Система и способ воплощения уменьшения яркости, проводимого на основе сигнала сети, твердотельного осветительного модуля

Изобретение относится к управлению твердотельными осветительными устройствами. Техническим результатом является возможность уменьшения яркости света, выдаваемого СИДами на основе напряжения сети. Результат достигается тем, что система для уменьшения яркости, проводимого на основе напряжения сети, твердотельного осветительного модуля включает в себя трансформатор, схему измерения напряжения сети и схему обработки. Трансформатор включает в себя первичную обмотку, соединенную с цепью первичной обмотки, и вторичную обмотку, соединенную с цепью вторичной обмотки, причем цепи первичной и вторичной обмоток разделены изолирующей гильзой. Схема измерения напряжения сети принимает выпрямленное напряжение сети из цепи первичной обмотки и генерирует сигнал измерения напряжения сети, указывающий амплитуду выпрямленного напряжения сети. Схема обработки принимает сигнал измерения напряжения сети из схемы измерения напряжения сети через изолирующую гильзу и выдает опорный сигнал уменьшения яркости в цепь вторичной обмотки в ответ на сигнал измерения напряжения сети. Свет, выдаваемый твердотельным осветительным модулем, соединенным с цепью вторичной обмотки, регулируется в ответ на опорный сигнал уменьшения яркости, выдаваемый схемой обработки. 2 н. и 13 з.п. ф-лы, 5 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение, в общем, относится к управлению твердотельными осветительными устройствами. Более конкретно, различные предлагаемые способы и устройства, описываемые здесь, относятся к воплощению уменьшения яркости, проводимого на основе сигнала сети, твердотельного осветительного модуля.

ХАРАКТЕРИСТИКА ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

Технологии цифрового освещения, т.е. освещения на основе полупроводниковых источников света, таких, как светоизлучающие диоды (СИДы), предлагают жизнеспособную альтернативу традиционным флуоресцентным лампам, газоразрядным лампам высокой интенсивности и лампам накаливания. Функциональные преимущества и выгоды СИДов включают в себя высокую эффективность преобразования энергии и оптическую эффективность, долговечность, пониженные расходы на эксплуатацию и многое другое. Недавние достижения в технологии СИДов обеспечили эффективные и стойкие к внешним воздействиям источники полноспектрального освещения, которые позволяют получить множество эффектов освещения во многих приложениях.

Чтобы модифицировать приложения, связанные с модулями СИДов, в обычных приборах наружного освещения нужно заменить традиционный электромагнитный балласт, предусматривающий понижение напряжения сети, например, посредством использования схемы возбуждения СИДов, подсоединенной между источником напряжения сети и модулем СИДов. Чтобы создать возможность уменьшения яркости света, выдаваемого СИДами на основе напряжения сети (эта возможность используется в приложениях, связанных с обычным уменьшением яркости посредством электромагнитных балластов), схема возбуждения СИДов замеряет напряжение сети и понижает выходной ток на основе измеренного напряжения. Схема возбуждения СИДов может включать в себя силовой трансформатор с цепями первичной обмотки и вторичной обмотки, разделенными изолирующей гильзой. Поэтому информация, касающаяся пониженного напряжения сети на той стороне изолирующей гильзы, где находится первичная обмотка, должна быть послана через изолирующую гильзу в контроллер на той стороне изолирующей гильзы, где находится вторичная обмотка.

Таким образом, в данной области техники существует потребность в методе уменьшения яркости посредством сети с использованием простых схем для измерения напряжения сети и передачи информации об уменьшении яркости посредством сети в контроллер через изолирующую гильзу.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩЕСТВА ИЗОБРЕТЕНИЯ

Данное изобретение направлено на разработку новых устройства и способа для понижения напряжения сети с использованием схем для измерения пониженного напряжения сети на той стороне схемы возбуждения СИДов, где находится первичная обмотка, и точной передачи информации о пониженном напряжении сети в контроллер на той стороне схемы возбуждения СИДов, где находится вторичная обмотка, через изолирующую гильзу. C помощью информации о пониженном напряжении сети можно воплотить различные алгоритмы понижения тока модуля СИДов.

Вообще говоря, в одном аспекте, система для воплощения уменьшения яркости, проводимого на основе напряжения сети, твердотельного осветительного модуля включает в себя трансформатор, схему измерения напряжения сети и схему обработки. Трансформатор включает в себя первичную обмотку, соединенную с цепью первичной обмотки, и вторичную обмотку, соединенную с цепью вторичной обмотки, причем первичная обмотка и вторичная обмотка разделены изолирующей гильзой. Схема измерения напряжения сети принимает выпрямленное напряжение сети из цепи первичной обмотки и генерирует сигнал измерения напряжения сети, указывающий амплитуду выпрямленного напряжения сети. Схема обработки принимает сигнал измерения напряжения сети из схемы измерения напряжения сети через изолирующую гильзу и выдает опорный сигнал уменьшения яркости в цепь вторичной обмотки в ответ на сигнал измерения напряжения сети. Свет, выдаваемый твердотельным осветительным модулем, соединенным с цепью вторичной обмотки, регулируется в ответ на опорный сигнал уменьшения яркости, выдаваемый схемой обработки.

В еще одном аспекте, способ обеспечения уменьшения яркости, проводимого на основе сигнала сети, модуля светоизлучающих диодов (СИДов) заключается в том, что: генерируют сигнал измерения напряжения сети, указывающий амплитуду выпрямленного напряжения сети, из цепи первичной обмотки, соединенной с первичной обмоткой силового трансформатора; передают сигнал измерения напряжения сети через изолирующую гильзу, соответствующую силовому трансформатору; генерируют сигнал обратной связи по уменьшению яркости в цепи вторичной обмотки, соединенной с вторичной обмоткой силового трансформатора, на основе, по меньшей мере - частично, переданного сигнала измерения напряжения сети. Сигнал обратной связи по уменьшению яркости передают из цепи вторичной обмотки через изолирующую гильзу в цепь первичной обмотки. Ток возбуждения модуля СИДов, выдаваемый цепью вторичной обмотки, затем регулируют на основе сигнала обратной связи по уменьшению яркости, переданного в цепь первичной обмотки.

В еще одном аспекте, схема возбуждения на основе сигнала сети для уменьшения яркости модуля СИДов включает в себя трансформатор, имеющий первичную обмотку и вторичную обмотку, цепь первичной обмотки, соединенную с первичной обмоткой трансформатора, цепь вторичной обмотки, соединенную с вторичной обмоткой трансформатора, и схему управления уменьшением яркости. Цепь первичной обмотки включает в себя выпрямитель напряжения, выполненный с возможностью выпрямления пониженного напряжения сети. Конфигурация цепи вторичной обмотки обеспечивает выдачу тока возбуждения, предназначенного для возбуждения модуля СИДов, и включает в себя средство управления выходным током. Цепь вторичной обмотки отделена от цепи первичной обмотки изолирующей гильзой. Схема управления уменьшением яркости включает в себя: схему измерения напряжения сети, конфигурация которой обеспечивает генерирование сигнала измерения напряжения сети, указывающего амплитуду выпрямленного напряжения сети; оптический вентиль, выполненный с возможностью электрической связи через изолирующую гильзу; и микропроцессор, выполненный с возможностью приема сигнала измерения напряжения сети из схемы измерения напряжения сети через оптический вентиль, генерирование опорного сигнала тока в ответ на сигнал измерения напряжения сети и выдачу опорного сигнала тока в средство управления выходным током. Средство управления выходным током генерирует сигнал обратной связи по уменьшению яркости на основе сравнения опорного сигнала тока и тока возбуждения и передает сигнал обратной связи по уменьшению яркости в цепь первичной обмотки через изолирующую гильзу. Цепь первичной обмотки регулирует входной сигнал, подаваемый в трансформатор, в ответ на сигнал обратной связи по уменьшению яркости, тем самым регулируя ток возбуждения в цепи вторичной обмотки.

В том смысле, в каком он употребляется в целях, преследуемых данным изобретением, термин «СИД» следует понимать как охватывающий любой электролюминесцентный диод или иного типа систему на основе инжекции и перехода носителей заряда, выполненную с возможностью генерирования излучения в ответ на электрический сигнал. Таким образом, термин «СИД» охватывает - но не в ограничительном смысле - различные структуры на основе полупроводников, которые излучают свет в ответ на ток, - светоизлучающие полимеры, органические светоизлучающие диоды (ОСИДы), электролюминесцентные полоски и т.п. В частности, термин «СИД» относится к светоизлучающим диодам всех типов (включая полупроводниковые и органические светоизлучающие диоды), конфигурация которых может обеспечивать генерирование излучения в одном или и более из спектра инфракрасного излучения, спектра ультрафиолетового излучения и различных участков спектра видимого излучения (в общем случае - включая длины волн излучения от приблизительно 400 нанометров до приблизительно 700 нанометров). Некоторые примеры СИДов включают в себя - но не в ограничительном смысле - различные типы СИДов инфракрасного диапазона, СИДов ультрафиолетового диапазона, СИДов красного цвета свечения, СИДов синего цвета свечения, СИДов зеленого цвета свечения, СИДов желтого цвета свечения, СИДов янтарно-желтого цвета свечения, СИДов оранжевого цвета свечения и СИДов белого цвета свечения.

