Способ получения смазочной композиции

Настоящее изобретение относится к способу получения смазочной композиции, заключающемуся в измельчении, смешивании, ультразвуковом диспергирующем воздействии композиции, состоящей из смеси, содержащей вспученный вермикулит, модифицированный поверхностно-активными веществами, согласно изобретению смазочную композицию со вспученным вермикулитом дополнительно модифицируют электромагнитной активацией, проводимой в магнетронной микроволновой печи с частотой колебания поля 2450 МГц и мощностью 650÷1200 Ватт в течение 3÷5 минут в дисперсионной среде маловязкого индустриального масла И-5÷И-12 с маслорастворимыми ионоактивными ПАВ: по 0,25÷0,5 мас. % хлорпарафина и касторового сульфированного масла и 0,5÷1 мас.%, медно-оловянного стеарата с нагреванием до допускаемой температуры нагрева смазочной композиции 80÷90°C. Техническим результатом изобретения является повышение антифрикционных и противоизносных показателей в узлах трения, а следовательно, и технико-экономической эффективности работы машин. 4 пр., 1 табл., 3 ил.

 

Изобретение относится к смазочным композициям для использования в области машиностроения, а именно применения при эксплуатации механизмов и машин с целью повышения антифрикционной и противоизносной эффективности работы узла в условиях граничного трения.

Известен способ получения антифрикционной композиции, представляющий собой смесь, содержащую серпентин, вспученный вермикулит и углеводородное связующее [Патент №2487192 Российская Федерация. МПК С23С 26/00. Способ получения антифрикционной композиции / А.Л. Леонтьев, Л.Б. Леонтьев А.Л., Шапкин Н.П., Шкуратов А.Л.; заявитель и патентообладатель ФГАОУ ВПО Дальневосточный Федеральный университет. - №2011151404/02, заявл. 15.12.2011; опубл. 10.07.2013, Бюл. №19 - 12 с.]. Вспученный вермикулит модифицируют природным высокомолекулярным полисахаридом, предпочтительно 1%-ным раствором хитозана, растворенным в 2%-ной уксусной кислоте при следующем соотношении компонентов в составе смеси дисперсных твердых частиц: серпентин 80-93 мас.%, модифицированный вспученный вермикулит 7-20 мас.% Антифрикционную композицию получают путем смешивания упомянутых составляющих и связующего (дизельное топливо) в гидродинамическом кавитационном диспергаторе (с частотой 200 Гц, не менее 30 мин) с получением дисперсных твердых частиц крупностью 0,05-1 мм. Испытаниями стальной пары трения (ролики диаметром 45 мм, шириной 10 мм - сталь ХВГ) в течение 1 часа при скорости скольжения Vs=0,628 м/с и нагрузке Р=500 Н установлено, что лучшая композиция содержит 90% серпентина +10% вермикулита, модифицированного хитозаном, которая характеризуется коэффициентом трения - и износом - i=2,1 мг. При использовании данной композиции в стальной паре трения проявляются несколько эффектов, обеспечивающих повышение антифрикционных свойств трибосистемы: 1) скольжение относительно друг друга силикатных слоев модифицированного вермикулита; 2) образование антифрикционного слоя за счет внедрения в кристаллическую решетку стальной поверхности ионов кремния, магния и алюминия, при этом создается основа, на которой формируется металлокерамическое покрытие.

Основным недостатком этого способа является то, что модифицирование вспученного вермикулита по предложенной технологии характеризуется высокими коэффициентами трения (особенно когда содержание модифицированного вермикулита в композиции >10 мас. %). Кроме того, для уменьшения коэффициента трения в композицию дополнительно вводится серпентин (причем в большом количестве - 90 мас. %), который обладает более низкой энергией связи между слоями в сравнении с вермикулитом, но в 2-3 раза более высокой твердостью частиц по шкале Мооса, что приводит к повышенному износу пары трения.

Известен способ получения смазочного материала, содержащий модифицированный кремнийорганическим полимером вермикулит с 1,7-2% мас. привитым углеродом [А.с. 274291 СССР, МПК С10М 1/10. Способ получения смазочного материала / Я.М. Слободин и др. - №1216088 / 23-4; заявл. 09.11.1968; опубл. 24.06.1970. Бюл. №21 - 2 с.], заключающийся в механо-химической обработке органополисилоксивермикулита, размер частиц которого не превышает 10-12 мкм. Добавка модифицированного вермикулита в пределах 2-60% мас. в смазку увеличивает нагрузку заедания при испытании на шариковой машине до 100 кг.

