Система определения насыпной плотности грузов в полувагонах в составах железнодорожного транспорта

Изобретение относится к измерительной технике и предназначено для определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах железнодорожного транспорта, обнаружения негабаритного груза, выявления отклонений от сортности, а также для построения распределения уровня (насыпной плотности) по длине полувагона. Устройство включает датчик скорости, датчик уровня загрузки и блок обработки и управления. Дополнительно включены средства определения массы груза, датчики уровня загрузки, число которых составляет от двух до шести, которые установлены на высоте 5.0 м от уровня головки рельса ж/д пути, справа и слева от оси пути в диапазоне от 0,2 м до 0,75 м. Технический результат заключается в повышении точности определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах. 3 ил.

 

Изобретение относится к измерительной технике и предназначено для определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах железнодорожного транспорта, обнаружения негабаритного груза, выявления отклонений от сортности, а также для построения распределения уровня (насыпной плотности) по длине полувагона.

Известен способ определения массы ферромагнитного материала, включающий подачу контейнера с ферромагнитным материалом в зону измерения, имеющую электрические катушки, на которые подают ток определенной частоты и амплитуды (А.с. SU №1832927 Кл. G01N 27/72, 1990 г.).

Недостатком данного способа является то, что способ предусматривает выявление наличия ферромагнетика в объеме железорудного сырья и не способен определить объем и массу содержащегося ферромагнетика, необходимых для определения насыпной плотности груза.

Известен способ определения массы ферромагнитного материала, включающий подачу контейнера с ферромагнитным материалом в зону измерения, имеющую электрические катушки, на которые подают ток определенной частоты и амплитуды, в качестве электрических катушек берут одну катушку спирального типа и, по крайней мере, одну катушку винтового типа, при этом спиральную катушку располагают в верхней части зоны измерения, а обмотку катушки винтового типа располагают вокруг контейнера с ферромагнитным материалом под углом к его оси, зависящим от ориентации ферромагнитного материала, измеряют индуктивность винтовой катушки и определяют общую площадь сечения Se ферромагнитного материала по формуле

Se=L·le0·µi·N2,

где L - индуктивность электрической обмотки, le - длина средней линии ферромагнитного материала, µ0 - магнитная постоянная, µj - магнитная проницаемость ферромагнитного материала, N - число витков обмотки катушки, далее по известным формулам определяют массу ферромагнитного материала, после чего измеряют индуктивность спиральной катушки и в зависимости от полученного значения выбирают полученный опытным путем корректирующий коэффициент, по которому уточняют определенную ранее массу ферромагнитного материала. Кроме того, винтовые катушки берут в количестве, например, пяти штук, последовательно измеряют индуктивность каждой катушки, определяют среднее значение индуктивности, которое используют при расчете общей площади сечения Se ферромагнитного материала. Для осуществления этого способа предложено устройство, содержащее измерительный модуль, контейнер с ферромагнитным материалом, электрические катушки и вычислительный комплекс, в котором измерительный модуль выполнен в виде одной катушки спирального типа и, по крайней мере, одной катушки винтового типа, при этом спиральная катушка расположена в верхней части зоны измерения, а обмотка катушки винтового типа расположена вокруг контейнера с ферромагнитным материалом под углом к его оси, зависящим от ориентации ферромагнитного материала, катушки электрически соединены через электронный блок коммутации с измерителем индуктивности, который в свою очередь электрически связан с вычислительным комплексом, связанным с электронным блоком коммутации (патент РФ №2477466, G01N 27/72, G01R 33/12, опубл. 10.03.2013).

Недостатком этого решения является недостаточная точность измерений вследствие неполного учета параметров, влияющих на магнитные свойства материалов, состав и структуру ферромагнитного материала в контейнере, и невозможность определения магнитной массы контейнеров в динамике.

Известен способ для определения магнитной массы железнодорожных вагонов, включающий подачу вагона с ферромагнитным материалом в зону измерения, имеющую электрическую катушку спирально-винтового типа, обмотка которой размещена вокруг вагона и на которую подают ток определенной частоты и амплитуды, а также измерение индуктивности и добротности катушки, в котором перед подачей железнодорожных вагонов в область зоны измерения проводят калибровку и определяют наборы коэффициентов аппроксимации A, B, C, D, E, F для уравнения вычисления магнитной массы M M=A+B∗L+C∗Q+D∗L2+E∗Q2+F∗L∗Q, где L - интегральная индуктивность вагона, a Q - интегральная добротность вагона, которые соответствует температуре при калибровке Tк, а также диапазону насыпной плотности груза в вагонах; определяют с помощью датчиков положения вагонов последовательность подачи контейнеров и их количество, начальный момент подачи контейнеров в область измерений и момент выхода контейнеров из зоны измерений, далее определяют с частотой, равной не менее 1/200 частоты изменения параметров тока катушки, мгновенные значения напряжения и тока Un и In в катушке, скорость движения вагона Wn, а также температуру и уровень загрузки, затем определяют с использованием дискретного преобразования Фурье для каждого периода углы сдвига фаз между током и напряжением φn, а также с учетом корректировки по температуре величины добротности и индуктивности катушки Qn и Ln для каждого периода измерения n по формулам

