Способ получения ингибитора коррозии черных металлов для защиты нефтепромыслового оборудования

Изобретение относится к области защиты металлов от коррозии и может быть использовано в нефтедобывающей промышленности для защиты технологического оборудования и трубопроводов от коррозионных разрушений в водно-нефтяных средах. Способ включает взаимодействие диэтилентриамина с жирными кислотами таллового масла, конденсацию полученного продукта с параформальдегидом и изононилфенолом, затем продукт конденсации обрабатывают малеиновым ангидридом в количестве 0,1-1 моль в расчете на 1 моль используемого диэтилентриамина, а полученный продукт обрабатывают оксидом цинка в количестве 0,05-0,5 моль в расчете на 1 моль малеинового ангидрида для получения продукта общей формулы

где R - алкильный или алкиленовый радикал с числом атомов С820.

Технический результат: получение ингибитора с высокой степенью защиты черных металлов от коррозии (не менее 90%) при минимальных дозировках ингибитора до 10 ppm. 1 пр.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для защиты внутренних поверхностей нефтепромыслового технологического оборудования и трубопроводов от коррозионных разрушений в водно-нефтяных средах.

В настоящее время для ингибирования коррозии черных металлов в нефтедобывающей промышленности используются широкий набор ингибиторов различного химического строения, в том числе обладающих комплексным действием. Многочисленный класс ингибиторов обусловлен, прежде всего, различным водно-нефтяным составом месторождений углеводородов. Ухудшение растворимости (диспергируемости) ингибиторов в пластовых флюидах, понижению степени их совместимости с нефтью, низкая адгезия к поверхности защищаемого металла приводят к снижению защитного эффекта и высокому расходу ингибиторов. Поэтому создание новых ингибиторов, которые могли бы обеспечивать высокий защитный эффект при низком расходе, является актуальной задачей.

Известен состав для защиты нефтепромыслового оборудования от сероводородной и углекислотной коррозии, содержащий высшие жирные кислоты, продукт взаимодействия жирного амина с числом углеродных атомов С820 с окисью этилена и фосфорорганическим соединением или оксиэтилированный амин, неионогенное ПАВ и растворитель (RU 2166001, 11.04.2000).

Известен ингибитор коррозии металлов в водонефтяных сероводородсодержащих средах. Ингибитор коррозии в качестве активного вещества содержит продукт взаимодействия борной кислоты, диэтаноламина и смеси жирных кислот предельного и непредельного ряда с углеводородным радикалом С824, растворитель (RU 2207402, 16.01.2002).

Известные ингибиторы имеют низкую адгезию к защищаемому металлу, плохую диспергируемость в нефти, требуют повышенного расхода для обеспечения необходимого защитного эффекта.

Известен ингибитор коррозии металлов в минерализованных водных и водонефтяных средах, содержащих сероводород и углекислый газ, в состав которого входят жирные кислоты, азотсодержащее соединение, неионогенное ПАВ, продукт взаимодействия алкилзамещенных пиридинов с алкилбромидами, растворитель (RU 2530193, 04.03.2013). Недостатками данного ингибитора являются: во-первых, пониженная молекулярная масса, что увеличивает расход ингибитора, во-вторых, пониженная гидролитическая стойкость, что сокращает время защитного эффекта, в-третьих, повышенная токсичность за счет использования в составе трудноразлагаемых и токсичных пиридинов.

На основе анализа известного уровня техники перспективным представляется синтез ингибиторов коррозии на основе продуктов конденсации полиаминов, высших жирных кислот, замещенных фенолов, которые по комплексу показателей (диспергируемость в водонефтяных средах, защитный эффект, антиокислительные свойства и способность ингибировать асфальтосмолопарафиновые отложения), являются вполне приемлемыми для защиты от коррозии нефтепромыслового оборудования.

Наиболее близким по технической сущности и достигаемому результату являются производные оснований Манниха в качестве ингибиторов коррозии черных металлов, отвечающие общей формуле (RU 2344200, 10.04.2006)

где R - СН3, алкил или алкилен с числом атомов углерода С320;

R1 - алкил с числом атомов углерода С412, алкиларил C8H9;

R2 - Н, алкиларил С8Н9,

n - 1, 2, 3.