Недостатком данного способа является отсутствие данных о смазывающих свойствах, обеспечивающих минимизацию трения и изнашивания (коэффициенты трения, износ при различной контактной нагрузке), так как нагрузка заедания характеризует только граничные условия работы узла трения, выше которых смазка не работает, поэтому невозможно судить о работоспособности смазочного материала в установившемся режиме граничного трения, тем более в жидких маслах.

Наиболее близким по технической сущности и достигаемому результату, т.е. прототипом. является способ получения смазок на основе органовермикулита [Гущин Л.А. Разработка и исследование пластичных смазок на основе органовермикулита: / Леонид Александрович Гущин. - Автореферат дис. на соискание уч. ст. к.т.н. М.: РГУ нефти и газа им. И.М. Губкина. 2001 - 24 с.], заключающийся в том, что модифицирование вермикулита производится в несколько этапов. Сначала проводится кислотная активация (5%-ной соляной или 10%-ной азотной кислотами) в реакторе объемом 700 мл при постоянном перемешивании 100 г вспученного вермикулита в течение 3 часов. По окончании процесса активированный вермикулит промывается водой и сушится. Затем в емкость с расчетным количеством раствора модификатора (четвертичная аммониевая соль - ARQUADMCB-50 в растворителе - бутилацетат с 10% концентрацией) засыпается подготовленный вспученный вермикулит и подвергается ультразвуковой обработке от 10 до 90 минут на приборе УЗДН-2Т. Полученная смесь отфильтровывается, выдерживается в термошкафу при температуре 90-95°C для удаления остатков растворителя. Для получения смазок модифицированный вермикулит вносится в дисперсную среду (масло МС-20), гомогенизируется с присадками (Хайтек-312 и ВСП-40) и добавками (графит, дисульфид молибдена). Для перевода вспученного вермикулита в гидрофобное (олеофильное) состояние его модифицирование проводят преимущественно по механо-химическому механизму на ионообменном уровне реакции между молекулами модификатора и поверхностью вермикулита, т.е. при непрерывном разрушении его кристаллической решетки в ультразвуковом диспергаторе в присутствии поверхностно-активных веществ (ПАВ).

Недостатком прототипа является то, что предложенная технология получения модифицированного вермикулита проводится по сложному «мокрому» способу, имеющему много этапов, и в результате может использоваться только в качестве загустителя пластичного смазочного материала, так как антифрикционные свойства смазки обладают посредственными показателями (диаметр пятна износа на шариковой машине трения составляет 0,7-0,9 мм против 0,53-0,57 мм для антифрикционных смазочных материалов). В связи с этим в композицию требуется добавлять антифрикционные, противоизносные и противозадирные присадки и добавки.

Техническим результатом изобретения является повышение антифрикционных и противоизносных показателей в узлах трения, а следовательно, и технико-экономической эффективности работы машин.

Указанный результат достигается тем, что в способе получения смазочной композиции, заключающемся в измельчении, смешивании, ультразвуковом диспергирующем воздействии композиции, состоящей из смеси, содержащей вспученный вермикулит, модифицированный поверхностно-активными веществами, согласно изобретению смазочную композицию с вспученным вермикулитом дополнительно модифицируют электромагнитной активацией, проводимой в магнетронной микроволновой печи с частотой колебания поля 2450 МГц и мощностью 650÷1200 Ватт в течение 2÷4 минут в дисперсионной среде маловязкого индустриального масла И-5÷И-12 с маслорастворимыми ионоактивными ПАВ: по 0,25÷0,5% мас. хлорпарафина (ХП) и касторового сульфированного масла (МКС) и 0,5÷1 мас.% медно-оловянного стеарата, с нагреванием до допускаемой температуры нагрева смазочной композиции 80÷90°C.