где α - температурный коэффициент, T1 - температура при измерениях; затем по этим данным определяют интегральные индуктивность и добротность SL и SQ катушки совместно с вагоном и магнитную массу вагона по формулам

,

где N1 и N2 соответствуют началу и концу измерений одного вагона, определяют насыпную плотность груза по уровню загрузки и данным по массе груза полученной от весов и выбирается соответствующий диапазону насыпной плотности набор коэффициентов, затем определяют магнитную массу вагона по формуле M=A+B∗SL+C∗SQ+D∗SL2+E∗SQ2+F∗SL∗SQ, после чего повторяют процедуру измерений для каждого из вагонов железнодорожного состава. Система для осуществления этого способа включает систему определения индуктивности катушки и блок обработки и управления, а также средства определения добротности, средства для измерения температуры, ультразвуковой датчик уровня вагона, фотоэлектрические датчики положения вагона, оптический датчик скорости, видеокамера, датчики уровня загрузки (заявка на изобретение РФ №2013138892, G01R 33/12, G01N 27/72, B61K 9/00, G01G 19/04, опубл. 27.02.2015).

Недостатком этого решения является недостаточная точность определения уровня, мгновенной и интегральной насыпной плотности груза (металлического лома) в полувагонах железнодорожного транспорта.

В основу изобретения положена задача создания более точного определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах железнодорожного транспорта, обнаружения негабаритного груза, выявления отклонений от сортности, а также для построения распределения уровня (насыпной плотности) по длине полувагона, что достигается за счет установки от двух до шести датчиков уровня загрузки груза над полувагоном с охватом всей площади горизонтальной проекции полувагона.

Решение поставленной технической задачи обеспечивается тем, что в системе для определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах железнодорожного транспорта, включающей датчик скорости, датчик уровня загрузки и блок обработки и управления, дополнительно включены средства получения информации о массе груза и датчики уровня загрузки, число которых составляет от двух до шести, установлены на высоте 5.0 м от уровня головки рельса ж/д пути, справа и слева от оси пути в диапазоне от 0,2 м до 0,75 м.

В отличие от прототипа, в котором количество и расположение датчиков, а также алгоритмы обработки сигналов были специализированы на определение уровня и насыпной плотности металлического лома, а данная система способна определять уровень и насыпную плотность любых грузов, как ферромагнитных, так и остальных.

Изобретение поясняется фиг. 1-3. Расположение датчиков уровня показано на фигурах 1 и 2. На фигуре 3 показана блок-схема проведения измерений.

Количество датчиков загрузки, как показано на фиг. 1 и 2, от двух до шести, расстояние между ними - справа и слева от оси пути в диапазоне от 0,2 м до 0,75 м, высота установки - 5.0 м от уровня головки рельса позволяют однозначно определить уровень загрузки в полувагонах при движении состава в диапазоне скоростей 0-10 км/ч.

Высота установки датчиков определена на основе технических характеристик датчиков и условий соблюдения требований ГОСТ 9238-2013 "Габариты железнодорожного подвижного состава и приближения строений".

Расстояние между датчиками устанавливается исходя из технических характеристик датчиков и требований по охвату всей площади горизонтальной проекции полувагона.

Система, показанная на фигуре 3, предназначена для определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах железнодорожного транспорта, обнаружения негабаритного груза, выявления отклонений от сортности, а также для построения распределения уровня (насыпной плотности) по длине полувагона.

Система содержит ультразвуковые датчики уровня груза в полувагоне 1, фотоэлектрические датчики положения вагона 2, оптические датчики скорости 3, а также блок обработки и управления 4.

Система работает следующим образом.

Принцип работы системы основан на обработке сигналов от двух до шести ультразвуковых датчиков уровня груза, с получения сигналов от системы позиционирования вагонов и датчиков скорости движения состава специально разработанным программным обеспечением, в результате чего становится возможным определить распределение уровня груза по длине и ширине полувагона и выявить негабаритный груз.