Основными недостатками указанного ингибитора коррозии является повышенный расход (0,2% или 2000 ppm), требуемый для обеспечения высокого защитного эффекта, а также способность образовывать труднорасслаиваемые устойчивые водонефтяные эмульсии, затрудняющие дальнейшую переработку.

Задачей изобретения является разработка способа получения ингибитора коррозии черных металлов для длительной защиты нефтепромыслового оборудования, обеспечивающего высокий защитный эффект (не менее 90%) при минимальных дозировках до 10 ppm.

Поставленная задача решается заявленным способом получения ингибитора коррозии черных металлов для защиты нефтепромыслового оборудования, который включает взаимодействие диэтилентриамина с жирными кислотами таллового масла, конденсацию полученного продукта с параформальдегидом и изононилфенолом, затем продукт конденсации обрабатывают малеиновым ангидридом в количестве 0,1-1 моль в расчете на 1 моль используемого диэтилентриамина, а полученный продукт обрабатывают оксидом цинка в количестве 0,05-0,5 моль в расчете на 1 моль малеинового ангидрида для получения продукта общей формулы

где R - алкильный или алкиленовый радикал с числом атомов С820.

В объеме вышеуказанной совокупности признаков достигается технический результат, поскольку при проведении процесса в заявленных условиях обеспечивается получение структуры ингибитора с высокой адгезией к металлу за счет полярной карбонильной группы, хорошей растворимостью в водонефтяных средах за счет гидрофильно-липофильных свойств органической соли цинка, что в свою очередь приводит к повышению защитного эффекта от коррозии, сокращению расхода реагента.

Не ограничивая себя определенной теорией, можно предположить следующее.

Повышение защитного эффекта от коррозии, вероятно, связано с более прочной адсорбцией молекулы ингибитора на поверхности металла с помощью введенных функциональных групп, обеспечивая ориентацию неполярного гидрофобного алифатического радикала C8-C20 для образования защитной пленки на поверхности металла. Полученный ингибитор относится к классу амфолитерных ПАВ с преобладанием катионных свойств. Положительно заряженный имидазолиновый фрагмент молекулы ингибитора блокирует активные центры коррозии на поверхности металла. Лучшая растворимость и/или диспергируемость ингибитора в водонефтяных средах за счет гидрофильно-липофильных свойств цинксодержащей соли также положительно сказывается на уменьшении расхода, так как хорошая растворимость ингибитора определяет возможность его переноса и доставки к поверхностям, требующим защиты.

В способе-прототипе полученный ингибитор характеризуется меньшим защитным эффектом за счет меньшей прочности связывания с поверхностью, образованием устойчивых труднорасслаиваемых водонефтяных эмульсий, что требует повышенного расхода ингибитора.

Все упомянутое выше принципиально отличает полученный ингибитор и способ его получения от ингибитора и способа получения, известного из прототипа.

Принципиально схема получения заявленного ингибитора коррозии состоит из четырех стадий.

В наиболее предпочтительном варианте способ можно осуществить при следующих параметрах на каждой из стадий.

Стадия 1. Взаимодействие жирной кислоты талового масла (ЖКТМ) с диэтилентриамином (ДЭТА) в мольном соотношении 1:1 в растворе нефтяного ксилола в присутствии макропористого сульфокислотного катионита при температуре 135-140°С до окончания отгонки 2 молей воды в виде азеотропа с нефтяным ксилолом.

Отделение катализатора декантацией.

Стадия 2. Конденсация продукта первой стадии с изононилфенолом и параформальдегидом, взятым в соотношении 1:1 по отношению к ДЭТА, используемому на 1-й стадии, при температуре 135-140°С до окончания отгонки 1 моля воды в виде азеотропа с нефтяным ксилолом.

Отгонка ксилола.

Стадия 3. Взаимодействие продукта 2-й стадии с малеиновым ангидридом в количестве 0,1-1 моль в расчете на 1 моль ДЭТА, используемому на 1-й стадии, при температуре 110-120°С в течение 2 ч.

