Способ оценки эффективности стрельбы боевого дистанционно-управляемого модуля, размещенного на подвижном объекте

Изобретение относится к способам оценки эффективности стрельбы боевого дистанционно-управляемого модуля, размещенного на подвижном объекте. Процесс оценки в способе разделен на этапы. На этих этапах определяют объем необходимой регистрируемой информации, критерии оценки стрельбы, экспериментальные данные о результатах стрельб, доверительную вероятность поражения цели γ, расчетную максимальную дальность действительной стрельбы Dmax, расчетную ориентировочную дальность действительной стрельбы, время подготовки и производства очереди, максимальное и минимальное значения дальности до цели от рубежа открытия огня, количество замеров дальности для стрельбы с ходу по одной цели, скорость движения подвижного объекта при производстве очереди и среднюю скорость движения подвижного объекта при производстве очередей, нижнюю РН и верхнюю РВ границы доверительного интервала вероятности поражения цели Р, коэффициент пропускания атмосферы. Достигается возможность оценки эффективности стрельбы боевого дистанционно-управляемого модуля. 1 табл., 7 ил.

 

Изобретение относится к способам оценки боевой эффективности дистанционно-управляемых устройств, оснащенных системой вооружения и устанавливаемых на шасси наземных транспортных средств.

Известен способ проведения испытаний боевого дистанционно-управляемого модуля (см. патент RU №2550250, опубл. 10.05.15 г., Бюл. №13), принятый за прототип. Способ проведения испытаний боевого дистанционно-управляемого модуля заключается в том, что процесс контроля разделен на функциональные блоки контрольных операций. Блок контрольных операций по определению точностных характеристик заключается в расчете на основе полученных параметров средних квадратических погрешностей и сравнении их с установленными предельными значениями. Для проведения части контрольных операций используется технологическое наземное транспортное средство, на котором монтируются элементы контролируемых систем, перед контрольными операциями проводят операции по технологической приработке и калибровке. Перед проведением испытаний боевого дистанционно-управляемого модуля, состоящего из трех основных частей: поворотной платформы, блока управления и системы вооружения, с системой вооружения проводятся работы по ее приведению к нормальному бою, определяется средняя точка попадания, а при необходимости производится юстировка, далее производится юстировка видеокамер системы технического зрения и тепловизора поворотной платформы. Первый блок контрольных операций заключается в проверке работоспособности боевого дистанционно-управляемого модуля при использовании по назначению, включающей проверку возможности выбора режима стрельбы и длительности очереди, оценку среднего расхода патронов, необходимых для поражения целей, проверку скорости плавного наведения на цель в горизонтальной и вертикальной плоскости, проверку перебросочной скорости в горизонтальной и вертикальной плоскости, проверку возможности дистанционного взвода оружия, проверку обеспечения заряжания и перезаряжания системы вооружения. Второй блок контрольных операций заключается в проверке возможности осуществления наблюдения и целеуказания, включающей проверку сектора и угла наблюдения и обстрела, проверку дальности обнаружения цели в дневных и ночных условиях, в условиях задымленности атмосферы, дождя и тумана, проверку измерения расстояния с помощью дальномера, проверку разрешающей способности системы наблюдения, проверку обеспечения ручного режима выбора и запоминания в произвольной последовательности нескольких целей, проверку автоматического сопровождения цели. Третий блок контрольных операций заключается в проверке управляемости изделия и возможности поддержания заданных параметров, включающей проверку обеспечения стабилизации в горизонтальной и вертикальных плоскостях поворотной платформы и системы вооружения во время движения наземного транспортного средства, проверку обеспечения ввода информации с клавиатуры и функционирования координатно-указательного устройства трекбола и джойстика блока управления, проверку передачи данных между блоком управления и поворотной платформой, проверку возможности подключения к блоку управления нескольких поворотных платформ. Четвертый блок контрольных операций заключается в проверке блока управления, включающей проверку работоспособности изделия при изменении напряжения электропитания и отображения напряжения питания на экране блока управления, проверку требований к твердотельному накопителю, проверку обеспечения обмена данных через порты Ethernet, проверку обеспечения обмена данных через порты USB, проверку требований к графическому контроллеру, проверку функционирования индикации и органов управления, проверку требований к ЖК-модулю, проверку контрастности изображения, проверку максимальной яркости изображения. Пятый блок контрольных операций заключается в проверке возможности реализации вспомогательных функций, связанных с работой оператора, включающей проверку возможности подачи тонального звукового сигнала, обеспечивающего концентрацию внимания и препятствующего сну оператора при продолжительном наблюдении за местностью, проверку защиты от неправильных (ошибочных) действий оператора, приводящих к отказам, потере информации и несанкционированному прохождению электрического сигнала, обеспечивающего ведение огня. Шестой блок контрольных операций заключается в проверке точностных характеристик, включающей проверку дальности поражения цели в дневных условиях при нормальных метеорологических условиях, проверку дальности поражения цели в ночных условиях, проверку дальности поражения цели в условиях задымленности атмосферы, дождя и тумана, проверку точности наведения на цель при использовании трекбола и сенсорной панели, оценку срединных отклонений по высоте (дальности), боковому направлению, отклонения средней точки попадания от контрольной точки по высоте и боковому направлению, оценку кучности стрельбы изделия.

