Магнитотвердый материал и изделие, выполненное из него



Магнитотвердый материал и изделие, выполненное из него

Владельцы патента RU 2604092:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU)

Изобретение относится к области порошковой металлургии, а именно к магнитотвердому материалу, содержащему железо, кобальт, бор, диспрозий, медь. При этом материал дополнительно содержит цирконий. Химический состав магнитного материала соответствует формуле, ат. доли: (Pr1-x1Dyx1)12-15(Fe1-y1Coy1)ост.(ZrzCu1-z)y2B6-7, где x1=0,44-0,48; y1=0,30-0,36; y2=1,0-2,0; z=0,005-0,05. Также предложено изделие из магнитотвердого материала. Техническим результатом изобретения является увеличение остаточной индукции материала при сохранении значения температурного коэффициента индукции. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к области порошковой металлургии, а именно к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа и к изделиям, выполненным из таких материалов, и может быть использовано в авиационной промышленности в навигационных приборах.

Известен магнитный материал на основе празеодима, железа, кобальта, алюминия, бора следующего химического состава, ат.%: Pr15Fe62,5Co16Al1B5,5 (Jiang S.Y. and other. Magnetic properties of R-Fe-B and R-Fe-Co-Al-B magnets (R=Pr and Nd). J. Appl. Phys. 1988. V. 64. N. 10. P. 5510-5512).

Известен магнитный материал на основе неодима, железа, кобальта, бора следующего химического состава, ат.%: Nd15(Fe1-xCox)77B8, где x=0-0,2 (Sagawa M. and other. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans, on Magnet. 1984. V. MAG-20. N. 5. P. 1584-1589).

Изделиями из известных магнитных материалов являются, например, призмы, цилиндры, кольцевые магниты с радиальной либо аксиальной текстурой.

Недостатками известных магнитных материалов и изделий, выполненных из них, является недостаточная температурная стабильность (высокое значение температурного коэффициента индукции (ТКИ) по абсолютной величине).

Наиболее близким аналогом, взятым за прототип, является магнитный материал (RU 2244360, H01F 1/057, опубл. 10.01.2005), содержащий железо, кобальт, бор, а также по меньшей мере один элемент, выбранный из группы тербий, диспрозий, гольмий, эрбий, тулий, отличающийся тем, что он дополнительно содержит празеодим, а также по меньшей мере один элемент, выбранный из группы самарий, лантан, церий, неодим, иттрий, при этом химический состав соответствует формуле, ат.%:

,

где R1 - по меньшей мере один элемент, выбранный из группы Tb, Dy, Но, Er, Tm,

R2 - по меньшей мере один элемент, выбранный из группы Sm, La, Ce, Nd, Y;

x1=0,2-0,5;

y1=0,2-0,3;

x1/x2≥5.

Недостатками магнитного материала-прототипа являются недостаточно высокие магнитные свойства. Например, при величине ТКИ = 0%/°С (20-100°С) величина остаточной индукции (BR) не превышает 8,2 кГс.

Изделиями из магнитного материала-прототипа являются любые типоразмеры магнитов (например, призмы, цилиндры, кольца с аксиальной, диаметральной и радиальной текстурой (КМРТ)).

Недостатками изделий являются:

невозможность изготовления магнитов с величиной ТКИ = 0%/°С (20-100°С) при значении остаточной индукции BR более 8,2 кГс.

Техническим результатом изобретения является увеличение остаточной индукции материала при сохранении значения ТКИ = 0%/°С (-60÷+80°С).

Технический результат достигается магнитотвердым материалом, содержащим празеодим, железо, кобальт, бор, диспрозий, медь, отличающимся тем, что он дополнительно содержит цирконий, при этом химический состав магнитотвердого материала соответствует формуле, ат. доли:

(Pr1-x1Dyx1)11,5-16(Fe1-y1Coy1)ост.(ZrzCu1-z)y2B6-7,

где x1=0,44-0,48;

y1=0,30-0,36;

y2=1,0-2,0;

z=0,005-0,05.

Предложено также изделие, выполненное из указанного выше магнитотвердого материала.

В результате проведенного эксперимента установлено, что в системе ((Pr1-x1Dyx1)11,5-16(Fe1-y1Coy1)ост.(ZrzCu1-z)y2B6-7 цирконий замещает атомы празеодима в основной магнитной фазе (Pr,Zr,Dy)2(Fe,Co,Cu)14B, а медь замещает атомы железа и кобальта. При этом намагниченность подрешетки Fe, Со становится меньше, так же как и намагниченность подрешетки Pr, связанной с подрешеткой Fe, Со ферромагнитно. В этом случае для получения ТКИ = 0%/°С требуется меньшее количество Dy, который имеет величину магнитного момента значительно выше, чем Dy, Fe, Со, и упорядочен антиферромагнитно магнитным моментам этих элементов. Это и приводит к увеличению величины BR без уменьшения значения ТКИ.