Стадия 4. Взаимодействие продукта 3-й стадии с оксидом цинка в количестве 0,05-0,5 моль в расчете на 1 моль малеинового ангидрида, используемому на 3-й стадии, при температуре 130-140°С и выдержка реакционной смеси в таких условиях в течение 1 ч.

Предпочтительные параметры стадий связаны со следующим.

Использование макропористого сульфокислотного катионита снижает энергию активации процесса и позволяет проводить синтез при более низкой температуре. Температурный интервал 135-140°С на стадиях 1 и 2 связан с температурой кипения азеотропа ксилола с водой. Соотношения реагентов по стехиометрии. При более низкой температуре отгонка воды протекает медленно.

Проведение стадии 3 при температуре менее 110°С увеличивает время взаимодействия и снижает конверсию. Температура более 120°С нецелесообразна из-за возможности протекания побочных реакций. Выбор на 3 стадии соотношения более 1 моля малеинового ангидрида в расчете на 1 моль ДЭТА, взятом на 1 стадии, нецелесообразно из-за превышения стехиометрии и получения продукта, содержащего соли малеиновой кислоты. Выбор на 3 стадии соотношения менее 0,1 моля малеинового ангидрида в расчете на 1 моль ДЭТА, взятом на 1 стадии, нецелесообразно из-за снижения защитного эффекта от коррозии.

Проведение стадии 4 при температуре менее 130°С увеличивает время взаимодействия и снижает конверсию образования цинковой соли. Температура более 140°С нецелесообразна из-за возможности протекания побочных реакций. Выбор на 4 стадии соотношения более 0,5 моля оксида цинка в расчете на 1 моль малеинового ангидрида, взятом на 3 стадии, нецелесообразно из-за превышения стехиометрии и получения продукта, содержащего не прореагировавший оксид цинка. Выбор на 4 стадии соотношения менее 0,5 моля оксида цинка в расчете на 1 моль малеинового ангидрида, взятом на 3 стадии, нецелесообразно из-за снижения степени защиты от коррозии.

С целью улучшения технологических свойств продуктов (снижение вязкости и температуры застывания, а также улучшения сродства к среде использования) полученные продукты разбавляют (1:1 или 1:2 по массе) нефтяным ксилолом, осветительным или гидроочищенным керосином, спецтопливом ТС-1.

Ниже приведен конкретный пример, не ограничивающий, а лишь иллюстрирующий возможность осуществления изобретения.

Пример

Стадия 1. В трехгорлый реактор объемом 250 мл, снабженный механической мешалкой, насадкой Дина-Старка с обратным холодильником и термопарой, помещают 5 г макропористого сульфокислотного катионита и 0,05 моль (15,4 г) жирной кислоты талового масла (ЖКТМ), растворенной в 100 мл нефтяного ксилола. Затем постепенно дозируют 0,05 моль (5,1 г) диэтилентриамина (ДЭТА), не превышая температуру 50-60°С. После окончания дозировки смесь нагревают до температуры 135-140°С до окончания выделения не менее 0,1 молей (1,8 г) реакционной воды, после чего стадия считается завершенной. После понижения температуры в реакторе до 50-60°С катализатор отделяют от реакционной массы декантацией.

Стадия 2. В реакционную массу после отделения макропористого сульфокислотного катионита при температуре 40-50°С при перемешивании добавляют 0,05 моль (11,0 г) изононилфенола и мелкими порциями 0,05 моль (1,6 г) параформальдегида. Поднимают температуру в реакторе до 130-140°С и выдерживают смесь в реакторе до окончания выделения 0,05 моля (0,9 г) реакционной воды, затем производят отгонку ксилола, после чего стадия считается завершенной. После второй стадии реакционную смесь охлаждают до температуры 30-35°С при перемешивании.

Стадия 3. Добавляют 0,05 моль (4,6 г) малеинового ангидрида и поднимают температуру в реакторе до 110-120°С и выдерживают реакционную смесь в таких условиях в течение 2 ч. Понижают температуру в реакторе до 50-60°С.