Для получения смазочного материала готовую смазочную композицию с размерами частиц модифицированного вермикулита в основном от 0,1 до 35 мкм добавляют в базовое масло в количестве 1,5÷2мас.%

Указанный технический результат достигается за счет того, что энергия электромагнитного поля (ЭМП) пропорциональна средней кинетической энергии движения атомов и молекул смеси, что приводит к периодически переменному выстраиванию дипольных моментов молекул в материале, которые формируют в межслоевом пространстве слюдяного пакета вермикулита дополнительные слои скольжения. Кроме того, заявляемый способ характеризуется высокими леофильными свойствами за счет применения указанных маслорастворимых ПАВ с повышенными адгезионными и диспергирующими характеристиками, которые способствуют ускорению реакций ионообмена (поляризации) для повышения эффекта адсорбции (осаждения) медно-оловянного стеарата на поверхностях измельченного минерала ультразвуковым полем в приборе УЗДН. Также электромагнитное поле существенно влияет на поляризацию фазовых границ раздела слюдяного пакета вермикулита: избыточный заряд на частицах дисперсной фазы вызывает взаимное отталкивание двойных электрических слоев вокруг частиц (расщепление) и приводит к снижению межфазной энергии, что способствует повышению антифрикционных свойств модифицированного вермикулита.

Изобретение поясняется чертежами, где на фиг. 1 изображен график изменения коэффициентов трения в зависимости от контактной нагрузки Р в стальной паре трения при использовании смазочных композиций: - с модифицированным вермикулитом, полученным механохимическим способом (ХП+МКС) и - с модифицированным вермикулитом, полученным механохимическим способом и дополнительно ЭМП; на фиг. 2. даны закономерности распределения дисперсий частиц: - с модифицированным вермикулитом, полученным механохимическим способом (ХП+МКС) и - с модифицированным вермикулитом, полученным механохимическим способом и дополнительно ЭМП; на фиг. 3 - копия фотографии поверхности трения.

Критерием сведений, подтверждающих возможность осуществления изобретения, является оценка антифрикционных и противоизносных свойств новых смазочных композиций на физической модели. Модель представляет собой пару трения: ролик-ролик диаметром 45 мм и шириной 10 мм, изготовленную из улучшенной стали 45 с твердостью НВ 230. Испытания проводились на машине трения СМТ-1 при одинаковых скоростях скольжения V=1 м/с и диапазонах контактных нагрузок Р=0,2÷0,6 кН. Износ замерялся по пятну контакта роликов при пути трения 10 км.

Пример 1

Механически измельченный вспученный вермикулит фракции менее 76 мкм химически поляризуют путем внесения его в количестве 15% мас. в диспергирующую среду масла И-8 с добавлением ионоактивных маслорастворимых ПАВ, состоящих из хлорпарафина и касторового сульфированного масла - 0,5% мас. и добавляют стеараты солей меди и олова в количестве 1% мас. Полученную смесь интенсивно активируют механическим перемешиванием и диспергируют в ультразвуковом поле на приборе УЗДН с частотой колебания 22 кГц и амплитудой колебания 20 мкм в течение 10 минут. Затем смазочную композицию с вермикулитом подвергают воздействию электромагнитного поля в магнетронной микроволновой печи с частотой колебания 2450 МГц и мощностью 650 Ватт в течение 4 минут, сопровождающемуся разогревом до 80-90°C. Готовую смазочную композицию с размерами частиц модифицированного вермикулита в основном от 0,1 до 35 мкм добавляют в базовое масло МС-20 в количестве 1,5-2 мас.% и тем самым получают смазочный материал.

Результат испытаний: средняя площадь износа при Р=0,6 кН равна S=2,18 мм2. Функциональная зависимость (полином) коэффициента трения - от нагрузки - Р приведена на фиг. 1.

Для сравнения на фиг. 1 приведена закономерность от Р испытуемой модели по известному способу прототипа получения смазочных композиций, полученных только по механо-химическому механизму, но не обработанных электромагнитным полем, который имеет более высокие коэффициенты трения и большие площади износа - S=2,55 мм2 при Р=0,6 кН, что выше на 21,5%.

По результатам испытаний установлено, что способ получения смазочной композиции по примеру 1 увеличивает антифрикционность и износостойкость. Улучшение рассматриваемых триботехнических показателей обуславливается определенной дисперсностью частиц модифицированного вермикулита (фиг. 2).