Например, одно воплощение СИДа, выполненный с возможностью генерирования, по существу, белого света (например, СИДа белого цвета свечения), может предусматривать некоторое количество кристаллов, соответственно обуславливающих излучение разных спектров электролюминесценции, которые в совокупности смешиваются, формируя, по существу, белый свет. В еще одном воплощении, СИД белого цвета свечения моет быть связан с кристаллическим люминофором, который преобразует люминесценцию, имеющую первый спектр, к отличающемуся второму спектру. В одном примере этого воплощения, электролюминесценция, имеющая относительно короткую длину волны и узкий спектр полос частот, «накачивает» кристаллический люминофор, который, в свою очередь, испускает излучение большей длины волны, имеющее несколько более широкий спектр.

Следует также понять, что термин «СИД» не ограничивает тип физического или электрического корпуса СИДа. Например, как говорилось выше, СИД может относиться к одному светоизлучающему устройству, имеющему несколько кристаллов, конфигурация которых соответственно обеспечивает испускание разных спектров излучения (например, таких, которые могут быть или не быть индивидуально управляемыми). Кроме того, СИД может быть связан с люминофором, считающимся неотъемлемой частью СИДа (что характерно, например, для некоторых типов СИДов белого цвета свечения). В общем случае, термин «СИД» может относиться к СИДам в корпусном исполнении, СИДам в бескорпусном исполнении, СИДам поверхностного монтажа, СИДам бескорпусного монтажа непосредственно на печатных платах, СИДам в радиальных корпусах, мощным СИДам в корпусном исполнении, СИДам, включающим в себя оболочку и/или оптический элемент некоторого типа (например, рассеивающую линзу), и т.д.

Термин «источник света» следует понимать как относящийся к любому одному или несколькими из многообразия источников излучения, включая - но не в ограничительном смысле - источники на основе СИДов (включающие в себя один или несколько СИДов, охарактеризованных выше).

Конфигурация заданного источника света может обеспечивать генерирование электромагнитного излучения в пределах спектра видимого излучения, вне спектра видимого излучения или генерирование комбинации обоих этих излучений. Поэтому термины «свет» и «излучение» употребляются здесь взаимозаменяемо. Кроме того, источник света может включать в себя в себя в качестве неотъемлемого компонента один или несколько фильтров (например, цветных светофильтров), линз или других оптических компонентов. Следует также понять, что конфигурации источников света могут обеспечивать многообразие приложений, включая - но не в ограничительном смысле - индикацию, отображение и/или освещение. «Источник освещения» - это источник света, конкретная выполненный с возможностью генерирования излучения, имеющего достаточную интенсивность для эффективного освещения внутреннего или внешнего пространства. В этом контексте, термин «достаточная интенсивность» относится к достаточной излучаемой мощности в спектре видимого излучения, генерируемом в пространстве или окружающей среде (для отображения суммарной светоотдачи из источника света во всех направлениях в контексте излучаемой мощности или «светового потока» часто употребляют такие единицы, как «люмены») для обеспечения освещения окружающей среды (т.е. света, который можно воспринимать косвенно и который может быть, например, отраженным от одной или нескольких из многообразия поверхностей, встречающихся на его пути прежде, чем он будет воспринят полностью или частично).

Термин «осветительный прибор» употребляется здесь как относящийся к воплощению или компоновке одного или нескольких осветительных устройств в узле или корпусе с конкретным форм-фактором. Термин «осветительный прибор» употребляется здесь как относящийся к аппаратному средству, включающему в себя один или несколько источников света одного и того же или разных типов. Некоторое заданное осветительное устройство может иметь любую из многообразия монтажных компоновок для источника (источников) света, компоновок и форм оболочек или корпусов и/или конфигураций электрических или механических соединений. Кроме того, некоторое заданное осветительное устройством может быть - по выбору - связано (например, может включать в себя, быть подключенным к и/или заключенным в корпус вместе) с различными другими компонентами (например, схемами управления), имеющими отношение к эксплуатации источника (источников) света. Термин «осветительное устройство на основе СИДов» относится к осветительному устройству, которое включает в себя один или несколько источников света на основе СИДов, о которых говорилось выше, отдельно или в комбинации с другими источниками света не на основе СИДов. Термин «многоканальное осветительное устройство» относится к осветительному устройству на основе СИДов или не на основе СИДов, которое включает в себя, по меньшей мере, два источника света, конфигурация которых соответственно обеспечивает генерирование разных спектров излучения, причем каждый из разных спектров источников можно именовать «каналом» многоканального осветительного устройства.

Термин «контроллер» употребляется здесь в общем случае для описания различных аппаратных средств, имеющих отношение к эксплуатации одного или нескольких источников света. Контроллер можно воплотить многочисленными способами (например, такими, как с помощью специализированных аппаратных средств) для выполнения различных рассматриваемых здесь функций. Одним примером контроллера является «процессор», предусматривающий применение одного или нескольких микропроцессоров, которые можно запрограммировать с помощью программных средств (например, микрокода) для выполнения различных рассматриваемых здесь функций. Контроллер можно воплотить с применением или без применения процессора, а также можно воплотить как комбинацию специализированных аппаратных средств, предназначенных для выполнения некоторых функций, и процессора (например, одного или нескольких запрограммированных микропроцессоров и связанных с ними схем) для выполнения других функций. Примеры компонентов контроллера, которые можно воплотить в различных вариантах осуществления данного изобретения, включают в себя - но не в ограничительном смысле - традиционные микропроцессоры, интегральные схемы прикладной ориентации (ASICs) и логические матрицы, программируемые пользователем (FPGAs).

В различных воплощениях, процессор или контроллер может быть связан с одним или несколькими носителями информации (упоминаемыми здесь под родовым названием «запоминающее устройство», например, энергозависимое и энергонезависимое запоминающее устройство, такое, как оперативное запоминающее устройство (RAM), программируемое постоянное запоминающее устройство (PROM), электрически программируемое постоянное запоминающее устройство (EPROM) и электрически стираемое программируемое постоянное запоминающее устройство (EEPROM), дискеты, компакт-диски, оптические диски, магнитная лента, и т.д.). В некоторых воплощениях, носители информации могут быть закодированы посредством одной или нескольких программ, которые при исполнении их на одном или нескольких процессорах и/или контроллерах, выполняют, по меньшей мере, некоторые из рассматриваемых здесь функций. Различные носители информации могут быть закреплены внутри процессора или контроллера, или могут быть транспортируемыми, так что одну или несколько программ, хранимых на этих носителях, можно загружать в процессор или контроллер для воплощения различных аспектов данного изобретения, рассматриваемых здесь.

Термины «программа» или «компьютерная программа» употребляются здесь в родовом смысле для обозначения компьютерного кода любого типа (например, кода программного обеспечения или микрокода) который можно применять для программирования одного или более процессоров или контроллеров.

Следует осознать, что все комбинации вышеизложенных концепций и дополнительные концепции, подробнее рассматриваемые ниже (при условии, что такие концепции не являются взаимно несовместимыми), считаются являющимися частью предлагаемого предмета изобретения, раскрываемого здесь. В частности, все комбинации признаков заявляемого предмета изобретения, появляющиеся в конце этого описания, считаются являющимися частью предлагаемого предмета изобретения, раскрываемого здесь. Следует также осознать, что терминология, употребляемая здесь в явном виде, которая также может появляться в любом описании, включенном сюда посредством ссылки, должна толковаться в соответствии со смыслом, наиболее соответствующим конкретным концепциям, раскрытым здесь.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На чертежах, сходные позиции в общем случае относятся к одинаковым частям на всех разных видах. Кроме того, чертежи не обязательно выполнены в масштабе, а вместо этого основное внимание, вообще говоря, уделяется иллюстрации принципов изобретения.

На фиг. 1 представлена упрощенная блок-схема, иллюстрирующая схему возбуждения для твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, в соответствии с представительным вариантом осуществления.

На фиг. 2 представлена упрощенная блок-схема для схемы измерения напряжения сети, конфигурация которой обеспечивает генерирование широтно-импульсно-модулированного (ШИМ) сигнала, в соответствии с представительным вариантом осуществления.

На фиг. 3 представлена блок-схема последовательности операций, иллюстрирующая процесс уменьшения яркости твердотельной осветительной нагрузки на основе сигнала сети, в соответствии с представительным вариантом осуществления.

На фиг. 4 представлена упрощенная блок-схема, иллюстрирующая схему возбуждения для твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, в соответствии с представительным вариантом осуществления.

На фиг. 5 представлена группа графиков, иллюстрирующая результаты моделирования схемы возбуждения для твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, в соответствии с представительным вариантом осуществления.

ПОДРОБНОЕ ОПИСАНИЕ

В целях пояснения, а не ограничения, в нижеследующем описании излагаются представительные варианты осуществления, чтобы обеспечить полное понимание принципов данного изобретения. Однако специалист в данной области техники, с выгодой ознакомившийся с данным описанием, поймет, что другие варианты осуществления, соответствующие принципам данного изобретения и отличающиеся от конкретных подробностей, описываемых здесь, остаются в рамках объема притязаний прилагаемой формулы изобретения. Более того, описания хорошо известных устройств и способов могут быть опущены, чтобы не затруднять понимание описания представительных вариантов осуществления. Такие способы и устройства, очевидно, находятся в рамках объема притязаний согласно принципам данного изобретения.