Стадия 4. Не выключая перемешивания, добавляют 0,025 моль (1,6 г) оксида цинка. Температуру в реакторе доводят до 130-140°С и выдерживают реакционную смесь в таких условиях в течение 1 ч. Понижают температуру реакционной смеси в реакторе до 20-25°С. Синтез ингибитора считается завершенным.

Получают рабочий раствор ингибитора коррозии, растворяя полученный продукт в нефтяном ксилоле в соотношении продукт:ксилол 1:2.

Исследование свойств полученного ингибитора и его характеристики представлены ниже.

Определение защитного эффекта ингибитора коррозии гравиметрическим методом

Гравиметрическим методом оценивали скорость коррозии стальных образцов (металлических пластин из ст. 20) по изменению их веса после выдержки в агрессивной среде, содержащей и не содержащей ингибитор коррозии. Продолжительность каждой серии гравиметрических испытаний - 8 ч. В стеклянные ячейки заливали рабочий раствор 3% хлорида натрия и дозировали ингибитор коррозии (6, 9, 15 ppm). После этого завешивали образцы, обескислороживали воду путем пропускания тока азота в течение 30 мин, насыщали сероводородом до концентрации 100 мг/дм3 и начинали испытания. Образцы до и после испытаний обрабатывали в соответствии с требованиями ГОСТ 9.905. Величину защитного эффекта ингибиторов коррозии (Z) рассчитывали по формуле

где Vконтр - контрольная скорость коррозии стальных образцов в испытуемой среде (не содержащей ингибитор коррозии), г/м2ч;

Vинг - скорость коррозии стальных образцов в испытуемой среде, содержащей ингибитор коррозии, г/м2ч.

По результатам испытаний полученного по приведенному примеру ингибитора степень защиты металла от сероводородной коррозии составила при различных дозировках соответственно: 90,8% (6 ppm), 91,8% (9 ppm), 94,2% (15 ppm), что обеспечивает эффективную защиту от коррозии при дозировках 130-230 раз меньших, чем по прототипу (2000 ppm).

В соответствии с требованиями ОСТ 39-099-79 и ГОСТ 9.506 ингибитор может быть рекомендован к проведению опытно-промысловых (или стендовых) испытаний, если его защитное действие по результатам лабораторных испытаний составляет более 90%.

Таким образом, проведенные нами исследования показали, что ингибитор, полученный в соответствии с заявленным способом, обеспечивает повышенную степень защиты металла от коррозии (более 90%) при минимальном расходе (6-9 ppm).

Способ получения ингибитора коррозии черных металлов для защиты нефтепромыслового оборудования, включающий взаимодействие диэтилентриамина с жирными кислотами таллового масла, конденсацию полученного продукта с параформальдегидом и изононилфенолом, отличающийся тем, что продукт конденсации обрабатывают малеиновым ангидридом в количестве 0,1-1 моль в расчете на 1 моль используемого диэтилентриамина и затем обрабатывают оксидом цинка в количестве 0,05-0,5 моль в расчете на 1 моль малеинового ангидрида для получения продукта общей формулы

где R - алкильный или алкиленовый радикал с числом атомов С820.



 

Похожие патенты:

Изобретение относится к области защиты металлов от атмосферной коррозии с помощью ингибиторов и может быть использовано для временной защиты от коррозии изделий из черных и цветных металлов, а также деталей машин и оборудования при их транспортировании и хранении.

Изобретение относится к области защиты нефтепромыслового оборудования от коррозии, в том числе сероводородной и углекислотной, и может быть использовано в нефте- и газодобывающей промышленности.

Изобретение относится к области теплоэнергетики и может быть использовано для поддержания на тепловых электростанциях оптимального водно-химического режима ВХР пароводяного тракта, выполнения отмывки и консервации на топливосжигающих энергоблоках и парогазовых энергетических установках с обеспечением в заданных пределах величины pH рабочей среды и созданием на стенках тепловых поверхностей защитной магнетито-аминовой противокоррозионной пленки.

Изобретение относится к области теплоэнергетики и может быть использовано при организации водно-химического режима на основе комплексных аминосодержащих реагентов для пароводяного тракта энергоблока с барабанными котлами и, в частности, с котлами-утилизаторами применительно к энергоблокам с парогазовыми установками.

