегающего режима выводит на шестой дискретный выход логический «0» (лог.0) и на пятый дискретный выход 5 выводит логическую «1» (лог.1). Через резисторы 6 и 7 резистивного делителя протекает ток, который создает на резисторе 7 падение напряжения, равное 0,63Uн, где Uн - напряжение высокого уровня, т.е. напряжение лог.1.

Для измерения емкости датчика 3 микроконтроллер 1 отключает цепь, состоящую из резистивного датчика 4 и конденсатора 5, путем перевода третьего и четвертого дискретных выходов в высокоомные состояния. Затем, микроконтроллер 1 разряжает датчик 3 через образцовый резистор 2, путем вывода лог.0 на первый и второй дискретные выходы. Через некоторое время микроконтроллер 1 выводит лог.1 (напряжение высокого уровня) на первый дискретный выход и запускает внутренний, заранее обнуленный двоичный счетчик тактовых импульсов микроконтроллера 1. Когда напряжение на емкостном датчике 3 достигнет уровня 0,63Uн на выходе аналогового компаратора будет сформирована лог.1. По этому сигналу микроконтроллер 1 останавливает двоичный счетчик и сохраняет его содержимое, т.е. двоичный код N, который пропорционален постоянной времени τ=Ro·Cx. Двоичный код N определяется выражением N=τ/Т, где Т - период (длительность такта) тактового генератора микроконтроллера 1, Т=1/f, где f - частота тактового генератора микроконтроллера 1. Микроконтроллер 1 определяет постоянную времени из выражения τ=Т·N, а затем определяет значение емкости емкостного датчика 3 из выражения Сх=Т·N/Ro, где Ro известно.

Для измерения сопротивления резистивного датчика 4 микроконтроллер 1 выполняет тот же алгоритм, что и для измерения емкости датчика 3, а затем определяет Rx из выражения Rx=Т·N/Сo, где Сo известно.

Результат преобразования микроконтроллер 1 преобразует с помощью ШИМ в широтно-импульсно модулированный сигнал (ШИМ-сигнал). Этот ШИМ-сигнал поступает на модулирующий вход радиопередатчика 8. Для включения радиопередатчика 8 микроконтроллер 1 подает на его вывод питания высокий уровень напряжения, путем вывода на седьмой дискретный выход логической «1». Промодулированный информационным ШИМ-сигналом радиосигнал радиопередатчика 8 излучается в радиоэфир. Перед переходом в энергосберегающий режим микроконтроллер 1 переводит все семь дискретных выходов в высокоомные состояния.

Предлагаемое изобретение по сравнению с прототипом и другими известными решениями имеет преимущество: - добавлены функция передачи результата преобразования по радиоканалу и функция энергосбережения, позволяющая увеличить время работы микроконтроллерного измерительного преобразователя от одного комплекта автономного источника питания.

Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу, содержащий: микроконтроллер, емкостный датчик, образцовый конденсатор, резистивный датчик, образцовый резистор, резистивный делитель напряжения, причем первые выводы первого и второго резисторов делителя напряжения подключены к первому входу аналогового компаратора микроконтроллера, первые выводы резистивного датчика, образцового резистора, емкостного датчика и образцового конденсатора подключены к второму входу аналогового компаратора микроконтроллера, вторые выводы образцового резистора, емкостного датчика, резистивного датчика, образцового конденсатора подключены, соответственно, к первому, второму, третьему и четвертому дискретным выходам микроконтроллера, отличающийся тем, что он дополнительно содержит радиопередатчик, причем вторые выводы первого и второго резисторов делителя напряжения подключены, соответственно, к пятому и шестому дискретным выходам микроконтроллера, модулирующий вход радиопередатчика подключен к выходу широтно-импульсного модулятора микроконтроллера, вывод питания радиопередатчика подключен к седьмому дискретному выходу микроконтроллера, общий вывод радиопередатчика подключен к общему выводу микроконтроллера.