Заявитель осознал и по достоинству оценил тот факт, что было бы выгодно разработать схему, выполненную с возможностью измерения пониженного напряжения сети в первичной обмотке схемы возбуждения СИДов и передачи информации, касающейся измеренного пониженного напряжения сети, через изолирующую гильзу в процессор или контроллер во вторичной обмотке схемы возбуждения СИДов.

Алгоритмы уменьшения яркости на основе сигнала сети используются, например, в электромагнитных балластах приложений, связанных с обычным освещением. Когда взамен электромагнитных балластов используют модифицированные модули СИДов, желательно продолжать осуществление уменьшения яркости с использованием также напряжения сети. В соответствии с алгоритмами уменьшения яркости на основе сигнала сети, величина светоотдачи снижается по мере снижения напряжения сети, например, посредством контроллера уменьшения яркости. Уменьшение яркости СИДов достигается путем изменения выходного тока, подаваемого в СИДы в ответ на изменения напряжения сети, например, посредством контроллера уменьшения яркости. Можно воплотить различные алгоритмы уменьшения яркости, такие, как двухуровневое уменьшения яркости, при котором переключение светоотдачи между двумя уровнями происходит в зависимости от уровня напряжения сети, и линейное уменьшения яркости, при котором светоотдача линейно уменьшается по мере снижения уровня напряжения сети.

На фиг. 1 представлена упрощенная блок-схема, иллюстрирующая схему возбуждения для твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, в соответствии с представительным вариантом осуществления.

Обращаясь к фиг. 1, отмечаем, что схема 100 возбуждения для воплощения уменьшения яркости, проводимого на основе сигнала сети, твердотельного осветительного модуля, указанного как модуль 160 СИДов, включает в себя развязывающий трансформатор 120, имеющий первичную обмотку, соединенную с цепью 110 первичной обмотки, и вторичную обмотку, соединенную с цепью 140 вторичной обмотки. Например, трансформатор 120 может быть высокочастотным трансформатором или трансформатором большой мощности, так что развязка может быть достигнута, когда модуль 160 СИДов воплощен как модуль СИДов высокой яркости. Цепь 110 первичной обмотки принимает пониженное напряжение сети из источника 101 напряжения сети через контроллер 105 уменьшения яркости, который может быть, например, контроллером уменьшения яркости на основе синусоидального сигнала. Как подробнее обсуждается ниже, цепь 110 первичной обмотки включает в себя выпрямитель напряжения (не показан на фиг. 1) для приема пониженного напряжения сети и выдачи пониженного выпрямленного напряжения VR сети. Цепь 140 вторичной обмотки соединена с модулем 160 СИДов и выдает регулируемый ток ID возбуждения в модуль 160 СИДов на основе тока Ipri первичной обмотки и индуцируемого тока Isec вторичной обмотки трансформатора 120.

Схема 100 возбуждения дополнительно включает в себя схему 130 управления уменьшением яркости, соединенную и с цепью 110 первичной обмотки, и с цепью 140 вторичной обмотки через изолирующую гильзу 125, которая соответствует трансформатору 120. Схема 130 управления уменьшением яркости включает в себя схему 132 измерения напряжения сети, развязывающее средство 134 и схему 136 обработки. Конфигурация схемы 132 измерения напряжения сети обеспечивает прием выпрямленного напряжения VR сети из выпрямителя напряжения в цепи 110 первичной обмотки и генерирование сигнала MSS измерения напряжения сети, указывающего амплитуду выпрямленного напряжения VR сети. Схема 132 измерения напряжения сети передает сигнал MSS измерения напряжения сети в схему 136 обработки через изолирующую гильзу 125 посредством развязывающего средства 134. Развязывающее средство 134 может быть, например, оптическим вентилем, который позволяет обмениваться информацией (например, сигналом MSS измерения напряжения сети) с использованием световых сигналов, поддерживая электрическую развязку посредством изолирующей гильзы 125. Таким образом, развязывающее средство 134 может быть воплощено точно, например - с использованием дешевых двухуровневых оптоэлектронных вентилей. В альтернативных вариантах осуществления, не выходящих за рамки принципов данного изобретения, связь через изолирующую гильзу 125 может быть получена с помощью развязки других типов, таких, как предусматривающие наличие трансформаторов.

Устройство 136 обработки отделено посредством изолирующей гильзы 125 от цепи 110 первичной обмотки, потому что устройство 136 обработки измеряет сигналы из модуля 160 СИДов, а также других контроллеров уменьшения яркости (не показаны), и выдает контрольные команды привязки к безе отсчета в цепь 140 вторичной обмотки, как будет рассмотрено ниже. Например, в изображенной конфигурации схема 136 обработки принимает сигнал MSS измерения напряжения сети из схемы 132 измерения напряжения сети и выдает в цепь 140 вторичной обмотки один или несколько опорных сигналов уменьшения яркости, определенных, по меньшей мере - частично, на основе сигнала MSS измерения напряжения сети. Опорные сигналы уменьшения яркости могут включать в себя, например, опорный сигнал Iref тока и/или опорный сигнал Vref напряжения, которые будут рассмотрены ниже. Схема 136 обработки может также принимать сигнал управления уменьшением яркости, указывающий уставочный уровень уменьшения яркости, и один или несколько сигналов обратной связи СИДов из модуля 160 СИДов, включающих в себя информацию об уровне света, температуре и т.п. Опорные сигналы уменьшения яркости генерируются схемой 136 обработки в ответ, по меньшей мере, на сигнал MSS измерения напряжения сети, а в различных вариантах осуществления - также в ответ на сигнал управления уменьшением яркости и/или сигналы обратной связи СИДов.

Цепь 140 вторичной обмотки принимает опорные сигналы уменьшения яркости и сравнивает опорные сигналы уменьшения яркости с соответствующими электрическими условиями. Цепь 140 вторичной обмотки генерирует сигнал DGS обратной связи по уменьшению яркости на основе результатов сравнения и передает сигнал DFS обратной связи по уменьшению яркости в цепь 110 первичной обмотки через изолирующую гильзу 125, например, через еще одно развязывающее средство (не показан на фиг. 1). Например, когда сигналы управления уменьшением яркости включают в себя опорный сигнал Iref тока, средство управления выходным током (не показано) цепи 140 вторичной обмотки сравнивает опорный сигнал Iref тока с током ID возбуждения, подаваемым в модуль 160 СИДов. Затем цепь 140 вторичной обмотки генерирует сигнал DGS обратной связи по уменьшению яркости, который указывает разность - если она есть - между опорным сигналом Iref и током ID возбуждения.

Сигнал DFS обратной связи по уменьшению яркости передается в цепь 110 первичной обмотки через изолирующую гильзу 125 посредством еще одного развязывающего средства (не показано на фиг. 1). В ответ на сигнал DFS обратной связи по уменьшению яркости, цепь 110 первичной обмотки регулирует - при необходимости - напряжение Vpri первичной обмотки, подаваемое в первичную обмотку трансформатора 120, что, в свою очередь, приводит к регулированию напряжения Vsec напряжения вторичной обмотки, приложенного на вторичной обмотке трансформатора 120, а значит - и тока ID возбуждения, выдаваемого посредством цепи 140 вторичной обмотки в модуль 160 СИДов. Соответственно, ток ID возбуждения приводит к возбуждению модуля 160 СИДов для обеспечения количества света, соответствующего уставке контроллера 105 уменьшения яркости. В варианте осуществления, схема 136 обработки также может выдавать сигнал PCS управления мощностью в цепь 110 первичной обмотки через изолирующую гильзу 125 посредством еще одного развязывающего средства (не показано на фиг. 1), причем этот сигнал избирательно управляет подачей питания в цепь 110 первичной обмотки и цепь 140 вторичной обмотки, что рассматривается ниже со ссылками на фиг. 4.

В различных вариантах осуществления, схема 136 обработки может быть воплощена, например, как контроллер или микроконтроллер, включающий в себя процессор или центральный процессор (ЦП), интегральные схемы прикладной ориентации (ASICs) и логические матрицы, программируемые пользователем (FPGAs), или их комбинации, и предусматривающий использование программных средств, аппаратно-программных средств, логических схем в аппаратном воплощении, или их комбинаций. При использовании процессора или ЦП, предусматривается запоминающее устройство (не показано) для хранения исполняемого программного обеспечения и/или аппаратных средств и/или исполняемого кода, который управляет операциями схемы 136 обработки. Возможно присутствие любого количества, типа и любой комбинации запоминающих устройства, например, энергонезависимого постоянного запоминающего устройства (RAM) и энергозависимого оперативного запоминающего устройства (RAM), и возможно хранение информации различных типов, таких, как компьютерные программы и алгоритмы программного обеспечения, исполняемых процессором или ЦП. Запоминающее устройство может включать в себя любое количество, любые типы и любую комбинацию физических, считываемых компьютером носителей информации, таких, как дисковод, электрически программируемое запоминающее устройство (EPROM), электрически стираемое программируемое постоянное запоминающее устройство (EEPROM), компакт-диск (CD), цифровой видеодиск (DVD), накопитель стандарта «Универсальная последовательная шина» (USB), и т.п.