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов в минерализованных средах, содержащих сероводород, и может быть использовано в нефтяной отрасли.

Антифриз // 2540545
Изобретение относится к антифризам - низкозамерзающим охлаждающим жидкостям и может быть использовано для охлаждения двигателей внутреннего сгорания транспортных средств, специальной техники, а также в качестве теплоносителя в теплообменных аппаратах.
Изобретение относится к низкозамерзающим охлаждающим жидкостям и может быть использовано для охлаждения двигателей внутреннего сгорания машин и специальной техники, а также в качестве теплоносителя в теплообменных аппаратах.

Изобретение относится к области защиты черных металлов от сероводородной коррозии с помощью ингибиторов и может быть использовано для предотвращения коррозии газового и нефтепромыслового оборудования.
Изобретение относится к области химической технологии, в частности к низкозамерзающим охлаждающим жидкостям, и может быть использовано в качестве теплоносителя в системах охлаждения двигателей внутреннего сгорания, а также в оборудовании бытового и промышленного назначения.

Изобретение относится к битумным эмульсиям и может быть использовано для антикоррозионной защиты стали и в дорожном строительстве. Катионная битумная эмульсия для антикоррозионной защиты стали, включающая битум, эмульгатор КАДЭМ-ВТ, кубовой остаток ректификации бензола, соляную кислоту, пеназолин К, дополнительно содержит синергическую смесь ингибиторов коррозии из 5,6,7,8-тетрахлорхинозолина, диэтил-S-(6-хлорбензоксазолинон-2-ил-3-метил)дитиофосфата, при следующем соотношении компонентов, мас.%: битум 55-60; эмульгатор КАДЭМ-ВТ 2,9-4,5; кубовой остаток ректификации бензола 10-11; соляная кислота 0,6-0,8; (диэтил-S-(6-хлорбензоксазолинон-2-ил-3-метил)дитиофосфат 0,3-0,4; 5,6,7,8-тетрахлорхинозолин 0,4-0,5; пеназолин К 0,4-0,9; вода остальное.

Изобретение относится к области защиты от коррозии металлов, в частности к способам получения полимерных основ для составов, обеспечивающих надежную защиту в средах, содержащих растворенный сероводород или углекислый газ, обладающих высокой сорбционной активностью по отношению к металлическим поверхностям, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности для защиты технологического оборудования. Способ включает конденсацию алкоксилированного таллового жирного амина, получаемого реакцией таллового жирного амина с окисью этилена или пропилена, с ангидридом двухосновной органической кислоты из ряда, включающего: малоновую кислоту, янтарную кислоту, глутаровую кислоту, малеиновую кислоту, сибациновую кислоту, ортофталевую кислоту, при следующем соотношении компонентов, мас. %: талловый жирный амин 40-65; окись этилена или пропилена 15-33; ангидрид двухосновной органической кислоты остальное, полученный полупродукт эквимолярного раскрытия ангидрида двухосновной органической кислоты добавляют к избытку алкоксилированного таллового жирного амина при молярном соотношении алкоксилированного таллового жирного амина к упомянутому продукту, равном 3 : 2, с получением основы ингибитора коррозии в виде олигомерного продукта. По второму варианту способ осуществляют в присутствии основного катализатора. Технический результат - получение ингибиторов коррозии пролонгированного действия удобным способом из доступных нетоксичных сырьевых компонентов. 2 н.п. ф-лы, 1 табл., 15 пр.

Изобретение относится к защитным консервационным материалам для противокоррозионной защиты металлических изделий от воздействия окружающей среды. Композиция содержит тормозную жидкость "Томь" и ингибитор коррозии, при этом в качестве ингибитора коррозии она содержит 3,5-динитробензоат пиперидина в количестве от более 1,5 до 3,0 мас.%. Технический результат - повышение защитной способности тормозных жидкостей с сохранением достаточного уровня противокоррозионной защиты. 4 табл.