На основе определенных уровней в полувагоне, получая от сторонних подсистем через блок обработки и управления данных о массе груза, определяются мгновенные и интегральные насыпные плотности груза в полувагонах железнодорожного транспорта, строятся распределения уровня (насыпной плотности) по длине полувагона.

Путем обработки данных о грузе, полученных от сторонних подсистем через блок обработки и управления делаются выводы о соответствии груза заявленному сорту.

Насыпная плотность определяется по формуле:

,

где h - измеренная высота загрузки,

M - масса груза в вагоне (определяется как разность массы вагона с грузом и массы вагона),

s - ширина вагона,

li - пройденное вагоном расстояние за время измерения (определяется при помощи датчика скорости 3 и зависит от частоты измерений в единицу времени).

Система для определения уровня, мгновенной и интегральной насыпной плотности груза в полувагонах железнодорожного транспорта, обнаружения негабаритного груза, выявления отклонений от сортности, а также для построения распределения уровня и определения насыпной плотности по длине полувагона, включающая датчики скорости, датчики уровня загрузки груза, датчики позиционирования вагона и блок обработки и управления, отличающаяся тем, что в систему дополнительно включены средства получения массы и характеристик груза, а датчики уровня загрузки, число которых составляет от двух до шести, установлены на высоте 5.0 м от уровня головки рельса ж/д пути, справа и слева от оси пути в диапазоне от 0,2 м до 0,75 м.



 

Похожие патенты:

Использование: для неразрушающего определения относительной магнитной проницаемости деталей, выполненных из ферромагнитного материала. Сущность изобретения заключается в том, что при индуцировании магнитного поля индуктором 2 измеряют его магнитодвижущую силу с помощью датчика 6 и амплитуды магнитной индукции на противоположных концах магнитных полюсов индуктора Винд и в промежутке между ними Впов и определяют значение относительной магнитной проницаемости ферромагнитной детали с помощью соотношения: технический результат: повышение точности и быстродействия определения относительной магнитной проницаемости.

Изобретение относится к измерительной технике и представляет собой устройство для измерения магнитных характеристик образцов из листовой электротехнической стали произвольной формы.

Изобретение относится к магнитным измерениям и предназначено для измерения вебер-амперной характеристики электротехнического изделия. Техническим результатом заявляемого способа является повышение точности измерения за счет учета температурной погрешности.

Изобретение относится к области экспериментальной физики и предназначено для определения компонент вектора спина, преобладающего в пучке частиц. Предложенное устройство детектирования спина состоит из вращателя (1) спина с переключаемой катушкой (5), отклоняющего устройства (7), детектора (9) спина и коммутационного блока (15), обеспечивающего возможность переключения состояний возбуждения катушки (5).

Изобретение относится к магнитоизмерительной технике и может быть использовано при исследовании магнитных свойств веществ и материалов в следующих областях: физика магнитных явлений, геофизика.

Изобретение относится к области магнитных и магнитооптических измерений. Способ заключается в том, что исследуемый образец освещают линейно поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на p- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка.

Изобретение относится к измерительной технике, а именно к способу и системе для определения магнитной массы железнодорожных вагонов. Способ заключается в том, что для определения магнитной массы железнодорожных вагонов сначала производят калибровку с учетом окружающей температуры, а также насыпной плотности груза в вагонах.

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Использование: для определения намагниченности насыщения магнитной жидкости. Сущность изобретения заключается в том, что помещают жидкость во внешнее магнитное поле, индукцию которого можно менять, измеряют напряженность H и индукцию B магнитного поля внутри жидкости и определяют намагниченность жидкости M=(B/µo)-H, при этом определяют намагниченность M=M1 при B=B1 на начальном участке кривой намагничивания, где выполняется закон Кюри, определяют намагниченность M=M2 при большей индукции B=B2 на участке кривой намагничивания, где закон Кюри не выполняется, из равенства (M2B1/M1B2)=3La(ξ2)/ξ2 находят функцию Ланжевена La(ξ2), затем определяют Mнас=M2/La(ξ2).

Изобретение относится к области измерений магнитных величин, затрагивает средства измерений механических свойств ферромагнитных материалов, имеющих корреляционную связь с их магнитными характеристиками, например коэрцитивной силой, и может быть использовано при неразрушающем контроле качества термической обработки ферромагнитных изделий.