В варианте осуществления, сигнал MSS измерения напряжения сети, выдаваемый схемой 132 измерения напряжения сети, является широтно-импульсно-модулированным (ШИМ) сигналом, который передается в схему 136 обработки посредством развязывающего средства 134. Схема 132 измерения напряжения сети может генерировать ШИМ-сигнал множеством способов. Например, на фиг. 2 показана упрощенная блок-схема для схемы измерения напряжения сети, конфигурация которой обеспечивает генерирование ШИМ-сигнала, в соответствии с представительным вариантом осуществления.

Обращаясь к фиг. 2, отмечаем, что схема 132 измерения напряжения сети включает в себя резистивный делитель 236, тактовый генератор 237 и генератор 238 импульсных сигналов. Конфигурация резистивного делителя 236 обеспечивает прием выпрямленного напряжения VR сети из выпрямителя напряжения в цепи 110 первичной обмотки и выдачу подвергнутого делению напряжения сети в генератор 238 импульсных сигналов. Конфигурация тактового генератора 237 обеспечивает генерирование тактового сигнала Clk, который также выдается в генератор 238 импульсных сигналов. Поэтому генератор 238 импульсных сигналов генерирует ШИМ-сигнал в качестве сигнала MSS измерения напряжения сети на основе подвергнутого делению напряжения сети и тактового сигнала Clk, так что ширина каждого импульса ШИМ-сигнала модулируется амплитудой выпрямленного напряжения VR сети. В иллюстрируемой конфигурации, тактовый генератор 237 включает в себя первый таймер 555, а генератор 238 импульсных сигналов включает в себя второй таймер 555, например, для генерирования ШИМ-сигнала.

Конечно, в рамках существа принципов данного изобретения можно предусмотреть другие конфигурации схемы 132 измерения напряжения сети и/или различных ее компонентов. Например, в альтернативном варианте осуществления, схему 132 измерения напряжения сети можно воплотить как микроконтроллер, выполненный с возможностью генерирования ШИМ-сигнала. Микроконтроллер может включать в себя аналого-цифровой преобразователь (АЦП), выполненный с возможностью приема выпрямленного напряжения VR сети из выпрямителя напряжения в цепи 110 первичной обмотки и выдачу ШИМ-сигнала в ответ. Микроконтроллер также может осуществлять связь с цепью 140 вторичной обмотки с помощью некоторой формы протокола цифровой связи, такого, как I2C (протокол передачи, позволяющий нескольким контроллерам использовать одну шину, определяя коллизии и осуществляя арбитраж) или UART (протокола универсального асинхронного приемопередатчика). Микроконтроллер может представлять собой, например, STM8S от фирмы ST, хотя - в рамках объема притязаний согласно принципам данного изобретения - упомянутая схема может включать в себя и микроконтроллеры других типов.

На фиг. 3 представлена блок-схема последовательности операций, иллюстрирующая процесс уменьшения яркости твердотельной осветительной нагрузки с использованием регулирования напряжения сети в соответствии с представительным вариантом осуществления. Иллюстрируемые на фиг. 3 этапы могут быть воплощены, например, посредством схемы 100 возбуждения согласно фиг. 1, хотя - в рамках объема притязаний согласно принципам данного изобретения - эти этапы могут быть воплощены посредством любой другой схемы, обладающей аналогичными возможностями.

Обращаясь к фиг. 1 и 3, отмечаем, что на этапе S311 происходит прием выпрямленного напряжения VR сети из цепи 110 первичной обмотки посредством схемы 132 измерения напряжения сети. На этапе S312, схема 132 измерения напряжения сети генерирует сигнал MSS измерения напряжения сети, который указывает амплитуду выпрямленного напряжения VR сети. Сигнал MSS измерения напряжения сети может быть, например, ШИМ-сигналом, при этом ширины импульсов изменяются в соответствии с амплитудой выпрямленного напряжения VR сети. На этапе S313 происходит передача сигнала MSS измерения напряжения сети через изолирующую гильзу, например - через вентиль 134, в схему 136 обработки.

На этапе S314, схема 136 обработки генерирует один или несколько опорных сигналов уменьшения яркости на основе, по меньшей мере - частично, сигнала MSS измерения напряжения сети, принятого из схемы 132 измерения напряжения сети. Опорные сигналы уменьшения яркости выдаются в цепь 140 вторичной обмотки на этапе S315. Например, опорные сигналы уменьшения яркости могут включать в себя опорный сигнал Iref тока и/или опорный сигнал Vref напряжения, которые соответственно выдаются в средство управления выходным током и средство управления выходным напряжением цепи 140 вторичной обмотки. На этапе S316 происходит сравнение опорных сигналов уменьшения яркости с соответствующими электрическими условиями цепи 140 вторичной обмотки, а на этапе S317 происходит генерирование сигнала DGS обратной связи по уменьшению яркости, указывающего результаты сравнения. Например, опорный сигнал Iref тока можно следует сравнивать с током ID возбуждения, а опорный сигнал Vref напряжения следует сравнивать с напряжением VD возбуждения модуля 160 СИДов. На этапе S318 происходит передача сигнала DFS обратной связи по уменьшению яркости в цепь 110 первичной обмотки через изолирующую гильзу 125, например, посредством другого развязывающего средства. В ответ, на этапе S319 цепь 110 первичной обмотки оказывается способной проводить надлежащие регулировки входного сигнала, например, напряжения Vpri первичной обмотки и/или тока Ipri первичной обмотки, характерных для первичной обмотки трансформатора 120, обуславливая соответствующие регулировки тока ID возбуждения и/или напряжения VD возбуждения, выдаваемого цепью 140 вторичной обмотки в модуль 160 СИДов. Соответственно, происходит возбуждение модуля 160 СИДов с выдачей надлежащего количества света, соответствующего уставке контроллера 105 уменьшения яркости.

На фиг. 4 представлена упрощенная блок-схема, подробнее иллюстрирующая схему возбуждения для осветительной системы, предусматривающей уменьшение яркости, в соответствии с представительным вариантом осуществления.

Обращаясь к фиг. 4, схема 400 возбуждения для воплощения - на основе сигнала сети - уменьшения яркости твердотельного осветительного модуля, показанного как иллюстративный модуль 460 СИДов, включает в себя развязывающий трансформатор 420, имеющий первичную обмотку, соединенную с цепью 410 первичной обмотки, и вторичную обмотку, соединенную с цепью 440 вторичной обмотки. Цепь 410 первичной обмотки принимает пониженное напряжение сети из источника 401 напряжения сети через контроллер 405 уменьшения яркости контроллер, который может быть, например, контроллером уменьшения яркости на основе синусоидального сигнала. Как подробнее обсуждается ниже, цепь 440 вторичной обмотки соединена с модулем 460 СИДов и выдает регулируемый ток ID возбуждения в модуль 460 СИДов на основе тока Ipri первичной обмотки трансформатора 420. Схема 400 возбуждения дополнительно включает в себя схему 430 управления уменьшением яркости, соединенную и с цепью 410 первичной обмотки, и с цепью 440 вторичной обмотки через изолирующую гильзу 425, которая соответствует трансформатору 420. Схема 430 управления уменьшением яркости включает в себя схему 432 измерения напряжения сети, первый оптический вентиль 434 и микропроцессор 436, о которых речь пойдет ниже.

Цепь 410 первичной обмотки включает в себя выпрямитель 411 напряжения, вольтодобавочную схему 412 коррекции коэффициента мощности (ККМ), схему 413 управления усилением, полумостовой преобразователь 414 ШИМ, и полумостовой каскад 415 управления ШИМ. С контроллером 405 уменьшения яркости соединены выпрямитель 411 напряжения и фильтр электромагнитных помех (ЭМП). Поэтому выпрямитель 411 напряжения принимает пониженное напряжение сети из источника 401 напряжения сети и выдает выпрямленное напряжение VR сети (и соответствующий выпрямленный ток IR сети), вследствие чего происходит преобразование напряжения сети переменного тока в выпрямленный синусоидальный сигнал. Выпрямление необходимо для создания постоянного напряжения постоянного тока посредством вольтодобавочной схемы 412 ККМ, рассматриваемой ниже. Фильтр ЭМП может включать в себя цепочку катушек индуктивности и конденсаторов (не показаны), которые ограничивают высокочастотные составляющие, вносимые в линию.

Выпрямленное напряжение VR сети выдается в вольтодобавочную схему 412 ККМ, которая преобразует выпрямленный синусоидальный сигнал выпрямленного напряжения VR сети в фиксированное, регулируемое напряжение постоянного тока, обозначенное как добавочное напряжение VB (и соответствующее выпрямленному току IR сети). Кроме того, вольтодобавочная схема 412 ККМ гарантирует, что выпрямленный ток IR сети, отбираемый у выпрямителя 411 напряжения и подаваемый в вольтодобавочную схему 412 ККМ, находится в фазе с выпрямленным напряжением VR сети. Это гарантирует, что схема 400 возбуждения работает в режиме, в котором коэффициент мощности близок к единице. Вольтодобавочная схема 413 управления соответственно управляет переключателями вольтодобавочного преобразователя вольтодобавочной схемы 412 ККМ.