Изобретение относится к защите металлов от коррозии, а именно к ингибиторам коррозии и коррозионного растрескивания под напряжением (КРН) стальных трубопроводов. Ингибитор содержит компоненты при следующем соотношении, мас. %: соли высших алифатических кислот с щелочноземельными металлами 5-45; соли высших алифатических кислот с аминами 5-45; замещенный триалкоксисилан 25-75. Технический результат: разработка ингибитора, обеспечивающего при введении в грунтовочное покрытие эффективную защиту стали от коррозии и КРН. 3 з.п. ф-лы, 2 табл., 23 пр.

Изобретение относится к области защиты металлов от коррозии в сероводородных средах ингибиторами и может быть использовано для защиты стального оборудования в нефтяной отрасли. Способ включает добавление в минерализованную водно-нефтяную среду, содержащую сероводород, 2-метил-2-этил-5,7-ди-(1-метилбут-2-ен-1-ил)индолина в концентрации 25-200 мг/л. Технический результат: повышение степени защиты от коррозии до 86,25-95,5%. 1 табл., 3 пр.

Изобретение относится к области защиты металлов от коррозии, наводороживания и развития сульфатредуцирующих бактерий (СРБ) и может быть использовано в водно-солевых средах, содержащих СРБ. Способ включает введение в коррозионную среду ингибитора-бактерицида, при этом в качестве ингибитора-бактерицида используют органическое соединение - координационно-насыщенный комплекс кобальта с двумя перпендикулярно расположенными тридентатными лигандами - основание Шиффа 5-Br-салицилового альдегида и (S)-аминокислоты: аспарагина, глицина, глутамина или лейцина в количестве 1, 2, 5, 10 ммоль/л общей формулы где R - изменяющаяся часть (S)-аминокислоты. Технический результат: повышение коррозионной стойкости стали и расширение ассортимента ингибиторов-бактерицидов. 4 табл., 1 пр.

Изобретение относится к области защиты металлов от коррозии в сероводородных средах ингибиторами и может быть использовано для защиты от коррозии оборудования в нефтяной отрасли. Способ включает добавление в сероводородсодержащую среду ингибитора 2,5-бис[2Е(Z)-1-метилбут-2-ен-1-ил] фенил-1,4-диамина в концентрации 25-200 мг/л. Технический результат: повышение степени защиты стали от коррозии до 89,8-96,1 %. 1 табл., 3 пр.

Изобретение относится к области защиты от образования накипи и коррозии металлов теплоэнергетического оборудования и может быть использовано для защиты оборудования и трубопроводов пароводяных трактов тепловых электрических станций (ТЭС), тепловых сетей и подобных теплоэнергетических установок. Способ включает дозирование стеариламина пленкообразующего алифатического амина R-NH2, где R=C16H33-С18Н37, в пароводяные тракты теплоэнергетической установки, при этом осуществляют дозирование стериламина в виде водного мицелла-молекулярного раствора, полученного рециркуляцией в вихревом насосе упомянутого стеариаламина с обессоленной деаэрированной водой при температуре 60-63°C в течение 1 часа, независимо от режима работы теплоэнергетической установки периодически 1-4 раза в год, как на рабочем, так и на остановленном оборудовании. Технический результат: повышение эффективности защиты от образования накипи и коррозии оборудования. 3 табл., 10 ил.
Изобретение относится к области защиты от коррозии металлов и может быть использовано в теплоэнергетике для использования при эксплуатации энергетического оборудования и трубопроводов, в том числе тепловых и атомных электрических станций, для снижения скорости коррозии металлических поверхностей оборудования и трубопроводов как в период эксплуатации, так и в период простоя, в том числе на период профилактических и ремонтных работ. Способ включает ввод консерванта в движущийся поток рабочего тела и консервацию в течение времени, необходимого для сорбции консерванта в количестве не менее 3 мг/м2, при этом в качестве консерванта используют водную эмульсию смеси первичных пленкообразующих алифатических аминов C16-C18, имеющую свойства текучести и гомогенности, водную эмульсию смешивают с циркулирующим в контуре энергетической установки рабочим телом, причем осуществляют ввод водной эмульсии с температурой 31-50°C. Технический результат изобретения заключается в повышении технологичности, расширении технологических возможностей, сокращении времени проведения консервации. 2 з.п. ф-лы, 3 пр.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.
Наверх