Примеры осуществления.

Сплав заданного состава выплавляли в вакуумной индукционной печи. Магниты изготавливали по порошковой технологии, включающей дробление слитка до размера менее 600 мкм, тонкий помол в защитной среде до монокристаллического размера частиц, прессование образцов в магнитном поле 10 кЭ, спекание в вакуумной печи при температуре 1080-1140°С. Полученные заготовки магнитов шлифовали до размера 10×10×10 мм. Величину ТКИ измеряли в области -60÷+80°С.

Составы и свойства предлагаемого магнитного материала и материала-прототипа приведены в таблице 1. В примерах 1, 2 приведены граничные значения составов, в примерах 3, 4, 5 - средние значения составов.

Как видно из таблицы, величина остаточной индукции предлагаемого материала (при значении ТКИ = 0%/°С) выше, чем у материала-прототипа, на 6-7%. При этом следует учесть, что предлагаемый материал был измерен в более широком температурном диапазоне (-60÷+80°С), чем материал-прототип (+20÷+100°С).

В разработанном материале отсутствует также титан, наличие которого приводит к появлению фазы Ti(Fe,Co)B4, а соответственно уменьшению содержания основной магнитной фазы и ухудшению свойств магнитов.

Применение предлагаемого магнитного материала позволит повысить точность и стабильность работы навигационного оборудования, а также производить магниты любых типоразмеров.

1. Магнитотвердый материал, содержащий железо, кобальт, бор, диспрозий, медь, отличающийся тем, что он дополнительно содержит цирконий, при этом химический состав магнитного материала соответствует формуле, ат. доли:
(Pr1-x1Dyx1)12-15(Fe1-y1Coy1)ост.(ZrzCu1-z)y2B6-7,
где x1=0,44-0,48;
y1=0,30-0,36;
y2=1,0-2,0;
z=0,005-0,05.

2. Изделие из магнитотвердого материала, отличающееся тем, что оно выполнено из материала по п. 1.



 

Похожие патенты:

Изобретение относится к области композиционных магнитных материалов, конкретно к магнитоэлектрореологическим эластомерам, обратимо изменяющим свои физические характеристики под действием магнитного и электрического поля, и может быть использовано в машиностроении, электротехнике, приборостроении.

Изобретение относится к изготовлению листа из текстурированной электротехнической стали. Для повышения производительности процесса при изготовлении листа поверхность листа толщиной t облучают электронным пучком в направлении, пересекающем направление прокатки, и регулируют энергию E(t) облучения при выполнении следующего соотношения: Ewmin (0.23) x (1,61- 2,83 x t (мм))≤ E(t) ≤ Ewmin (0.23) x (1,78 - 3,12 x t (мм)), где Ewmin (0.23) - энергия облучения, при которой минимальны потери в железе для материала с толщиной листа t 0.23мм.

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов, на основе соединений редкоземельных металлов и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности.

Изобретение относится к области металлургии. Для получения листа текстурованной электротехнической стали, обладающего низкими показателями потерь в железе, за счет измельчения магнитной доменной структуры стальной лист содержит линейные канавки, сформированные на его поверхности под углом 45° или менее к направлению, перпендикулярному направлению прокатки, в донной части котором количество тонкодисперсных зерен длиной 1 мм или менее в направлении прокатки составляет 10% или менее, включая 0%, что свидетельствует об отсутствии тонкодисперсных зерен; при этом каждая канавка снабжена форстеритовой пленкой в количестве 0,6 г/м2 или более в расчете на количество Mg покрытия на одну поверхность стального листа, а среднее значение углов, образованных осями <100> вторично рекристаллизованных зерен, обращенных в направлении прокатки, и плоскостью прокатки стального листа, составляет 3° или менее.

Изобретение относится к области металлургии. Для получения листа текстурированной электротехнической стали со стабильными низкими потерями в железе способ изготовления листа включает горячую прокатку стального сляба, содержащего, мас.%: C 0,001-0,10, Si 1,0-5,0, Mn 0,01-0,5, Al менее 0,0100, каждый из S, Se, O и N не более 0,0050, Fe и неизбежные примеси - остальное, однократную, или двукратную, или многократную холодную прокатку полученного горячекатаного листа, при необходимости промежуточный отжиг между ними до конечной толщины, отжиг первичной рекристаллизации полученного холоднокатаного листа, нанесение отжигового сепаратора и окончательный отжиг, при этом в зоне 550-700°C в процессе нагрева отжига первичной рекристаллизации проводят быстрый нагрев при средней скорости нагрева 40-200°C/с, а в какой либо зоне температур от 250 до 550°C скорость нагрева составляет не более 10°C/с в течение 1-10 секунд.