 

Похожие патенты:

Изобретение относится к сенсорной технике и может найти применение в сенсорных экранах, сенсорных панелях и других устройствах, где необходимо указывать координаты выбранных мест на экране и отслеживать эти координаты или выбранные графические элементы.

Изобретение относится к цифровой измерительной технике, а именно к устройствам преобразования емкости в частоту, и может быть использовано в устройствах первичной обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров.

Изобретение относится к СВЧ-технике и может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических покрытий на поверхности металла.

Изобретение относится к области измерительной техники и может быть использовано в различных областях промышленности, в частности, в приборостроении, с целью измерения постоянной времени саморазряда конденсаторов.

Устройство измерения остаточной емкости химического источника тока относится к области измерительной техники и может использоваться для перманентного контроля аккумуляторной батареи или химического источника тока (ХИТ) которые используются в автомобилях, электромобилях, складских электрокарах и в других бытовых и промышленных приборах, для которых источником энергии служит ХИТ, что позволит предотвратить непредвиденный выход ХИТ из строя. Новым в устройстве измерения остаточной емкости ХИТ является разделение устройства на два блока и упрощение конструкции, таким образом, что в первом блоке содержится конденсатор с ключом заряда который жестко крепиться как можно ближе к клеммам ХИТ для наименьшей длинны подводящих проводов, во втором блоке располагаются остальные компоненты устройства с индикатором, на который будет выводиться информация об остаточной емкости ХИТ. Устройство измерения остаточной емкости ХИТ состоит из конденсатора известной емкости, электронных управляемых ключей заряда и разряда, устройства выборки-хранения, делителя напряжения, микроконтроллера, пульта управления, фильтра нижних частот, индикатора на который выводиться остаточная емкость ХИТ.

Изобретение относится к области измерения электрических величин, а именно к измерению электрической емкости. Способ измерения электрической емкости заключается в измерении отношения напряжений на последовательно соединенных эталонной и измеряемой емкостях, заряжаемых от источника постоянного напряжения.

Использование: для оценки свойств исследуемых областей, с использованием «мягкого поля». Сущность изобретения заключается в том, что способ включает: получение информации о приложенных входных сигналах и измеренных выходных сигналах для возбуждаемого объекта с использованием множества преобразователей; формирование матрицы полной проводимости на основе упомянутой информации о приложенных входных сигналах и измеренных выходных сигналах; определение множества моментов с использованием упомянутой матрицы полной проводимости и вычисление распределения свойств возбуждаемого объекта с использованием упомянутого множества моментов.

Изобретение относится к измерительной технике и может быть использовано для построения средств измерения физических величин с помощью емкостных датчиков. Измерительный преобразователь емкость-напряжение содержит емкостный датчик, переходной конденсатор, источник опорного напряжения, генератор импульсов, масштабный преобразователь, первый двухпозиционный переключатель, первый операционный усилитель с конденсатором в цепи обратной связи, опорный конденсатор, второй операционный усилитель с накопительным конденсатором в цепи обратной связи, второй двухпозиционный переключатель.

Изобретение относится к электроизмерительной техник, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором.

Изобретение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материалов при помощи устройства влагомер-диэлькометр, которое содержит электронный блок, измерительную ячейку и первичный преобразователь, представляющий собой отрезок длинной линии, образованный металлическим прутком и металлическим основанием, при этом измерительная ячейка конструктивно совмещена с первичным преобразователем и содержит детектор, подключенный непосредственно к входу первичного преобразователя.

Изобретение относится к бесконтактным переключателям. Технический результат заключается в улучшении управления чувствительностью бесконтактных переключателей. Бесконтактный переключатель содержит схему управления, которая позволяет полю сенсорной активации определять активацию переключателя пользователем за счет сравнения значения поля сенсорной активации с пороговым значением. Кроме того, бесконтактный переключатель включает в себя схему распознавания чувствительности пользователя на основе активации пользователем датчика и схему регулирования чувствительности одного или нескольких бесконтактных переключателей. 3 н. и 10 з.п. ф-лы, 11 ил.

