Способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита

Изобретение относится к медицине. Описан способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, состоящий в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из титана и формировании биоактивного слоя, при этом воздушно-абразивную обработку производят с использованием порошка дисперсностью 250-300 мкм в течение 5 мин, электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм производят в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, электроплазменное напыление порошка Mg-ΓΑ с дисперсностью до 90 мкм производят в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин. Способ обеспечивает повышенные значения адгезии и развитую морфологию поверхности получаемого покрытия. 2 табл., 2 ил.

 

Изобретение относится к способам нанесения гидроксиапатитовых покрытий и может быть использовано в медицине, а именно к челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов на титановой основе.

Известен способ получения биологически активного керамического покрытия на основе гидроксиапатита методом погружения (патент US на изобретение №6569489 В1, опубл. 27.05.2003), включающий несколько стадий. Сначала подготавливают подложку и получают водный раствор, имеющий уровень рН=6,0-7,5, температуру ниже или равную 100°С и содержащий ионы кальция, фосфата и карбонат-ионы. Затем погружают заготовку изделия в раствор и выдерживают в течение времени, достаточного для формирования керамического покрытия при рН раствора <8.0.

Однако в описанном выше способе не решена проблема формирования покрытия с развитой морфологией и высокими значениями адгезии.

Известен также способ получения плазмонапыленного многослойного биоактивного покрытия на основе гидроксиапатита (патент РФ на изобретение №2146535, МПК A61L 27/00, F61C 8/00, опубл. 20.03.2000 г.), в котором осуществляют плазменное напыление на титановую основу при различных режимах системы покрытий из пяти слоев. Первые два слоя выполнены из титана или гидрида титана, последующие два слоя из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях. Наружный пятый слой выполнен из гидроксиапатита кальция.

Известен также способ получения покрытия на основе гидроксиапатита (патент на изобретение РФ №2494764, МПК A61L 27/32, A61L 27/04, A61L 27/40, опубл. 10.10.2013), заключающийся в подготовке лантансодержащего раствора и последующем напылении титанового и лантансодержащего порошков. Формирование лантансодержаего покрытия производят сначала напылением титанового подслоя, а затем лантансодержащего порошка гидроксиапатита.

Однако данные способы являются дорогостоящим и трудоемкими, а также не обеспечивают получения покрытия с развитым микрорельефом и однородностью.

Наиболее близким аналогом к заявляемому изобретению является способ получения гидроксиапатитового биосовместимого покрытия (патент РФ на изобретение №2417107, МПК A61L 27/30, B05D 7/24, A61L 27/32 C1, опубл. 27.04.2011). В соответствии со способом сначала смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0. Затем наносят получаемую суспензию на металлическую поверхность, сушат и термически обрабатывают аргоно-плазменной струей при токе дуги 30-500 А в течение 0,5-2,0 минут с дистанции 40-100 мм.

Однако описанные выше технологические операции способа не позволяют получить биоактивное покрытие, обладающее высокой прочностью и развитой морфологией поверхности.

Задача заявляемого способа заключается в получении методом электроплазменного напыления магний-содержащего покрытия на основе гидроксиапатита с повышенной адгезией и развитой морфологией поверхности.

Поставленная задача решается тем, что при осуществлении способа получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита (Mg-ΓΑ), заключающегося в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из титана и формировании биоактивного слоя, воздушно-абразивную обработку производят с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 5 мин, электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм производят в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, электроплазменное напыление порошка Mg-ΓΑ с дисперсностью до 90 мкм производят в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин.

Изобретение поясняется с помощью Фиг. 1, на которой показана структура получаемого в соответствии с заявляемым способом покрытия и позициями 1-3 обозначены:

1 - титановая основа изделия;

2 - титановый подслой;

3 - слой из Mg-ΓΑ.

Способ осуществляют следующим образом.

Предварительную подготовку поверхности медицинского изделия осуществляют воздушно-абразивной обработкой, например, на аппарате АСОЗ 1.2 ΜΕΓΑ порошком электрокорунда Белэкт №25 (ТУ 9391-094-45814830-2003) дисперсностью 250-300 мкм в течение 5 минут.

Далее осуществляют электроплазменное напыление титанового подслоя 2 с дисперсностью порошка титана (Ti) 100-150 мкм в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин на опескоструенную титановую основу изделия 1, например, на полуавтоматической установке УПН-28.