На фотографиях поверхностей трения обнаружены частицы вермикулита (фиг. 3). Это положительный фактор, который свидетельствуют об образовании антифрикционного слоя за счет адгезии модифицированного вермикулита в кристаллическую решетку стальной поверхности.

Пример 2

Пример 2 выполнен аналогично примеру 1 и отличается только параметрами воздействия электромагнитного поля в магнетронной микроволновой печи с частотой колебания 2450 МГц, но с мощностью 1200 Ватт в течение 2 минут, сопровождающегося разогревом смазочной композиции до 80-90°C. Готовая смазочная композиция имеет основные размеры частиц модифицированного вермикулита в тех же пределах от 0,1 до 35 мкм, что и в примере 1. Результат испытаний эквивалентен примеру 1, разница состоит в пределах статистической ошибки (2-3) %.

По результатам испытаний установлено, что энергия (Вт·мин), определяемая произведением мощности электромагнитного поля (Вт) на время воздействия (мин), является постоянной величиной, определяемой допускаемой температурой нагрева смазочной композиции до 80-90°C.

Пример 3 и 4

Примеры 3-4 выполнены аналогично примеру 1 и отличаются только типом базового масла и смазки, а именно: пример 3 - масло И-40 (индустриальное масло); пример 4 - смазка консистентная: литол 24.

Основные триботехнические показатели пары трения ролик-ролик (сталь 45 с твердостью НВ 230) при контактной нагрузке Р=0,4 кН и скорости V=1 м/с, полученные по примерам 1-4 в сравнении с прототипом, представлены в таблице.

Таким образом, предложенный способ получения смазочной композиции с модифицированным вермикулитом позволяет получить смазочные материалы с более высокими антифрикционными и противоизносными свойствами, которые уменьшают изнашивание трущихся поверхностей, и тем самым увеличивают долговечность работы узла трения, технико-экономическую эффективность работы машин.

Способ получения смазочной композиции, состоящей из смеси, содержащей вспученный вермикулит, модифицированный поверхностно-активными веществами, заключающийся в измельчении, смешивании, ультразвуковом диспергирующем воздействии упомянутой композиции при определенном соотношении компонентов, отличающийся тем, что смазочную композицию со вспученным вермикулитом дополнительно модифицируют электромагнитной активацией, проводимой в магнетронной микроволновой печи с частотой колебания поля 2450 МГц и мощностью 650÷1200 Ватт в течение 2÷4 минут в среде маловязкого индустриального масла И-5÷И-12 с маслорастворимыми ионоактивными ПАВ: по 0,25÷0,5 мас.% хлорпарафина и касторового сульфированного масла и 0,5÷1 мас.% медно-оловянного стеарата с нагреванием до допускаемой температуры нагрева смазочной композиции 80÷90°С.



 

Похожие патенты:

Настоящее изобретение относится к часам, включающим первую подложку, вторую подложку, средство с низким трением для снижения коэффициента трения и износа первой подложки относительно второй подложки, при этом по меньшей мере одна из указанных подложек покрыта указанным средством с низким трением, содержащим покрытие, включающее разветвленные полимерные щетки, набухшие под воздействием захваченного растворителя.
Изобретение относится к модифицированию смазочных материалов, в частности к получению добавок к моторным маслам, и может быть использовано для повышения износостойкости трущихся деталей.
Настоящее изобретение относится к способу получения композиции металлокомплексной консистентной смазки, включающему стадии: (i) приготовления суспензии, содержащей базовое масло, воду, металлсодержащее основание и комплексующий реагент, где массовое соотношение вода: твердое вещество в суспензии находится в диапазоне от 0,15:1 до 1,5:1; (ii) приложения к суспензии усилия сдвига при частоте усилия сдвига по меньшей мере 1000000 с-1; (iii) добавления суспензии, полученной на стадии (ii), к насыщенной или ненасыщенной жирной кислоте С10-С24 или ее производному для осуществления процесса омыления, причем процесс омыления проводится при температуре по меньшей мере 80°C; (iv) удаления воды из продукта омыления, образовавшегося на стадии (iii); (v) нагревания продукта, полученного на стадии (iv), до температуры в диапазоне от 190°C до 230°C и (vi) охлаждения продукта, полученного на стадии (v), до температуры в диапазоне от 200 до 150°C, с получением композиции металлокомплексной консистентной смазки.