Изобретение предназначено для определения технического состояния фильтрующего элемента гидросистемы в функциональном режиме. Способ диагностирования технического состояния фильтрующего элемента гидросистемы включает определение параметра контроля фильтра и его передачу запоминающему устройству или оператору в процессе работы гидросистемы, причем измеряют диэлектрическую проницаемость фильтрующего элемента, непрерывно сравнивают текущее значение диэлектрической проницаемости фильтрующего элемента с ее максимально допустимым значением и определяют прогнозируемый остаточный ресурс фильтрующего элемента по по предложенной формуле. Изобретение позволяет повысить точности оценки технического состояния фильтрующего элемента гидросистемы, обеспечить прогнозирование его остаточного ресурса и тем самым повысить эффективность технического обслуживания фильтрующих элементов с учетом их фактического технического состояния.

Изобретение, в общем, относится к системам контроля и, более конкретно, к способу определения электрической проводимости объекта или материала. Система содержит датчик, способный излучать электромагнитное поле при получении возбуждающего сигнала, причем при помещении в указанное электромагнитное поле объекта оно взаимодействует с этим объектом. Контур обработки сигнала, соединенный с датчиком и выполненный с возможностью: обеспечивать регулируемую емкость датчика для регулирования фазового угла тока, проходящего через датчик; производить измерение напряжения, соответствующего напряжению на датчике; производить измерение тока, соответствующего току, проходящему через датчик. Контроллер, соединенный с контуром обработки сигнала, выполненный с возможностью: расчета комплексной проводимости датчика на основании измерения напряжения и измерения тока и определения электрической проводимости объекта на основании рассчитанной комплексной проводимости датчика. Причем система выполнена с возможностью определения электрической проводимости объекта, когда датчик не находится в резонансном состоянии. Технический результат заключается в повышении точности измерения. 3 н. и 16 з.п. ф-лы, 7 ил.

Изобретение относится к бесконтактным переключателям. Технический результат заключается в обеспечении управления чувствительностью бесконтактного переключателя. Устройство содержит бесконтактный датчик, такой как емкостный датчик, установленный в транспортном средстве и обеспечивающий создание поля сенсорной активации. Бесконтактный переключатель дополнительно содержит схему управления, которая позволяет полю сенсорной активации распознавать активацию переключателя пользователем за счет сравнения значения поля сенсорной активации с пороговым значением. Кроме того, бесконтактный переключатель содержит устройство ввода для получения вводимого пользователем сигнала о выбранном пользователем уровне чувствительности. Схема управления управляет чувствительностью сравнения на основании вводимого пользователем сигнала о выбранном уровне чувствительности. 3 н. и 13 з.п. ф-лы, 8 ил.

Использование: для дистанционного контроля относительной диэлектрической проницаемости среды под границей атмосфера-океан на разных акваториях Мирового океана. Сущность изобретения заключается в том, что контролируемый участок морской поверхности облучают СВЧ-радиоволнами на наклонной поляризации, регистрируют рассеянный назад сигнал одновременно на вертикальной и горизонтальной поляризациях, затем вычисляют поляризационное отношение, по которому рассчитывают относительную диэлектрическую проницаемость среды под границей атмосфера-океан. Технический результат - повышение точности измерений за счет того, что величины удельной эффективной площади рассеяния на разных поляризациях определяются одновременно.