Недостатками прототипа являются:

- недостаточные возможности по оценке воздействия внешних, в частности, метеорологических факторов;

- недостаточные возможности по оценке факторов, возникающих при движении подвижного объекта, на котором установлено вооружение;

- недостаточный уровень аналитической обработки результатов проведенных проверок, не позволяющий сформулировать обобщенные выводы по эффективности применения боевого дистанционно-управляемого модуля.

Предлагаемым изобретением решается задача по оценке реальной эффективности применения боевого дистанционно-управляемого модуля, устанавливаемого на шасси наземных транспортных средств.

Технический результат, получаемый при осуществлении изобретения, заключается в формировании способа оценки эффективности стрельбы боевого дистанционно-управляемого модуля, определяющего показатели эффективности стрельбы из комплексов вооружений, установленных на подвижных объектах, и необходимый перечень регистрируемой информации, используемой при анализе результатов оценочных операций.

Указанный технический результат достигается тем, что в предлагаемом способе оценки эффективности стрельбы боевого дистанционно-управляемого модуля, размещенного на подвижном объекте, заключающемся в том, что процесс оценки разделен на функциональные блоки контрольных операций, по результатам проведения которых оцениваются работоспособность, возможность осуществления наблюдения и целеуказания, управляемость, точностные характеристики боевого дистанционно-управляемого модуля при использовании по назначению, новым является то, что на первом этапе определяется объем необходимой регистрируемой информации: отклонение показателей выверки вооружения, порядковый номер очереди, поражение цели, дальность до подвижного объекта, скорость движения подвижного объекта, время подготовки и производства очереди, яркость метеорологических щитов, цели и фона, горизонтальная освещенность, температура окружающего воздуха, атмосферное давление, скорость и азимутальное направление приземного ветра, на втором этапе определяются критерии оценки стрельбы, экспериментальные данные о результатах стрельб: количество поражений цели n и количество произведенных очередей N и рассчитывается частость поражения цели Р, на третьем этапе рассчитывается доверительная вероятность поражения цели y, на четвертом этапе определяется расчетная максимальная дальность действительной стрельбы Dmax, расчетная ориентировочная дальность действительной стрельбы в условиях неоределенности оценки соответствия с использованием приемочного Ro (соответствие) и браковочного R1 (несоответствие) уровней Do при соблюдении условия Ro>n>R1, на пятом этапе рассчитывается время подготовки и производства очереди по звукозаписи видеокамеры и время подготовки и производства очереди по результатам всех опытов, на шестом этапе рассчитываются максимальное и минимальное значения дальности до цели от рубежа открытия огня, на седьмом этапе рассчитывается количество замеров дальности для стрельбы с ходу по одной цели, на восьмом этапе рассчитывается скорость движения подвижного объекта при производстве очереди и средняя скорость движения подвижного объекта при производстве очередей j-го упражнения, на девятом этапе определяются нижняя РН и верхняя РВ границы доверительного интервала вероятности поражения цели Р, построенные по количеству произведенных очередей N, количеству поражений n, приемочной β и браковочной α вероятностям, на десятом этапе рассчитывается коэффициент пропускания атмосферы, видимый контраст цели и метеорологическая дальность видимости.

Определение на первом этапе объема необходимой регистрируемой информации позволяет:

- определить способы регистрации информации;

- определить аппаратный состав для контроля: комплект оборудования для выверки вооружения, систему дистанционной регистрации результатов стрельбы, дальномер для определения расстояния до объекта испытаний, штатные приборы подвижного объекта для регистрации скорости движения, секундомер, люксметр для определения уровня освещенности, метеокомплекс для определения температуры окружающего воздуха и атмосферного давления, скорости и азимутального направления приземного ветра, тип цифровой видеокамеры.