Настоящее изобретение относится к рабочей жидкости для теплообменного устройства, содержащей i) СО2, в качестве хладагента, и ii) композицию смазывающего вещества на основе сложных эфиров полиолов со значением коэффициента вязкости 130 или выше, содержащую смесь сложных эфиров формулы I, где n представляет собой целое число от 1 до 20, каждый R независимо представляет собой алкилкарбонил с 3-12 атомами углерода, каждый R1 выбран независимо и представляет собой либо группу R, либо заместитель формулы II, и где по меньшей мере 50% всех групп R в соединениях формулы I, присутствующих в рабочей жидкости, представляют собой н-пентаноил, и где композиция смазывающего вещества на основе сложных эфиров полиолов ii) содержит: a) от 20 до 45 масс.

Настоящее изобретение относится к способу приготовления смазочной композиции с нерастворимыми присадками, в процессе которого ее под давлением N продавливают с расходом Gв зазор между наружными и внутренними обоймами нескольких последовательно расположенных в статоре камеры для обработки вращающихся с частотой W подшипников качения, при этом после предварительного перемешивания ее компонентов в камеру для обработки подают инертный газ, упомянутые статор и подшипники нагревают до температуры t°=(0,5…0,7)t°к, где t°к - температура каплепадения смазочной композиции, подшипники приводят во вращение с частотой W=(0,01...0,03) Wдоп, где Wдоп - предельно допустимая частота их вращения, смазочную композицию продавливают под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин через n=1…9 подшипников, к которым прикладывают давление P=n(0,06…0,60)Qдоп, где Qдоп - предельная допустимая статическая нагрузка на один подшипник, через подшипники смазочную композицию продавливают 3…5 раз при указанных значениях температуры t°, расхода G, давлений N и P.

Настоящее изобретение относится к способу повышения термоокислительной стабильности смазочных масел, по которому пробы смазочного масла термостатируют нагреванием в герметичном стакане без перемешивания в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую при каждом термостатировании новой пробы ступенчато повышают в диапазоне температур, определяемых назначением смазочного масла, после нагревания проводят отбор и испытание термостатированных проб на сопротивляемость окислению, при этом отбирают пробу постоянной массы, которую затем нагревают в присутствии воздуха с перемешиванием в течение установленного времени в зависимости от базовой основы смазочного масла при постоянной температуре и постоянной скорости перемешивания, окисленные пробы фотометрируют, определяют коэффициент поглощения светового потока, строят графическую зависимость изменения параметра оценки термоокислительной стабильности от температуры термостатирования, по которой определяют оптимальную температуру термостатирования, обеспечивающую наибольшее сопротивление окислению, отличающемуся тем, что критерием оценки термоокислительной стабильности смазочнного масла принимают ресурс работоспособности термостатированного масла, причем при испытании каждой новой термостатированной пробы на сопротивляемость окислению отбирают пробу окисленного масла через равные промежутки времени, фотометрированием определяют коэффициент поглощения светового потока, строят графические зависимости коэффициента поглощения светового потока от времени окисления термостатированных масел при каждой температуре термостатирования, по которым определяют время достижения коэффициента поглощения светового потока выбранного значения для каждого окисленного термостатированного масла при разных температурах, строят графическую зависимость времени достижения выбранного значения коэффициента поглощения светового потока окисленных термостатированных масел от температуры термостатирования, и по точке этой зависимости с максимальной ординатой, характеризующей ресурс работоспособности, определяют температуру термостатирования, обеспечивающую наибольшее сопротивление окислению.

Настоящее изобретение относится к способу получения пластичной смазки путем смешения загущающего агента и отработанного моторного масла, при этом загущающий агент, измельченный в электромагнитном измельчителе, имеет размер частиц не более 1 мкм, получен методом ферритизации из отходов гальванических производств при t = 800-900ºС в течение 1-1,5 часа в соотношении 40:60%.
Настоящее изобретение относится к способу повышения износостойкости пар трения путем обработки смазочного материала, работающего в узлах трущихся деталей, при этом обработку смазочного материала осуществляют непосредственно в трибоузле, при этом на одну трущуюся поверхность детали трибоузла подают постоянный ток положительной полярности, регулируемый по величине от 100 до 300 мкА, который через слой смазочного материала и поверхность контрдетали трибоузла образует замкнутую цепь, при этом подачу тока через трибоузел осуществляют от источника питания, соединенного с потенциометрами и регулятором величины и полярности тока.