Изобретение относится к области металлургии. Стальной сляб, содержащий, мас.%: С 0,001- 0,10, Si 1,0 - 5,0, Mn 0,01- 0,5, S и/или Se 0,01- 0,05, раств.
Изобретение может быть использовано при получении магнитно-жидкостных уплотнений вращающихся валов, магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине.

Изобретение относится к области металлургии. Для уменьшения потерь энергии в трансформаторах во время работы получают лист электротехнической текстурированной стали, имеющий характеристики потерь в железе в диапазоне возбуждения от 1,5 до 1,9 Тл, в котором вблизи областей линейных деформаций сформировано остаточное напряжение 150 МПа или более, причем каждая такая область имеет протяженность на 300 мкм или менее в направлении прокатки и на 42 мкм или более в направлении толщины листа, а области линейных деформаций сформированы периодически с интервалами от 2 мм до 10 мм в направлении прокатки.

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств.

Изобретение относится к области получения магнитотвердых материалов, которые могут быть использованы в электротехнике и машиностроении. Предложенный способ получения магнитотвердого соединения Sm2M17Nx позволяет увеличить коэрцитивную силу (Hc) и температуру Кюри (Тс) конечного продукта, что является техническим результатом изобретения.

Изобретение относится к послойному формированию трехмерного изделия спеканием порошкового материала. Устройство содержит ленту для формирования трехмерного изделия из слоев порошкового материала, размещенную с возможностью ее перемотки из рулона (1) в рулон (2) при помощи протягивающих валиков (3) и поддерживающей ленты (4), бункер для избыточного порошкового материала (7), систему перфорации (5) ленты, систему наполнения (6) мест перфорации ленты порошковым пластиковым, керамическим или металлическим материалом изготавливаемого объекта, выполненную с возможностью использования порошкового материала из бункера для избыточного порошкового материала (7), систему очистки (8) ленты от частиц порошкового материала, не попавших в перфорации, систему сжатия (9) ленты, выполненную с возможностью уплотнения ленты с заполненными порошковым материалом местами перфорации, камеру (10) спекания рулона (2), выполненного намоткой уплотненной ленты с заполненными порошковым материалом местами перфорации, с образованием трехмерного спеченного изделия, систему управления спеканием (11) и систему отделения (12) спеченного изделия от ленты.

Изобретение относится к трехмерной печати и может быть использовано для создания объемных изделий. Способ трехмерной печати объемного изделия из металлического порошкообразного материала, включающий прессование порошкообразного металлического материала рабочей поверхностью электрода с последующей подачей тока, разогревающего порошкообразный материал и приваривающего его к формируемому объемному изделию.

Изобретение относится к изготовлению комбинированного изделия из твердого сплава и стали типа шип. Получают твердосплавную заготовку из порошка твердого сплава холодным прессованием в закрытой пресс-форме, проводят предварительную термообработку полученной твердосплавной заготовки спеканием при 950-1100°С в среде водорода, затем размещают твердосплавную заготовку в нижней стальной полуформе для горячего прессования с обеспечением выступания твердосплавной заготовки над поверхностью стальной полуформы, выступающую над поверхностью стальной полуформы часть твердосплавной заготовки покрывают слоем от 5 до 15 мкм суспензии, содержащей технический углерод, сушат полученное покрытие в течение 4-10 секунд водородным факелом, затем ведут горячее прессование твердосплавной заготовки при давлении 0,1-3,0 МПа, скорости нагрева от 150 до 160°С/мин, напряжении источника питания от 5 до 8 В и максимальном импульсном токе от 3 до 8 кА.

Группа изобретений относится к порошковой металлургии. Порошковая композиция на основе железа для получения спеченной детали инжекционным формованием имеет средний размер частиц 20-60 мкм и содержит 0,3-1,6 мас.% Мо, 0,1-0,6 мас.% Р, необязательно до макс.

Изобретение относится к области износостойких композиционных спеченных материалов, применяемых для изготовления вооружения бурового инструмента и опорно-центрирующих устройств, полученных методами порошковой металлургии, в частности устройств для калибровки ствола скважин.
Изобретение относится к получению высокоплотного порошкового хромсодержащего материала на основе железа. Готовят шихту на основе распыленного порошка хромомолибденовой стали с добавкой углерода.

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении.

Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности.

Изобретение относится к порошковой металлургии. Способ изготовления наноразмерного твердого сплава включает приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме.

Изобретение относится к порошковой металлургии. Способ получения спеченного пористого вольфрамового каркаса включает смешение порошка вольфрама с порошковой активирующей добавкой, состоящей из порошков никеля и железа, прессование и спекание.

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание, термообработку и термомагнитную обработку. Причем после спекания до термообработки проводят горячую пластическую деформацию с вытяжкой не менее 1,1. Термомагнитную обработку проводят в температурном интервале 650-600°С. Обеспечивается снижение температуры спекания сплава и повышение магнитных гистерезисных свойств слава при сохранении высоких значений коэрцитивной силы. 1 табл., 1 пр.
Наверх