Изобретение относится к измерительной технике и может быть использовано для определения электромагнитных параметров наземных и погружных асинхронных электродвигателей на предприятиях по ремонту электрооборудования и на площадках нефтедобывающих скважин. В известном способе определения индуктивности рассеяния фазы обмотки статора асинхронного электродвигателя измеряют постоянное напряжение U0 и ток в обмотке статора, соединенной по трехфазной схеме. Замыкают накоротко при неподвижном роторе обмотку статора. Измеряют значение производной (di1/dt)t=0 затухающего тока статора в начальный момент переходного процесса. Вычисляют значение индуктивности рассеяния фазы обмотки статора где k - коэффициент, зависящий от схемы соединения фаз обмотки статора. Согласно изобретению измерение производной (di1/dt)t=0 осуществляют используя оцифрованную переходную характеристику i1(t) затухающего тока статора в виде массива его мгновенных значений. Дополнительно аппроксимируют огибающую этой характеристики выражением Определяют начальные токи I1, I2, I3 и постоянные времени Т1, Т2, Т3 экспонент соответственно пологого, крутого и сверхпереходного участков характеристики i1(t), а также интеграл По измеренным и определенным данным вычисляют электромагнитные параметры асинхронных электродвигателей. Технический результат заключается в увеличении определяемых электромагнитных параметров и в расширении арсенала средств аналогичного назначения. 5 ил., 2 табл.

Использование: для определения природы проводимости диэлектриков. Сущность изобретения заключается в том, что способ определения природы проводимости диэлектриков основан на проверке выполнимости закона Фарадея путем пропускания электрического тока через стопку образцов испытуемого диэлектрика и определения качества и количества перемещенного вещества, при этом стопку образцов испытуемого диэлектрика подвергают воздействию электромагнитного излучения, направляя вектор плотности потока энергии поля вдоль оси стопки образцов испытуемого диэлектрика. Технический результат: обеспечение возможности более точного определения количества перемещающихся зарядов и получения данных о проводимости диэлектриков в широком частотном диапазоне. 1 ил.

Изобретение относится к области дистанционного измерения физических характеристик объектов, в частности диэлектрической проницаемости диэлектриков. В способе, включающем облучение диэлектрического объекта когерентным СВЧ-излучением на наборе частот, регистрацию сигнала, несущего информацию о диэлектрической проницаемости объекта, после прохождения сигналом объекта с помощью канала регистрации, содержащего средства регистрации, и когерентную обработку зарегистрированного сигнала, согласно изобретению облучение объекта осуществляют несколькими передающими элементами, расположенными в различных точках пространства, при этом регистрацию сигнала каждого передающего элемента осуществляют соответствующим ему средством регистрации, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре передающий элемент - средство регистрации на наборе частот, затем вычисляют распределение плотности удлинения оптического пути методом обратного проецирования, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации трехмерного изображения, затем вычисляют диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат по формуле: , где ρ - средняя плотность удлинения оптического пути для диэлектрического объекта; Lx - размер по оси x; Lz - размер по оси z. Технический результат заключается в возможности определения диэлектрической проницаемости диэлектрического объекта дистанционно, независимо от возможности непосредственного ручного измерения его размеров.

Использование: для измерения параметров диэлектриков при нагреве. Сущность изобретения заключается том, что способ измерения параметров диэлектриков при нагреве в объемном резонаторе на фиксированной частоте включает возбуждение колебаний в резонаторе через расположенные в верхней торцевой стенке отверстия связи в охлаждаемой части резонатора, настройку резонатора в резонанс при нормальных условиях и при нагреве и измерение собственных параметров пустого резонатора, установку образца на подвижный нижний поршень, настройку резонатора в резонанс при нормальных условиях и при нагреве и измерение параметров резонатора с образцом, расчет температурных параметров диэлектриков сравнением собственных температурных параметров пустого резонатора и резонатора с образцом, отличающийся тем, что настройку в резонанс пустого резонатора и резонатора с образцом проводят перемещением верхней торцевой стенки резонатора с отверстиями связи при неизменном положении подвижного нижнего поршня. Технический результат: обеспечение возможности более высокой точности измерения параметров диэлектриков. 2 н.п. ф-лы, 2 ил.

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Технический результат: обеспечение возможности повышения точности измерения. 1 з.п. ф-лы, 3 ил.
Наверх