Определение на втором этапе критериев оценки стрельбы, экспериментальных данных о результатах стрельб и проведение расчета частости поражения цели позволяет:

- однозначно сформулировать понятие положительного результата стрельбы;

- определить реальное количество поражений цели для конкретного количества произведенных очередей.

Проведение на третьем этапе расчета доверительной вероятность поражения цели позволяет учесть при расчете риски заказчика и разработчика.

Определение на четвертом этапе расчетной максимальной дальности действительной стрельбы и расчетной ориентировочной дальности действительной стрельбы позволяет провести предварительную оценку схем мишенной обстановки при выполнении упражнений по стрельбе.

Проведение на пятом этапе расчета времени подготовки и производства очереди по звукозаписи видеокамеры и времени подготовки и производства очереди по результатам всех опытов позволяет:

- получить реальные результаты по времени, затрачиваемому на стрельбу, с учетом времени подготовки, производства очереди и времени на подачу команд на разрешение огня;

- получить усредненные статистические данные по времени по результатам всех.

Проведение на шестом этапе расчета максимального и минимального значений дальности до цели от рубежа открытия огня позволяет упростить разработку и сократить время проектирования схем мишенной обстановки.

Проведение на седьмом этапе расчета количества замеров дальности для стрельбы с ходу по одной цели позволяет:

- учесть при расчете расстояния между рубежами открытия огня, между последним рубежом открытия огня и рубежом прекращения огня;

- учесть время на выработку и учет поправок для стрельбы, время на подготовку дальномера для замера и время на проведение замера дальности.

Проведение на восьмом этапе расчета скорости движения подвижного объекта при производстве очереди и средней скорости движения подвижного объекта при производстве очередей j-го упражнения позволяет:

- оценить скоростные характеристики подвижного объекта при проведении стрельбы;

- получить усредненные статистические данные по скорости движения подвижного объекта при стрельбе.

Определение на девятом этапе нижней и верхней границы доверительного интервала вероятности поражения цели позволяет провести оценку эффективности огневого поражения из вооружения, установленного на подвижном объекте.

Проведение на десятом этапе расчета коэффициента пропускания атмосферы, видимого контраста цели и метеорологической дальности видимости позволяет:

- провести оценку метеорологических факторов на конкретный календарный день;

- провести оценку влияния метеорологических факторов на результаты стрельбы.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг. 1 показан пример определения доверительных интервалов для заданной частности программным методом; на фиг. 2 - пример распределения приемочных и браковочных уровней; на фиг. 3 - схема мишенной обстановки и порядок обстрела целей для стрельбы с места по неподвижным целям; на фиг. 4 - схема мишенной обстановки для стрельбы с места по подвижной цели; на фиг. 5 - схема мишенной обстановки и порядок обстрела целей для стрельбы с ходу по неподвижным целям; на фиг. 6 - схема мишенной обстановки для стрельбы с ходу по подвижной цели; на фиг. 7 - схема метеорологического щита.

Способ оценки эффективности стрельбы боевого дистанционно-управляемого модуля, размещенного на подвижном объекте, осуществляется следующим образом. Для проведения оценки эффективности стрельбы боевого дистанционно-управляемого модуля (БДУМ) 1 он размещается на подвижном объекте (ПО) 2. Показателем эффективности стрельбы является вероятность (частость) попадания в мишень и время, затрачиваемое экипажем на подготовку и производство одной очереди. Принцип определения показателей эффективности стрельбы заключается в определении вероятности (частости) попадания в мишень хотя бы одной пули из очереди в 10 пуль и определении времени, затрачиваемого экипажем на подготовку и производство одной очереди, при проведении стрельб из комплекса вооружения БДУМ 1, установленного на ПО 2, с ходу и с места по неподвижным и движущимся целям на реальных дальностях через дневные и ночные каналы прицельных комплексов с места наводчиков в штатных режимах.

Показатели эффективности стрельбы определяются следующим образом.

1. На первом этапе определяется объем регистрируемой информации, необходимой для расчета оценочных показателей: отклонение показателей выверки вооружения, порядковый номер очереди, поражение цели, дальность до подвижного объекта, скорость движения подвижного объекта, время подготовки и производства очереди, яркость метеорологических щитов, цели и фона, горизонтальная освещенность, температура окружающего воздуха, атмосферное давление, скорость и азимутальное направление приземного ветра.