Полумостовой преобразователь 414 ШИМ преобразует добавочное напряжение VB постоянного тока из вольтодобавочной схемы 412 ККМ в высокочастотный пульсирующий сигнал - напряжение Vpri первичной обмотки (и соответствующий импульсный ток Ipri первичной обмотки) под управлением полумостового каскада 415 управления ШИМ. Напряжение Vpri первичной обмотки может быть, например, ШИМ-сигналом, имеющим ширину импульса, устанавливаемую посредством срабатывания переключателей (не показаны) в полумостовом преобразователе 414 ШИМ. Напряжение Vpri первичной обмотки подается на сторону первичной обмотки (первичную обмотку) трансформатора 420. Полумостовой каскад 415 управления ШИМ определяет ширину импульсов напряжения Vpri первичной обмотки, воплощаемого посредством полумостового преобразователя 414 ШИМ на основе сигнала DGS обратной связи по уменьшению яркости, принимаемого, по меньшей мере, из одного из средства 444 управления выходным током и средства 446 управления выходным напряжением цепи 440 вторичной обмотки, которая рассматривается ниже.

На стороне вторичной обмотки (во вторичной обмотке) трансформатора 420 посредством напряжения Vpri первичной обмотки индуцируется напряжение Vsec вторичной обмотки (и соответствующий ток Isec вторичной обмотки). Напряжение Vsec вторичной обмотки выпрямляется и подвергается высокочастотной фильтрации посредством выходной схемы 442 выпрямителя и фильтра, входящей в состав цепи 440 вторичной обмотки, для получения желаемого напряжения VD возбуждения и соответствующего тока ID возбуждения с целью возбуждения модуля 460 СИДов. Величина тока ID возбуждения, в частности, диктует уровень освещения посредством одного или нескольких СИДов в модуле 460 СИДов.

Цепь 440 вторичной обмотки дополнительно включает в себя средство 444 управления выходным током и средство 446 управления выходным напряжением. Средство 444 управления выходным током сравнивает ток ID возбуждения с опорным сигналом Iref тока, который выдается микропроцессором 436, для получения разности ΔI токов, а средство 446 управления выходным напряжением сравнивает напряжение VD возбуждения с опорным сигналом Vref, который тоже выдается микропроцессором 436 для получения разности ΔV напряжений. Компенсатор возбуждения (не показан) определяет сигнал обратной DFS связи по уменьшению яркости на основе, по меньшей мере, одной из разности ΔI токов и разности ΔV напряжений. Микропроцессор 436 определяет значения опорных сигналов Iref и Vref напряжения и тока на основе сигнала MSS измерения напряжения сети, принимаемого из схемы 432 измерения напряжения сети, рассматриваемой ниже, который в свою очередь основан на уровне уменьшения яркости, установленном в контроллере 405 уменьшения яркости.

Средство 444 управления выходным током также может принимать сигнал плавного запуска (короткий импульс) из микропроцессора 436, который насыщает контур управления током с помощью средства 444 управления выходным током. После того, как сигнал плавного запуска становится сигналом низкого уровня, опорный сигнал Iref тока из микропроцессора 436 постепенно увеличивают во избежание флуктуации выходного тока СИДов, приводящей к мерцанию. Во время запуска, разность ΔI токов можно определить как опорный сигнал Iref тока, уменьшенный на ток ID возбуждения и сигнал плавного запуска, а разность ΔV напряжений можно определить как опорный сигнал Vref напряжения, уменьшенный на напряжение VD возбуждения и сигнал плавного запуска.

Как упоминалось выше, сигнал DFS обратной связи по уменьшению яркости указывает и разность ΔI токов, и разность ΔV напряжений, выдаваемые средством 444 управления выходным током и средством 446 управления выходным напряжением, соответственно. В варианте осуществления, активен, как правило, лишь контур тока (использующий разность ΔI токов). Если выходное напряжение выходит за предварительно определенный предел, можно воспользоваться контуром напряжения (использующим разность ΔV напряжений), чтобы уменьшить выходной ток посредством сигнала DFS обратной связи по уменьшению яркости. Сигнал DFS обратной связи по уменьшению яркости выдается из цепи 440 вторичной обмотки в полумостовой каскад 415 управления ШИМ через изолирующую гильзу 425 посредством второго оптического вентиля 424 (который может быть таким же, как первый оптический вентиль 434, или другим). Таким образом, сигнал DFS обратной связи по уменьшению яркости управляет полумостовым преобразователем 414 ШИМ для регулирования ширины импульсов напряжения Vpri первичной обмотки на основе сигнала DFS обратной связи по уменьшению яркости. Например, если ток ID возбуждения превышает опорный сигнал Iref тока, как показано посредством сигнала DFS обратной связи по уменьшению яркости, полумостовой каскад 415 управления ШИМ будет управлять полумостовым преобразователем 414 ШИМ, снижая напряжение Vpri первичной обмотки, а значит - и ток Ipri первичной обмотки, например, путем сокращения ширины импульса упомянутого напряжения. Изменение напряжения Vpri первичной обмотки отражается на соответствующем изменении напряжения Vsec вторичной обмотки, а также напряжения VD возбуждения и тока ID возбуждения, выдаваемых схемой 400 возбуждения с целью возбуждения модуля 460 СИДов. Поэтому полумостовой каскад 415 управления ШИМ способен регулировать напряжение VD возбуждения и/или ток ID возбуждения схемы 400 возбуждения до некоторого значения. При нормальной работе в условиях установившегося режима, опорный сигнал Iref тока из микропроцессора 436 зависит от желаемого уровня уменьшения яркости, как показано посредством сигнала MSS измерения напряжения сети.

Добавочное напряжение VB, выдаваемое вольтодобавочной схемой 412 ККМ, также выдается в источник 427 питания, который может быть понижающим шаговым преобразователем постоянного тока в постоянный, например, таким, как источник питания типа Viper. Источник 427 питания может понижать добавочное напряжение VB до меньшего напряжения, такого, как 18 В. Конфигурация первичной обмотки источника 427 питания обеспечивает избирательную выдачу отрегулированного напряжения в различные компоненты цепи 410 первичной обмотки (например, выпрямитель 411 напряжения, вольтодобавочную схему 412 ККМ, вольтодобавочную схему 413 управления, полумостовой преобразователь 414 ШИМ, полумостовой каскад 415 управления ШИМ) под управлением переключателя 417. Работа и тактирование переключателя 417 (включение-выключение) определяется сигналом PCS управления мощностью, выдаваемым микропроцессором 436 и принимаемым переключателем 417 через изолирующую гильзу 425 посредством третьего оптического вентиля 428 (который может быть таким же, как первый и второй оптические вентили 434, 424, или другим). Конфигурация вторичной обмотки источника 427 питания обеспечивает выдачу отрегулированного напряжения в различные компоненты цепи 440 вторичной обмотки (например, выходную схему 442 выпрямителя и фильтра, средство 444 управления выходным током, средство 446 управления выходным напряжением). В иллюстрируемой конфигурации, источник 427 питания может быть обратноходовым преобразователем с двумя развязанными входами: одним - для первичной обмотки, и одним - для вторичной обмотки.

Схема 400 возбуждения дополнительно включает в себя схему 430 управления уменьшением яркости, соединенную и с цепью 410 первичной обмотки, и с цепью 440 вторичной обмотки через изолирующую гильзу 425, которая соответствует трансформатору 420. Схема 430 управления уменьшением яркости включает в себя схему 432 измерения напряжения сети, первый оптический вентиль 434 и микропроцессор 436. Как сказано выше, конфигурация схемы 432 измерения напряжения сети обеспечивает прием выпрямленного напряжения VR сети из выпрямителя 411 напряжения и генерирование сигнала MSS измерения напряжения сети, указывающего амплитуду выпрямленного напряжения VR сети. Схема 432 измерения напряжения сети передает сигнал MSS измерения напряжения сети в микропроцессор 436 через изолирующую гильзу 425 посредством первого оптического вентиля 434. Схема 432 измерения напряжения сети может быть воплощена во множестве конфигураций, включая генератор импульсных сигналов (например, тот, о котором шла речь выше при обращении к фиг. 2) или микроконтроллер.

Конфигурация микропроцессора 436 обеспечивает прием сигнала MSS измерения напряжения сети из схемы 432 измерения напряжения сети и определение опорного сигнала Iref тока и опорного сигнала Vref напряжения в ответ. Кроме того, конфигурация микропроцессора 436 обеспечивает прием сигнала уменьшения яркости с входа 454 уменьшения яркости через интерфейс 455 уменьшения яркости, при этом сигнал уменьшения яркости указывает желаемый уровень уменьшения яркости, например, устанавливаемый пользователем. Например, вход 454 уменьшения яркости может обеспечить шкалу уменьшения яркости от 1 В до 10 В, где 1 В указывает максимальное уменьшение яркости (самый низкий уровень выдаваемого света) а 10 В указывает минимальное уменьшение яркости или отсутствие уменьшения яркости (самый высокий уровень выдаваемого света). Микропроцессор 436 может принимать несколько входных сигналов уровня уменьшения яркости, включая сигналы с входа 454 уменьшения яркости и из контроллера 405 уменьшения яркости, а в ответ устанавливает опорный сигнал Iref тока и/или опорный сигнал Vref напряжения. В варианте осуществления, микропроцессор 436 линейно транслирует сигнал MSS измерения напряжения сети для получения, например, опорного сигнала Iref тока, хотя трансляция может быть и двухуровневой, логарифмической, трансляцией любого заранее определенного набора табличных значений, и т.д. Микропроцессор 436 также принимает сигнал обратной связи из модуля 460 СИДов, например, посредством схемы 451 измерения с отрицательным температурным коэффициентом (ОТК) и схемы 452 измерения RSET. Схема 451 измерения с ОТК измеряет температуру модуля 460 СИДов, а схема 452 измерения RSET измеряет значение сопротивления внешнего резистора, который также устанавливает опорный ток Iref.