Изобретение касается устройства и способа определения плотности жидкости, в частности, сжиженного газа. Устройство для определения плотности жидкости содержит поплавок (20), по меньшей мере одну воздействующую на поплавок (20) измерительную пружину (30, 40), упругая деформация которой является мерой подъемной силы поплавка (20), и магнит (28), который предназначен для регистрации упругой деформации измерительной пружины (30, 40) посредством магнитострикционной системы измерения положения.

Изобретение относится к области измерительной техники и может быть использовано для измерении плотности сырой нефти в градусах API. Устройство для применения при измерении плотности сырой нефти в градусах API содержит трубопровод (1) для нефти, термопару (4) в трубопроводе для измерения температуры нефти при контакте с ней, сапфировое окно (3) в трубопроводе, инфракрасный термометр (5, 6) для измерения температуры нефти через окно и средство (20) для сравнения измерений температуры, полученных термометрами, с получением меры излучательной способности сырой нефти и, таким образом, ее плотности в градусах API.

Изобретение относится к горно-перерабатывающей промышленности и может быть использовано в процессах переработки и обогащения железорудного сырья, что ферромагнитные свойства.
Изобретение относится к горно-перерабатывающей промышленности и может быть использовано для контроля плотности суспензии, содержащей ферромагнитные частицы, которые представлены различными соединениями железа и других металлов, физико-механические свойства которых определяют вероятность взаимодействия с магнитным полем.

Изобретение относится к области методов выявления структурных дефектов кристаллов и может быть использовано для исследования дислокационной структуры и контроля качества кристаллов германия.

Изобретения относятся к вибрационным денситометрам и, более конкретно, к вибрационному денситометру с вибрационным элементом для вибрационного денситометра, имеющего улучшенное разделение колебательных мод.

Изобретение относится к области измерительной техники, а именно, к пневматическим устройствам для измерения плотности сыпучих материалов, и может быть использовано в различных отраслях промышленности.

Изобретение относится к области измерительной техники и может быть использовано для определения плотности жидкости. В предложенном в изобретении способе, или системе измерения, соответственно, предусмотрен контактирующий с жидкостью (FL) вибрационный корпус (10), который приводится в состояние вибрации таким образом, что он испытывает, по меньшей мере, частично, механические колебания с резонансной частотой (резонансные колебания), зависящей от плотности жидкости, контактирующей с первой поверхностью (10+) вибрационного корпуса, а также от температуры вибрационного корпуса.

Изобретение относится к области инженерной геологии применительно к определению необходимых параметров грунта. Способ включает отбор образца грунта, взвешивание и определение его объема, высушивание и взвешивание высушенного образца, определение плотности и влажности образца грунта и расчет по полученным значениям плотности и влажности грунта, причем предварительно строят графики зависимости относительного содержания воздуха в грунте и степени заполнения пор талого грунта водой и мерзлого грунта льдом от влажности при различных постоянных значениях плотности грунта, причем расчет данных для построения графиков производят в двух точках - при нулевой суммарной влажности талого или мерзлого грунта и при нулевом относительном содержании воздуха в образце грунта из заданных соотношений для талых и мерзлых грунтов.

Изобретение относится к области целлюлозно-бумажного производства, в частности к учету объемов технологической щепы в кучах открытого хранения на площадках деревоперерабатывающих предприятий и ЦБК в плотной мере с переводом ее геометрического объема коэффициентом полнодревесности щепы.

Изобретение относится к медицине, а именно к медицинской технике, и может быть использовано для измерения плотности биологической текучей среды неинвазивным способом. Датчик содержит генератор импульсов для генерирования импульса и передачи импульса на кожу человека. Температурный датчик для измерения температуры вблизи зоны, в которой импульс воздействует на кожу человека. Преобразователь для приема импульса от кожи человека и генерирования электрического сигнала, характеризующего скорость импульса в зависимости от состава биологической текучей среды и эластичности кожи с использованием второго закона Ньютона, F=m*a, где m означает массу представляемой текучей среды, а означает ее ускорение в м/с2 при постоянном усилии F в ньютонах (Н). Преобразователь соединен с микропроцессором, в котором электрический сигнал из преобразователя преобразуется в значения относительной плотности упомянутой биологической текучей среды. При обработке электрического сигнала микропроцессор выполнен с возможностью, посредством математического алгоритма, компенсации изменения плотности, обусловленного температурой, тем самым получая плотность при температуре, заданной при калибровке датчика. Устройство обеспечивает повышение надежности и точности скорости изменений значений глюкозы. 6 з.п. ф-лы, 19 ил., 3 табл.
Наверх