2. На втором этапе определяются критерии оценки стрельбы, экспериментальные данные о результатах стрельб: количество поражений цели n и количество произведенных очередей N и рассчитывается частость поражения цели Р. За положительный результат при стрельбе принимается поражение цели. Критерием поражения является попадание в мишень хотя бы одной пули из очереди в 10 пуль. Частность поражения цели Р рассчитывается по формуле

где n - количество поражений цели, определенных при проведении стрельбы;

N - количество произведенных очередей.

3. На третьем этапе рассчитывается доверительная вероятность поражения цели y по формуле

где β - риск заказчика;

α - риск разработчика.

4. На четвертом этапе определяется расчетная максимальная дальность действительной стрельбы Dmax, расчетная ориентировочная дальность действительной стрельбы Do в условиях неоределенности оценки соответствия с использованием приемочного Ro (соответствие) и браковочного R1 (несоответствие) уровней при соблюдении условия Ro>n>R1.

Расчетная максимальная дальность действительной стрельбы Dmax рассчитывается по формуле

где DC - дальность, на которой велась стрельба;

Ф-11) - обратная функция Лапласа для ;

R0 - приемочный уровень (соответствия), используемый при оценке эффективности стрельбы, определяется из формульной зависимости биноминального распределения случайной величины

где - число сочетаний из N по n;

РН - заданное значение нижней границы доверительного интервала.

Расчетная ориентировочная (с доверительной вероятностью 0,8) дальность действительной стрельбы рассчитывается по формуле

где R1 - браковочный уровень (несоответствия), используемый при оценки эффективности стрельбы, рассчитывается по формульной зависимости биноминального распределения случайной величины

5. На пятом этапе рассчитывается время подготовки и производства очереди по звукозаписи видеокамеры и время подготовки и производства очереди по результатам всех опытов.

Время подготовки и производства очереди по звукозаписи видеокамеры рассчитывается по формуле

где Ti - время подготовки и производства i-й очереди;

ТВi - время производства очереди на звукозаписи;

ТOi - время подачи команды на открытие огня на звукозаписи.

Время подготовки и производства очереди по результатам всех опытов рассчитывается по формуле

6. На шестом этапе рассчитывается максимальное и минимальное значения дальности до цели от рубежа открытия огня.

Максимальное значение дальности до цели от рубежа открытия огня (POO) 3…5 рассчитывается по формуле

где Dmax - максимальное значение дальности до цели в соответствии с нормативными документами;

Vmax - максимальная скорость движения объекта испытаний для стрельбы с ходу в соответствии с нормативными документами;

ТП - время подготовки и производства очереди в соответствии с нормативными документами.

Минимальное значение дальности до цели от рубежа открытия огня (POO) 3…5 рассчитывается по формуле

7. На седьмом этапе рассчитывается количество замеров дальности для стрельбы с ходу по одной цели по формуле

где SPOO - дистанция между двумя соседними РОО, а также между последним РОО и рубежом прекращения огня (РПО) 6;

ТПОПР - время на выработку и учет поправок для стрельбы;

ТП - время подготовки дальномера для следующего замера;

ТD - время на замер дальности до цели.

8. На восьмом этапе рассчитывается скорость движения подвижного объекта при производстве очереди и средняя скорость движения подвижного объекта при производстве очередей j-го упражнения.

Скорость движения подвижного объекта при производстве очереди рассчитывается по формуле:

где Si - длина мерного участка в ходе подготовки и производства i-й очереди;

TOi - время подачи команды на открытие огня на звукозаписи для производства i-й очереди;

ТOi+1(РПО+1) - время подачи команды на огонь на звукозаписи для производства i+1 очереди, либо подачи команды на выстрел при достижении РПО 6.

Скорость движения подвижного объекта при производстве очереди j-го упражнения рассчитывается по формуле

где Ni - количество зачетных очередей j-го упражнения.

9. На девятом этапе определяется нижняя РН и верхняя РВ границы доверительного интервала вероятности поражения цели Р, построенные по количеству произведенных очередей N, количеству поражений n, приемочной β и браковочной α вероятностям.

Нижняя РН и верхняя РВ границы доверительного интервала определяются по формулам биноминального распределения случайной величины в соответствии с приведенным на фиг. 1 примером.