Формирование покрытия завершают электроплазменным напылением слоя Mg-ΓΑ 3 в течение 6-8 с при токе дуги 300 А, дистанции напыления до 50 мм, дисперсности до 90 мкм и расходе плазмообразующего газа 20 л/мин.

Ток дуги при электроплазменном напылении, время напыления, дистанция напыления, дисперсность порошка и расход плазмообразующего газа были получены экспериментальным путем, результаты которого представлены в таблице 1.

Выбранные технологические режимы электроплазменного напыления объясняются следующим образом.

Увеличение тока дуги (выше 300 А) значительно повышает энтальпию и температуру плазменной струи, а также температуру, скорость и дисперсность напыляемых частиц, что обусловливает рост плотности покрытия, производительности напыления и коэффициент использования материала, что может негативно отразиться на качестве покрытия. Наиболее рациональное регулирование тока дуги, параметров напыления и качества получаемого покрытия обеспечивается при токе дуги 300 А. При меньших значениях тока напыления (менее 300 А) не происходит достаточного проплавления частиц напыляемого порошка, что приведет к снижению адгезионно-когезионных характеристик.

Время напыления было определено экспериментальным путем в зависимости от типа используемого материала. Для небольшой длительности (менее 8-10 с) электроплазменного напыления характерен недостаточный прогрев частиц порошка и тонкий неравномерный слой покрытия, а при использовании большего времени (более 10-12 с) напыления наоборот - слишком толстый слой покрытия, что негативно сказывается на прочности сцепления покрытия с основой. Поэтому при электроплазменном напылении титанового подслоя целесообразно использование времени, равного 10-12 сек.

Слишком малые (менее 50-150 мм) дистанции не обеспечивают необходимого прогрева частиц, а также значения их скорости, создают опасность перегрева напыляемой поверхности и всего изделия, что может привести к их фазовому, а чрезмерно большая дистанция (более 150 мм) вызывает падение температуры и скорости плазменного потока в зоне формирования покрытия. Поэтому оптимальной для заявляемого способа является дистанция напыления до 150 мм.

Дисперсность частиц порошка титана выбирается из условия необходимости их быстрого нагрева до температуры плавления и распыления, поэтому наиболее рациональным является использование порошка титана с дисперсностью 100-150 мкм.

Повышение расхода плазмообразующего газа снижает теплофизические характеристики потока частиц, плотность покрытия и эффективность напыления, увеличивая при этом дисперсность и скорость частиц. В зависимости от требуемых показателей дисперсности частиц и плотности покрытия следует устанавливать наименьший возможный расход плазмообразующего газа, в заявляемом способе он определен экспериментально и составляет 20 л/мин.

Электроплазменное напыление слоя Mg-ΓΑ 3 производят в течение 6-8 с при токе дуги 300 А, дистанции напыления до 50 мм, дисперсности до 90 мкм и расходе плазмообразующего газа 20 л/мин. Технологические режимы электроплазменного напыления порошка Mg-ΓΑ выбираются из соображений, описанных выше.

Для полученного в соответствии с заявляемым способом плазмонапыленнного покрытия была определена адгезия методом сдвига (ГОСТ 14759-69) на универсальной испытательной машине ИР 5082-100 (ООО «ИМПУЛЬС», г. Иваново) при скорости перемещения рабочей траверсы 0,5 мм/мин.

По методу нормального отрыва сдвига образцы попарно склеивали поверхностями с напыленным покрытием. В качестве клея использовали эпоксидную смолу ЭД-20 (ТУ 2252-003-62517430-01) с полиэтиленполиаминовым отвердителем. Чтобы склеивание получилось качественным, образцы прижимали друг к другу с помощью грузов и выдерживали при комнатной температуре в течение 24 часов.

Адгезия определяется как среднее отношение усилия отрыва склеенных образцов к площади участка отрыва (ГОСТ 27890-88). Максимальное усилие, при котором произошел отрыв плазмонапыленного покрытия, составило 5.4 кН. Адгезия плазмонапыленного Mg-ΓΑ покрытия составила порядка 14.0-14.9 МПа, что превышает средние показатели адгезии для гидроксиапатитовых плазмонапыленных покрытий, полученных другими способами. Увеличение адгезии связано с получением более равномерной структуры плазмонапыленного Mg-ΓΑ покрытия и присутствием в покрытии β-трикальцийфосфата, который возникает вследствие дестабилизации структуры гидроксиапатита ионами магния (Таблица 2).