Кроме того, микропроцессор 436 генерирует сигнал PCS управления мощностью, который является переключающим сигналом низкого уровня, используемым для включения-выключения питания первичной обмотки, а значит - и схемы 400 возбуждения СИДов. Например, сигнал PCS управления мощностью можно использовать для выключения схемы 400 возбуждения СИДов, когда с внешнего входа принимается команда перехода в режим ожидания. Обозначать команду перехода в режим ожидания также может конкретное значение сигнала MSS измерения напряжения сети. Микропроцессор 436 посылает сигнал PCS управления мощностью в цепь 410 первичной обмотки через изолирующую гильзу 425 посредством третьего оптического вентиля 428, приводя в действие переключатель 417, рассмотренный выше.

На фиг. 5 представлена группа графиков, иллюстрирующая результаты моделирования схемы возбуждения для твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, в соответствии с представительным вариантом осуществления. В частности, график 5(c) иллюстрирует выпрямленное напряжение VR сети, выдаваемое выпрямителем напряжения (например, выпрямителем 411 напряжения) в цепи первичной обмотки. Графики 5(a) и 5(b) соответственно иллюстрируют измерительный сигнал и соответствующий ШИМ-сигнал, выдаваемый схемой измерения напряжения сети (например, схемой 432 измерения напряжения сети) в качестве сигнала MSS измерения напряжения сети в ответ на выпрямленное напряжение VR сети. Сигнал MSS измерения напряжения сети выдается в схему обработки (например, микропроцессор 436) через изолирующую гильзу (например, изолирующую гильзу 425) для определения сигнала DFS обратной связи по уменьшению яркости. Как показано на фиг. 5, выпрямленное напряжение VR сети точно передается через изолирующую гильзу.

Вышеописанная схема возбуждения твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, применима для модернизации приложений, связанных с СИДами, где желательно управление светоотдачей на основе сигнала напряжения сети. Например, схему возбуждения твердотельной осветительной системы, предусматривающей уменьшение яркости на основе сигнала сети, можно использовать для приложений, в которых модули СИДов заменяют традиционный электромагнитный балласт.

Хотя здесь описаны и проиллюстрированы несколько предлагаемых вариантов осуществления, обычные специалисты в данной области техники легко смогут представить себе многообразие других средств и/или структур для выполнения функции и/или получения результатов и/или одного или нескольких преимуществ, описанных здесь, а каждое из таких изменений и/или каждая из таких модификаций полагается находящейся в рамках объема притязаний предложенных вариантов осуществления, описанных здесь. В более общем смысле, специалисты в данной области техники легко поймут, что все параметры, размеры, материалы и конфигурации, описанные здесь, следует понимать как возможные и что все фактические параметры, размеры, материалы и/или конфигурации будут зависеть от конкретного приложения или конкретных приложений, для которых используется предлагаемый принцип (используются предлагаемые принципы). Специалисты в данной области техники примут во внимание или окажутся способными установить - не более чем посредством обычных экспериментов - многие эквиваленты для конкретных вариантов осуществления изобретения, описанных здесь. Поэтому ясно, что вышеизложенные варианты осуществления представлены лишь в качестве примера и что в рамках объема притязаний прилагаемой формулы изобретения и ее эквивалентов варианты осуществления изобретения можно воплотить не так, как конкретно описано и заявлено. Предлагаемые варианты осуществления данного изобретения направлены на разработку каждого отдельного признака, системы, изделия, материала, комплекта и/или способа, описанных здесь. Кроме того, любая комбинация одного или нескольких таких признаков, систем, изделий, материалов, комплектов и/или способов, если такие признаки, системы, изделия, материалы, комплекты и/или способы не являются взаимно несовместимыми, находится в заявляемых рамках объема притязаний данного изобретения.

Все определения, охарактеризованные и употребляемые здесь, следует понимать как подпадающие под определения согласно словарям, определения, приведенные в документах, включенных сюда посредством ссылки, и/или как имеющие обычные значения для характеризуемых терминов.

В том смысле, в каком указанные здесь признаки единственного числа употребляются в описании и формуле изобретения, их следует понимать как означающие «по меньшей мере, один», если четко не указан противоположный смысл.

В том смысле, в котором указанное здесь выражение «и/или» употребляется в описании и формуле изобретения, его следует понимать как означающее «любой из двух или оба» применительно к элементам, которые с ним сочетаются, т.е. элементам, которые конъюнктивно присутствуют в некоторых случаях и дизъюнктивно присутствуют в других случаях. Несколько элементов, перечисляемых с помощью выражения «и/или», следует понимать таким же образом, т.е. как «один или более» сочетаемых этим выражением элементов. По выбору, возможно присутствие других элементов, отличающихся от тех элементов, которые конкретно идентифицируются формулировкой «и/или», независимо от того, относятся они к этим конкретно идентифицированным элементам, или нет. В том смысле, в каком союз «или» употребляется в описании и формуле изобретения, его следует понимать так же, как выражение «и/или», охарактеризованное выше.

В том смысле, в каком оно употребляется в описании и формуле изобретения, выражение «по меньшей мере, один» применительно к списку из одного или нескольких элементов следует понимать как означающее, по меньшей мере, один элемент, выбранный из какого-либо одного или нескольких из элементов в списке элементов, но не обязательно включая, по меньшей мере, один из всех без исключения элементов, перечисленных в пределах списка элементов, и не исключая никакие комбинации элементов в списке элементов. Это определение также допускает возможность того, что - по выбору - присутствуют элементы, отличающиеся от элементов, конкретно идентифицированных в пределах списка элементов, применительно к которым употребляется выражение «по меньшей мере, один», независимо от того, относятся они к этим конкретно идентифицированным элементам, или нет. Так, в качестве неограничительного примера, отметим, что указание выражения «по меньшей мере, одно из A или B» (или, эквивалентно, «по меньшей мере, одно из A и/или B») может в одном варианте осуществления относиться, по меньшей мере, к одному, по выбору - более чем к одному включительно, A при отсутствии В (а по выбору - включая элементы, отличающиеся от B), в другом варианте осуществления - по меньшей мере, к одному, по выбору - более чем к одному включительно, В при отсутствии А (по выбору - включая элементы, отличающиеся от A), а в еще одном варианте осуществления - по меньшей мере, к одному, по выбору - более чем к одному включительно, A и по меньшей мере, к одному, по выбору - более чем к одному включительно, В (по выбору - включая другие элементы), и т.д.

Следует также понять, что, если четко не указан противоположный смысл, в любых заявляемых здесь способах, которые включают в себя более одного этапа или действия, порядок этапов или действий способа не обязательно ограничивается порядком, в котором этапы или действия способа перечислены. Кроме того, любые позиции присутствующие в формуле изобретения, если они есть, приведены просто для удобства, и их ни в коем случае не следует считать ограничительными.

В формуле изобретения, а также в вышеизложенном описании, все переходные выражения, такие, как «содержащий», «включающий в себя», «несущий», «имеющий», «вмещающий», «касающийся», «удерживающий», «сформированный из», и т.п., следует понимать, как открытые, т.е. имеющие включительный, а не ограничительный смысл. Только переходные выражения «состоящий из» и «состоящий, по существу, из» будут выражениями, имеющими смысл закрытых или полузакрытых формулировок, соответственно.

1. Система для воплощения уменьшения яркости, проводимого на основе напряжения сети, твердотельного осветительного модуля (160, 460), содержащая:
трансформатор (120, 420), содержащий первичную обмотку, соединенную с цепью (110, 410) первичной обмотки, и вторичную обмотку, соединенную с цепью (140, 440) вторичной обмотки, причем цепь первичной обмотки отделена от цепи вторичной обмотки изолирующей гильзой (125, 425);
схему (132, 432) измерения напряжения сети, выполненную с возможностью приема выпрямленного напряжения сети из цепи первичной обмотки, генерирования сигнала измерения напряжения сети, который указывает амплитуду выпрямленного напряжения сети, и передачи сигнала измерения напряжения сети через изолирующую гильзу; и
схему (136, 436) обработки, выполненную с возможностью приема сигнала измерения напряжения сети из схемы измерения напряжения сети через изолирующую гильзу и выдачи опорного сигнала уменьшения яркости в цепь вторичной обмотки в ответ на сигнал измерения напряжения сети,
при этом свет, выдаваемый твердотельным осветительным модулем, соединенным с цепью вторичной обмотки, регулируется в ответ на опорный сигнал уменьшения яркости, выдаваемый схемой обработки.