Настоящее изобретение относится к способу получения магнитного масла, включающему обработку магнетита в диэфире карбоновой кислоты в присутствии водного раствора 12-оксистеариновой кислоты или 12-гидрокси-Δ9-октадеценовой кислоты при нагревании до температуры выпаривания воды с последующей термообработкой смеси при 110-180°C и охлаждением полученного масла, содержащего магнетит - 15-30 масс.%, олигоэфир, полученный на основе 12-оксистеариновой кислоты или 12-гидроки-Δ9-октадеценовой кислоты 10-40 масс.% и диэфир карбоновой кислоты - остальное, отличающемуся тем, что полученную смесь подвергают давлению 100-150 МПа с одновременным нагревом в течение 3-17 ч с последующим снятием давления и дальнейшей термообработкой в течение 5-20 ч.
Изобретение относится к смазочному составу, включающему смазочную среду и продукт дегидратации гидратов природных минералов или смеси природных минералов, или синтезированных гидратов, в котором продукт дегидратации, включающий оксиды MgO, и/или SiO2, и/или Al2O3, и/или СаО, и/или Fe2O3, и/или K2O, и/или Na2O, получен после удаления конституционной воды и разрушения кристаллической решетки при температуре от 350 до 900°С.

Настоящее изобретение относится к триботехническому составу, характеризующемуся тем, что он выполнен в виде композиции, составленной из природных минералов, полученных при измельчении керна, взятого из нескольких скважин с разной глубины, при этом композиция содержит природные минералы при следующем соотношении компонентов, мас.%: Антигорит 5-7; Лизардит 1-3; Тремолит 1-5; Хлорит 23-35; Тальк 26-38; Карбонат 22-26; Магнетит 1-3; Примеси 1-3, причем триботехнический состав содержит субмикронных частиц не более 20 мас.% порошка и частицы размером не более 15 мкм.

Настоящее изобретение относится к присадке к приработочному маслу для обкатки двигателя внутреннего сгорания, содержащей минеральное масло, порошкообразный наполнитель и поверхностно-активные вещества, при этом в качестве порошкообразного наполнителя использован серпентин с размером частиц 10 мкм, при этом указанные компоненты взяты в следующих соотношениях, мас.

Настоящее изобретение относится к способу получения алмазосодержащей смазочной композиции путем механического смешения исходного масла с растворенным в нем поверхностно-активным веществом и предварительно обезвоженного вакуумной сушкой детонационного алмазосодержащего углерода в количестве 5-10 мас.% при 80-110°C, при этом в качестве поверхностно-активного вещества используют катионное азотсодержащее поверхностно-активное вещество в количестве 2-10% от массы детонационного алмазосодержащего углерода, а после смешения осуществляют выдержку не менее 60 мин для удаления избытка воздуха с последующей обработкой композиции на виброкавитационном гомогенизаторе при температуре 80-110°C и подачей ее на сепаратор, причем композицию подают на рабочую поверхность ротора виброкавитационного гомогенизатора не более 0,5 г/см2·с при скорости вращения ротора не менее 15 м/с.

Настоящее изобретение относится к твердосмазочной композиции, содержащей мелкодисперсную смесь природных минералов от 1 до 5 мкм, включающую серпентин и тальк, дополнительно введены мел, каолин и бура при следующем соотношении компонентов, мас.%: мел - 10-15, бура - 10-15, каолин - 5-20, тальк - 5-15, серпентин - остальное.