Таким образом, выбранные технологические режимы электроплазменного напыления (подслой Ti: дисперсность - 100-150 мкм, время напыления - 10-12 с, ток дуги - 300 А, дистанция напыления - до 150 мм, расход плазмообразующего газа - 20 л/мин; слой Mg-ΓΑ: дисперсность - до 90 мкм; время напыления - 6-8 с, ток дуги - 300 А, дистанция напыления - до 50 мм, расход плазмообразующего газа - 20 л/мин) обеспечивают получение плазмонапыленного покрытия на основе порошка Mg-ΓΑ с повышенными адгезионными характеристиками. Кроме того, наличие в составе покрытия элементов Mg дестабилизирует структуру гидроксиапатита с образованием β-трикальцийфосфата, который обладает повышенными адгезионными характеристиками.

Исследования морфологии поверхности образцов проводились с помощью металлографического микроскопа МИМ-7. В результате исследования было определено, что плазмонапыленное Mg-ГА покрытие обладает развитой морфологией по всей поверхности, что обусловлено использованием подобранных технологических параметров при электроплазменном напылении, в частности дистанции напыления - до 50 мм и дисперсности порошка - до 90 мкм.

Таким образом, разработан способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, которое обладает развитой морфологией, повышенными значениями адгезионных характеристик за счет содержания в своей структуре магния, что будет способствовать увеличению срока службы готового изделия.

Способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, состоящий в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из порошка титана и формировании биоактивного слоя, отличающийся тем, что воздушно-абразивную обработку проводят с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 5 мин, затем осуществляют электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, а формирование биоактивного слоя производят электроплазменным напылением порошка Mg-ГА с дисперсностью до 90 мкм в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин.



 

Похожие патенты:
Изобретение относится к способам маркировки изделий, в частности культурных ценностей, а именно картин, скульптур, книг, антикварных изделий, с последующей их идентификацией и может быть использовано для защиты культурных ценностей от подделки, подлога и фальсификации.

Изобретение относится к металлическому листу с предварительным покрытием для применения в автомобилях, который имеет превосходную пригодность в контактной сварке, коррозионную стойкость и формуемость.
Изобретение относится к химической промышленности, а именно к пленкам и покрытиям, фотокаталитически активным в видимой области спектра солнечного излучения. Описано Фотокаталитическое покрытие в виде композиционного материала.

Изобретение относится к способу изготовления устройства для дозирования лекарства. Способ обработки компонента устройства для дозирования лекарства имеет по меньшей мере одну поверхность, входящую в контакт с лекарством в процессе хранения или применения устройства, и включает следующие этапы: получение указанного компонента и покрытие по меньшей мере одной из поверхностей методом плазменного осаждения для снижения осаждения лекарства на поверхность или разрушения лекарства, при котором по меньшей мере часть процесса плазменного осаждения осуществляют под контролем смещения постоянным током при фиксированном постоянном токе смещения для поддержания постоянной эмиссии электронов и постоянной плотности плазмы, причем на этапе плазменного осаждения компонент заземляют.

Изобретение относится к устройству для дозирования лекарства. Устройство включает по меньшей мере один металлический компонент, имеющий по меньшей мере одну неметаллическую поверхность, которая находится в контакте с лекарством при хранении или применении устройства, причем эта неметаллическая поверхность имеет поверхность контакта с нижележащим металлическим компонентом, содержащую металлофторидные и/или металлокарбидные соединения, и содержание кислорода в поверхности контакта, измеренное методом рентгеновской фотоэлектронной спектроскопии, составляет менее чем приблизительно 15 ат.%.

Изобретение относится к технологии полимерных материалов, в частности к модифицированию пористых материалов путем формирования покрытий. Из модифицированного полимерного пористого материала могут быть изготовлены детали для применения в различных областях науки и техники, например фитили для подъема углеводородных жидкостей за счет капиллярного эффекта, фильтроэлементы, матрица-носитель активных низкомолекулярных компонентов как части конструкций, несущие силовую нагрузку, например элементы крыла легкого самолета.

Изобретение относится к технологическим способам, используемым для комплексной защиты глазурованных, керамических, металлических поверхностей электротехнических изделий.