2. Система по п. 1, дополнительно содержащая первый оптический вентиль (134, 434), выполненный с возможностью связи
схемы обработки со схемой измерения напряжения сети через изолирующую гильзу.

3. Система по п. 1, дополнительно содержащая средство (444) управления выходным током в цепи вторичной обмотки, выполненное с возможностью приема опорного сигнала уменьшения яркости, сравнения опорного сигнала уменьшения яркости с током возбуждения твердотельного осветительного модуля и генерирования сигнала обратной связи по уменьшению яркости на основе результата упомянутого сравнения.

4. Система по п. 3, дополнительно содержащая:
второй оптический вентиль (424), выполненный с возможностью связи средства управления выходным током с цепью первичной обмотки для обеспечения возможности передачи сигнала обратной связи по уменьшению яркости в цепь первичной обмотки, при этом свет, выдаваемый твердотельным осветительным модулем, регулируется в ответ на сигнал обратной связи по уменьшению яркости.

5. Система по п. 4, в которой твердотельный осветительный модуль содержит множество светоизлучающих диодов (СИДов).

6. Система по п. 2, в которой сигнал измерения напряжения сети содержит широтно-импульсно-модулированный (ШИМ) сигнал, а схема измерения напряжения сети передает этот ШИМ-сигнал в схему обработки через первый оптический вентиль.

7. Система по п. 6, в которой схема измерения напряжения сети содержит микроконтроллер, выполненный с возможностью генерирования ШИМ-сигнала, причем микроконтроллер содержит аналого-цифровой преобразователь (АЦП), выполненный с возможностью приема выпрямленного напряжения сети.

8. Система по п. 3, в которой схема измерения напряжения сети содержит:
резистивный делитель (236), выполненный с возможностью приема выпрямленного напряжения сети из выпрямителя напряжения и выдачи подвергнутого делению напряжения сети;
тактовый генератор (237), выполненный с возможностью генерирования тактового сигнала; и
генератор (238) импульсных сигналов, выполненный с возможностью генерирования ШИМ-сигнала на основе подвергнутого делению напряжения сети и тактового сигнала, причем ширина каждого импульса ШИМ-сигнала модулируется амплитудой выпрямленного напряжения сети.

9. Система по п. 8, в которой тактовый генератор содержит первый таймер 555, а генератор импульсных сигналов содержит второй таймер 555.

10. Система по п. 1, в которой количество света, выдаваемого твердотельным осветительным модулем, изменяется прямо пропорционально амплитуде выпрямленного напряжения сети.

11. Система по п. 1, в которой твердотельный осветительный модуль содержит модифицированный модуль светоизлучающих диодов (СИДов), выполненный с возможностью замены обычного электромагнитного балласта.

12. Способ обеспечения уменьшения яркости, проводимого на основе сигнала сети, модуля (160, 460) светоизлучающих диодов (СИДов), содержащий этапы, на которых:
генерируют (S312) сигнал измерения напряжения сети, указывающий амплитуду выпрямленного напряжения сети, из цепи
(110, 410) первичной обмотки, соединенной с первичной обмоткой силового трансформатора (120, 420);
передают (S313) сигнал измерения напряжения сети через изолирующую гильзу (125, 425), соответствующую силовому трансформатору;
принимают переданный сигнал измерения напряжения сети через изолирующую гильзу и генерируют (S317) сигнал обратной связи по уменьшению яркости в цепи (140, 440) вторичной обмотки, соединенной с вторичной обмоткой силового трансформатора, на основе, по меньшей мере - частично, переданного сигнала измерения напряжения сети;
передают (S318) сигнал обратной связи по уменьшению яркости из цепи вторичной обмотки через изолирующую гильзу в цепь первичной обмотки; и
регулируют (S319) ток возбуждения модуля СИДов, выдаваемый цепью вторичной обмотки, на основе сигнала обратной связи по уменьшению яркости, переданного в цепь первичной обмотки.

13. Способ по п. 12, в котором генерирование сигнала обратной связи по уменьшению яркости заключается в том, что:
генерируют сигнал обратной связи по уменьшению яркости на основе, по меньшей мере - частично, переданного сигнала измерения напряжения сети;
выдают сигнал обратной связи по уменьшению яркости в цепь вторичной обмотки;
сравнивают сигнал обратной связи по уменьшению яркости, по меньшей мере, с одним электрическим условием в цепи вторичной обмотки; и
генерируют сигнал обратной связи по уменьшению яркости для указания результата сравнения.

14. Способ по п. 12, в котором регулирование тока возбуждения модуля СИДов заключается в том, что:
регулируют, по меньшей мере, одно из напряжения первичной обмотки и тока вторичной обмотки, подаваемых в первичную обмотку силового трансформатора, на основе сигнала обратной связи по уменьшению яркости, что приводит к соответствующему регулированию, по меньшей мере, одного из напряжения вторичной обмотки и тока вторичной обмотки силового трансформатора, причем ток возбуждения основан на токе вторичной обмотки.

15. Способ по п. 12, в котором сигнал измерения напряжения сети содержит широтно-импульсно-модулированный (ШИМ) сигнал.



 

Похожие патенты:

Изобретение относится к области светотехники с модуляцией кода. Осветительное устройство содержит средство (102) регулирования силы света выходного светового излучения, использующее множество режимов регулирования силы света, каждый из которых представляет собой режим регулирования силы света выходного светового излучения из осветительного устройства посредством соответствующего способа регулирования силы света, и средство (103) внедрения кода в выходное световое излучение.

Изобретение относится к области светотехники. Схема включения светоизлучающего диода (СИД) для освещения с повышенным КПД использует цепь постоянного тока на стороне нагрузки схемы включения СИД.

Изобретение относится к области светотехники. Схема интерфейса для работы источника света от электронного драйвера флуоресцентной лампы оборудована входными клеммами (7a, 7b) для соединения с соединительными клеммами для лампы электронного драйвера флуоресцентной лампы, - первой цепью (5a), взаимно соединяющей первую пару входных клемм (7a), - второй цепью (5b), взаимно соединяющей вторую пару входных клемм (7b), - третьей цепью (11, 9), взаимно соединяющей первую клемму (T1) первой цепи и вторую клемму (T2) второй цепи, и содержащей выпрямитель (31), причем выходные клеммы упомянутого выпрямителя соединены во время работы с источником света.

Устройство для управления уровнями света, выдаваемого твердотельной нагрузкой освещения при низких уровнях затемнения, включает в себя схему стабилизации, подключенную параллельно к твердотельной нагрузке освещения.

Изобретение относится к способу управления осветительным устройством с регулируемой яркостью, объединенным со световым датчиком на первом уровне комнаты и освещением второго уровня комнаты.

Изобретение относится к устройствам для возбуждения светодиодной цепи. Техническим результатом является упрощение и повышение надежности схемы возбуждения.

Изобретение относится к области светотехники. Цепочка светодиодных нагрузок питается посредством выпрямленного напряжения питающей сети.

Изобретение относится к устройству (40; 50; 60) возбуждения и соответствующему способу возбуждения для возбуждения нагрузки (12), в частности блока (12) СИД, включающего в себя один или более СИД, причем упомянутое устройство возбуждения содержит входной блок (14) питания для приема входного напряжения (V10) от внешнего источника (18) питания и для обеспечения выпрямленного напряжения (V12) питания, управляемый резистор (48) для подачи тока (IL) нагрузки для питания нагрузки (12), частотный фильтр (42), соединенный с входным блоком (14) питания для подачи напряжения (V18) на нагрузку (12), в котором частотный фильтр (42) соединен параллельно нагрузке (12) и подсоединен к управляемому резистору (48) для подачи постоянной электрической мощности на нагрузку (12).

Изобретение относится к области светотехники. Формирователь сигнала питания подает питание, чтобы возбуждать по меньшей мере один источник света.

Изобретение относится к управлению твердотельными осветительными устройствами. Техническим результатом является управление твердотельным осветительным устройством, при котором выход максимального напряжения устройства управления может быть изменен в ответ на опорный ток и заранее заданный предел мощности.

Изобретение относится к блоку управления мощностью и соответствующему способу управления электрической мощностью, выдаваемой на нагрузку, в частности в блок светоизлучающих диодов (СИДов), содержащий один или несколько СИДов. Техническим результатом является обеспечение контроллера напряжения для управления выходным напряжением блока преобразователя, обеспечивающего высокую эффективность и пониженные потери мощности. Результат достигается тем, что блок (40) управления мощностью для управления электрической мощностью, выдаваемой на нагрузку, в частности в блок (12) светоизлучающих диодов (СИДов), содержащий один или несколько СИДов, содержит: блок (10) преобразователя, имеющий входную клемму (42) для приема входного напряжения (V10) от внешнего источника (22) питания и имеющий выходную клемму (44) для выдачи выходного напряжения (V14) для питания нагрузки, причем блок (10) преобразователя содержит переключающее устройство (14) для преобразования входного напряжения (V10) в выходное напряжение (V14); блок (20) управления, предназначенный для управления переключающим устройством (14); сигнальное средство (46), соединенное с выходной клеммой (44) для подачи сигнала напряжения или тока на выходную клемму (44), причем блок (20) управления соединен с сигнальным средством (46) и выполнен с возможностью управления сигнальным средством (46). 2 н. и 10 з.п. ф-лы, 9 ил.