Настоящее изобретение относится к способу приготовления смазочной композиции с нерастворимыми присадками, в процессе которого ее под давлением N продавливают с расходом Gв зазор между наружными и внутренними обоймами нескольких последовательно расположенных в статоре камеры для обработки вращающихся с частотой W подшипников качения, при этом после предварительного перемешивания ее компонентов в камеру для обработки подают инертный газ, упомянутые статор и подшипники нагревают до температуры t°=(0,5…0,7)t°к, где t°к - температура каплепадения смазочной композиции, подшипники приводят во вращение с частотой W=(0,01...0,03) Wдоп, где Wдоп - предельно допустимая частота их вращения, смазочную композицию продавливают под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин через n=1…9 подшипников, к которым прикладывают давление P=n(0,06…0,60)Qдоп, где Qдоп - предельная допустимая статическая нагрузка на один подшипник, через подшипники смазочную композицию продавливают 3…5 раз при указанных значениях температуры t°, расхода G, давлений N и P.
Изобретение относится к железнодорожному транспорту. Способ защиты от бокового износа головки рельса заключается в том, что на боковую поверхность головки рельса на криволинейных участках пути и зонах стрелочных переводов наносят смазочную композицию на основе органического связующего, включающую в себя твердосмазочный материал в виде диспергированного порошка серпентинита и комбинацию слоистых и металлоплакирующих компонентов в виде порошков графита, дисульфида молибдена и порошков мягких металлов и/или сплавов - алюминия, олова, цинка, меди, бронзы.
Настоящее изобретение относится к рельсовой смазке, содержащей мазут, канифоль, минеральное масло или смесь минеральных масел, при этом дополнительно включен асбест хризотиловый и соотношение входящих в рельсовую смазку компонентов поддерживают следующим, мас.%: мазут 5-50; канифоль 5-40; асбест хризотиловый 0,01-0,02; минеральное масло или смесь минеральных масел до 100.
Настоящее изобретение относится к смазке для обработки металлов давлением, содержащей мыло щелочного металла с влажностью 10-20 мас.%, при этом она дополнительно содержит нанотрубки графена со средним размером частиц 10-30 нм, модифицированные Mg(NO3)2×6H2O, причем весовое соотношении частиц графена и добавки составляет 1:1, или алюминиевую пудру с размером частиц 1-2 мкм, при следующем соотношении компонентов, масс.%: нанопорошок графена - 1-1,5 или алюминиевая пудра - 2,5-5,5; мыло щелочного металла с влажностью 10-20 мас.% - остальное.
Настоящее изобретение относится к твердому смазочному материалу для абразивной обработки, содержащему стеариновую кислоту, дисульфид молибдена, при этом он дополнительно содержит ультрадисперсный порошок диатомита, пропитанный минеральным маслом с поверхностно-активными веществами и химически-активными присадками и ультрадисперсный порошок алмазнографитовой шихты при следующем соотношении компонентов, масс.%: порошок диатомита - 15-25; дисульфид молибдена - 10-15; порошок алмазографитовой шихты - 0,1-1; стеариновая кислота - остальное.
Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида алюминия, при этом она дополнительно содержит линолевую кислоту при следующем соотношении компонентов, мас.%: хлорфторуглеродное масло 6-8 низкомолекулярный полиэтилен 1-2 минеральное масло 11-14 высокодисперсный порошок   смеси продукта термического восстановления 15-18 лейкоксена и карбида кремния   или нитрида алюминия   линолевая кислота 16,5-31 стеариновая кислота остальное, при этом она содержит смесь продукта термического восстановления лейкоксена и карбида кремния или нитрида алюминия, взятых в соотношении, равном 0,5-1:1, соответственно.

Изобретение относится к области нефтехимии, в частности к углеводородным составам, применяемым для защиты от атмосферных воздействий, а также от воздействия плесневых грибов изделий и конструкций. Предлагается защитный воск, включающий осадок, образующийся на стенках нефтяных трубопроводов при транспортировке нефти, полиэтиленовый воск ПВ-200, нафтенат меди и масло минеральное с вязкостью при 40°С 26-35 мм2/с, при следующем соотношении компонентов, мас.%: полиэтиленовый воск ПВ-200 2,0-4,0 нафтенат меди 0,05-0,10 масло минеральное с вязкостью при 40°С 26-35 мм2/с 10,0-15,0 осадок, образующийся на стенках нефтяных трубопроводов при транспортировке нефти до 100 Предлагаемый воск может быть использован для защиты от атмосферного воздействия и плесневых грибов изделий и конструкций из металла, дерева, тканей, бумаги при повышенной температуре и влажности. Также в составе защитного воска нет дефицитных продуктов, а содержатся доступные сырьевые компоненты, в частности, используемый нефтяной осадок, образующийся на стенках нефтяных трубопроводов при транспортировке нефти, является нефтяным отходом и не требует дополнительной обработки, таким образом снижаются затраты на изготовление воска. 2 табл.
Наверх