Изобретение относится к композиции для окрашивания катионным электроосаждением. Композиция содержит катионную эпоксидную смолу (А), модифицированную амином, блокированный изоцианатный отверждающий агент (В), гидрофобный агент (С), который является несшитой акриловой смолой, модификатор вязкости (D), являющийся частицами сшитой смолы со средним диаметром частицы от 50 до 200 нм, и нейтрализующую кислоту в водной среде.

Группа изобретений относится к способу обработки поверхности подложки (28) при помощи коронного электрического разряда, к устройству для его осуществления и подложке, обработанной способом по изобретению.

Изобретение относится к способу удаления одного или нескольких дополнительных покрытий с барьерного грунтовочного покрытия. Указанное барьерное грунтовочное покрытие содержит катализатор, расщепляющий пероксид водорода.

Изобретение относится к медицине. Описан способ получения покрытий на элементах эндопротезов крупных суставов человека, выполненных из титана и его сплавов, включающий помещение имплантата в ванну с раствором электролита, содержащего ионы Са и Р, подключение имплантата и вспомогательного электрода к источнику питания, охлаждение электролита теплообменником, при этом готовят электролит, для чего растворяют в дистиллированной воде гидроксид кальция Са(OH)2, затем добавляют метасиликат натрия пятиводного Na2SiO3×5H20 и перемешивают до образования белого дисперсного взвешенного осадка, затем добавляют натрий фосфорнокислый двузамещенный двенадцативодный Na2HPO4×12H2O и перемешивают до полного его растворения, причем для обработки титана марок ВТ1-0, Grade 2, 3, 4, электролит готовят из расчета массы сухого вещества в граммах на литр состава: Са(OH)2 - 1,6; Na2SiO3×5H2O - 8,0; Na2HPO4×12H2O - 5,0; а для обработки сплавов ВТ6 (Ti-6Al-4V) и Ti-6Al-7Nb исходный электролит, применяемый для титана марок ВТ1-0, Grade 2, 3, 4, разбавляют дистиллированной водой в соотношении 2 части электролита и 1 часть воды; а для защиты не предназначенных для обработки частей элементов эндопротезов на них наносят маскирующую изолирующую оснастку на основе поливинилсилоксанового силикона аддитивного отверждения, далее проводят микродуговое оксидирование в течение 10-30 мин в мягком анодно-катодном режиме с синусоидальной формой тока плотностью 0,1±0,02 А/см2, причем на первой минуте используют анодный режим включения при соотношении анодного и катодного токов не менее 10:1.
Изобретение относится к изделиям медицинского назначения, а именно к материалам покрытия имплантатов для травматолого-ортопедических и стоматологических операций.

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе.
Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03.

Изобретение относится к технологии получения кристаллического кремний-замещенного гидроксилапатита (Si-ГА), который может быть использован в ортопедии и стоматологии.

Изобретение относится к области медицины, в частности к способу получения Sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека.

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес.

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%; антибактериальной металлической добавки в количестве 0,5-5 вес.%; и биосовместимого тугоплавкого соединения в количестве остальное, при этом электроискровую обработку проводят при следующих условиях: 100 ≤ Ni ≤ 10000, 10 ≤ f ≤ 100000, 0,01 ≤ v ≤ 0,6, где Ni - мощность единичного импульсного разряда, Вт, f - частота импульсных разрядов, Гц, v - линейная скорость перемещения обрабатывающего электрода, м/мин.
Группа изобретений относится к медицине, конкретно к медицинскому импланту, имеющему, по меньшей мере на части его поверхности, покрытие, имеющее остеоиндуктивный и/или остеокондуктивный покрывающий слой на основе фосфата кальция, где антибиотический ингредиент, который слабо или плохо растворим в водной среде, покрывает остеоиндуктивный и/или остеокондуктивный покрывающий слой участками с пространствами между ними, оставленными свободными, на остеоиндуктивном и/или остеокондуктивном покрывающем слое.

Изобретение относится к медицине и заключается в способе нанесения биокерамических покрытий на имплантат. При осуществлении способа смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, наносят полученную суспензию на поверхность имплантата, сушат имплантат, проводят термообработку в условиях индукционного нагрева при потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 100±10 кГц и продолжительности термообработки 0,5-1,0 мин.
Изобретение относится к медицине и заключается в способе изготовления экзопротеза молочной железы, имеющего полимерную оболочку с рабочей поверхностью для прилегания к телу и желеобразный наполнитель.
Наверх