Устройство управления током для твердотельной осветительной нагрузки включает в себя конденсатор (241, 341) и источник (245, 345) тока. Конденсатор соединен в параллельном соединении с твердотельной осветительной нагрузкой (260, 360). Источник тока последовательно соединен с параллельным соединением конденсатора и твердотельной осветительной нагрузки. Источник тока выполнен с возможностью динамической модуляции амплитуды входного тока, подаваемого в параллельное соединение конденсатора и твердотельной осветительной нагрузки, на основании входного напряжения. Технический результат - повышение коэффициента мощности и эффективности осветительного элемента. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к области светотехники. Формирователь сигнала питания освещения имеет формирователь сигнала стороны первичного контура, выполненный с возможностью преобразовывать входной сигнал от источника питания-электросети в выходной сигнал стороны первичного контура, и формирователь сигнала стороны вторичного контура, связанный с формирователем сигнала стороны первичного контура и выполненный с возможностью выпрямлять и фильтровать выходной сигнал стороны первичного контура для подачи выходного тока формирователя сигнала питания для возбуждения осветительной нагрузки. Микроконтроллер управляет формирователем сигнала питания освещения при пуске так, что формирователю сигнала стороны вторичного контура подается питание, а формирователь сигнала стороны первичного контура находится в незапитанном состоянии в течение периода плавного пуска, а после периода плавного пуска формирователь сигнала стороны вторичного контура устанавливается в состояние низкого уровня, когда питание подано, и после этого устанавливается в состояние так, что выходной ток формирователя сигнала питания из формирователя сигнала стороны вторичного контура увеличивает световыход осветительной нагрузки от начального уровня яркости до номинального уровня яркости без мерцания. Технический результат - повышение качества освещения. 2 н. и 13 з.п. ф-лы, 12 ил.

Изобретение относится к системе возбудителя светоизлучающих диодов (СИД), лампе, содержащей такую систему возбудителя СИД, и способу возбуждения СИД. Технический результат заключается в обеспечении системы возбудителя СИД, которая предоставляет более малые ступени изменения интенсивности светового излучения. Результат достигается тем, что система (1) возбудителя СИД содержит источник тока (4), который подает ток (i) питания на параллельную компоновку параллельного переключателя (20) и СИД (10). Параллельный переключатель (20) накоротко замыкает СИД (10), когда он замкнут. Контроллер (15) во время использования генерирует: (i) первый сигнал (E) управления для управления источником (4) тока для смены режима регулирования, в котором ток (i) питания регулируется таким образом, чтобы он имел ненулевой средний уровень, на режим затухания, в котором ток (i) питания затухает в течение периода (Td) затухания, и (ii) второй сигнал (CSO) управления для управления параллельным переключателем (20) таким образом, чтобы он открывался в течение открытого периода (То), содержащего подпериод периода (Td) затухания. 3 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к драйверу для возбуждения схемы светоизлучающих диодов. Техническим результатом является обеспечение возможности замены электронного балласта флуоресцентной трубчатой лампы или подобной лампы схемой светоизлучающих диодов, не удаляя электронный балласт. Результат достигается тем, что предоставляется драйвер (1) с первой схемой (10) для расстраивания резонатора электронного балласта (3). Первая схема (10) содержит последовательное соединение конденсатора (11) и двунаправленного переключателя (12). Последовательное соединение соединяется с электронным балластом (3) для приема сигнала переменного тока. Драйвер (1) предоставляется со второй схемой (20) для предоставления сигнала постоянного тока на схему (2) светоизлучающих диодов. Вторая схема (20) содержит выпрямитель с входными выводами, соединенными с последовательным соединением и с выходными выводами, соединенными со схемой (2) светоизлучающих диодов. Кроме того, драйвер (1) предоставляется с третьей схемой (30) для предоставления сигнала управления на первую схему (10) для управления уровнем мощности, подаваемой на схему (2) светоизлучающих диодов. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к устройству управления для управления нагрузкой, в частности, светодиодным блоком, имеющим один или более светодиодов. Техническим результатом является создание устройства управления нагрузкой, в частности светодиодным блоком, содержащим один или более светодиодов, совместимого с различными диммерами, в частности с диммерами с фазовой отсечкой. Результат достигается тем, что устройство (60) содержит: входные клеммы для приема входного напряжения (V10) от внешнего источника (16) питания для питания нагрузки (12), средство (64) соединения для соединения входных клемм друг с другом и создания токового пути (66, 68), зависящего от полярности входного напряжения (V10), причем средство (64) соединения содержит первый токовый путь (66) для соединения входных клемм в первом направлении тока и второй токовый путь (68) для соединения входных клемм во втором направлении тока, противоположном первому направлению тока, при этом каждый из первого и второго токового пути (66, 68) содержит блок (88, 90) управления током для управления током (I3, I4) делителя напряжения в соответствующем токовом пути (66, 68) и при этом каждый из первого и второго токового пути (66, 68) содержит средство (92, 94) разъединения для блокировки тока (I3, I4) делителя напряжения в соответствующем токовом пути (66, 68) в обратном направлении, противоположном соответствующему направлению тока. 3 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к управлению твердотельными осветительными устройствами. Техническим результатом является возможность обеспечивать непрерывную, устойчивую работу твердотельного осветительного (SSL) устройства во время операций регулировки освещенности и выдавать уровень освещенности, соответствующий настройке. Результат достигается тем, что определение величины светоотдачи от твердотельного осветительного (SSL) устройства на основе настройки регулятора освещенности включает в себя этапы, на которых определяют настройку регулятора освещенности во время режима считывания посредством анализа сигнала мощности, принятого от регулятора освещенности, настройка регулятора освещенности указывает требуемый уровень освещенности, определяют мощность, необходимую на входных выводах устройства SSL, чтобы нагрузка SSL выдавала требуемый уровень светоотдачи, и определяют значение корректирующего сигнала для корректировки мощности на входных выводах устройства SSL во время режима приема мощности по меньшей мере частично на основе определенной настройки регулятора освещенности, чтобы заставить устройство SSL выдавать требуемый уровень освещенности. 2 н. и 13 з.п. ф-лы, 15 ил.

Изобретение относится к области электротехники. Схемная сборка для избирательной подачи питания на распределенные нагрузки (D1-D7, 220-226, 213a-213e) содержит множество сегментов (10, 20, 30, 40, 50, 60, 70) нагрузки, каждый из которых электрически соединен по меньшей мере с одним выводом питания для приема изменяемого напряжения, причем каждый сегмент (10, 20, 30, 40, 50, 60, 70) нагрузки содержит, по меньшей мере, блок (D1-D7, 220-226, 213a-213e) нагрузки и блок (11) датчика близости, соединенный с блоком нагрузки и содержащий по меньшей мере одно реактивное устройство (L1-L7, L1a-L7a, C1-C7, C1a-C7a, 214a-214e, 215d), имеющее реактивное сопротивление, причем реактивное сопротивление зависит от близости к объекту (100, 102) обнаружения. Технический результат - повышение эффективности интерактивной подачи питания на нагрузки. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к области светотехники, в частности к приводному устройству (50a-50e) и соответствующему способу приведения в действие для приведения в действие нагрузки (22), в частности LED-блока, содержащего блок (52) входной мощности для приема входного напряжения (V20) от внешнего источника питания и для обеспечения выпрямленного напряжения (V52) питания, блок (54) преобразования мощности для преобразования упомянутого напряжения (V52) питания в ток (I54) нагрузки для питания нагрузки (22), зарядный конденсатор (56) для хранения заряда и питания нагрузки (22), когда недостаточно энергии для питания нагрузки (22) и/или блока (54) преобразования мощности извлечено из упомянутого внешнего источника (20) питания в данный момент, и управляющий блок (58) для управления зарядкой упомянутого зарядного конденсатора (56) упомянутым напряжением (V52) питания до напряжения (V56) конденсатора, которое может быть существенно выше, чем пиковое напряжение (V52) упомянутого напряжения питания, и для питания нагрузки (22). Технический результат - повышение коэффициента мощности, эффективности срока службы устройства освещения. 3 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к электрическому устройству для обеспечения выходного сигнала, зависящего от электрического входного сигнала. Электрическое устройство (1) выполнено с возможностью обеспечения неизменного выходного сигнала, если электрический входной сигнал находится в первом диапазоне электрического входного сигнала, и зависимого выходного сигнала, если электрический входной сигнал находится во втором диапазоне электрического входного сигнала, при этом зависимый выходной сигнал зависит от электрического входного сигнала. Поэтому выходной сигнал может оставаться неизменным, если даже электрический входной сигнал, который представляет собой, предпочтительно, сетевое напряжение постоянного тока, флуктуирует в пределах первого диапазона электрического входного сигнала. Кроме того, во втором диапазоне электрического входного сигнала выходной сигнал может регулироваться путем регулирования всего лишь электрического входного сигнала, аналогичного сетевому напряжению постоянного тока, без обязательной потребности в дополнительном блоке регулирования электрического устройства. Технический результат - повышение устойчивости к флуктуациям электрического входного сигнала и упрощение регулирования выходного сигнала. 5 н. 11 з.п. ф-лы, 9 ил.
Наверх