10. На десятом этапе рассчитывается коэффициент пропускания атмосферы, видимый контраст цели и метеорологическая дальность видимости.

Коэффициент пропускания атмосферы рассчитывается по формуле

где n11) - яркость светлой части 7 дальнего щита 8;

n12) - яркость темной части 9 дальнего щита 8;

n21) - яркость светлой части 7 ближнего щита 10;

n22) - яркость темной части 7 ближнего щита 10.

Видимый контраст цели рассчитывается по формуле

где nЦ - яркость цели, осредненная по всей ее площади;

nФ - яркость фона, осредненная по площади фона, ограниченного прямоугольником с размерами, в 2 раза превышающими наибольшую высоту и ширину цели, и наложенным своим центром на центр цели.

Метеорологическая дальность видимости рассчитывается по формуле

При оценке эффективности стрельбы БДУМ 1, размещенного на ПО 2, стрельбы проводятся с ходу и с места по неподвижным 11 и совершающим фланговое движение 12 целям. Скорость движения ПО 2 с БДУМ 1 и подвижной цели 12 по среднепересеченной местности во время стрельбы составляет 25-30 км/ч. Цели 11 и 12 должны полностью проецироваться на фон местности, не превышая линию горизонта. Трасса должна обеспечивать прямую видимость цели без экранирования ее на местности. Измерение дальности до цели осуществляется перед каждой очередью. Максимально возможное количество замеров дальности для стрельбы по одной цели с ходу рассчитывается по формуле (11). Метеорологические щиты 8 и 10 для определения коэффициента пропускания атмосферы состоят из 2 равных квадратов, покрашенных белой (ρ1) 7 и черной (ρ2) 9 краской. Коэффициент отражения светового потока краски: ρ1≥0,85, ρ2≈0,5ρ1. Размер щитов определяется исходя из соблюдения следующего условия: щиты независимо от дальности их установки должны занимать примерно равную площадь в плоском поле зрения наблюдательного прибора с учетом изменения кратности видения последнего. При использовании 2 щитов один из них устанавливается непосредственно у исходного рубежа испытательной директрисы, второй - в районе цели.

Перед проведением испытаний:

- производится подготовка к стрельбе ПО 2, юстировка вооружения, разворачиваются посты измерения параметров внешних условий и целей, устанавливается видеокамера, разрабатываются схемы мишенной обстановки, в которых определяются очередность стрельбы, дальности, исходный рубеж (ИР) 13, РОО 3…5, РПО 6, устанавливаются мишени;

- ПО 2 устанавливается на ИР 13;

- на удалении 20-30 м от ИР 13 устанавливается стационарный лазерный дальномер (ЛД) 14;

- проводятся измерения внешних условий, метеорологические данные рассчитываются по формулам (14)…(16).

Стрельба с места по трем разнесенным по фронту неподвижным целям:

- в соответствии со схемой мишенной обстановки определяется количество и тип боеприпасов, порядок обстрела целей, количество очередей при выполнении задания;

- после получения команды на выполнение упражнения БДУМ 1 приводится в боевое положение, включается видеокамера;

- ПО 2 перемещается с ИР13 на РОО 3;

- при достижении РОО 3 подается команда на открытие огня по первой цели, включается секундомер и выключается в момент производства очереди;

- по команде на ведение огня измеряется дальность до цели, значение которой сравнивается с заранее известным диапазоном значений, при несовпадении значений замер повторяется;

- при этом фиксируются результаты стрельбы (попадание, промах).

Стрельба с места по одной подвижной цели, стрельба с ходу по трем разнесенным по фронту и в глубину неподвижным целям, стрельба с ходу по одной подвижной цели проводятся аналогично в соответствии с определенными схемами мишенной обстановки.

Вероятность попадания (поражения) РН программным методом в среде MathCad. Значение доверительной вероятности принимается равным y=0,8 (риски заказчика и разработчика равны β=α=0,1).

При обработке результатов проводится анализ видеозаписи на предмет точности наводки на цель и при отсутствии инструментальных ошибок производится исключение очередей, которые имеют грубые ошибки наводки. При наличии качественной звукозаписи видеокамеры производится расчет времени подготовки и производства каждой очереди по формуле (7), времени подготовки и производства по результатам всех очередей - по формуле (8), скорости движения ПО 2 при производстве каждой очереди - по формуле (12), средней скорости - по формуле (13).

Определяется качественная оценка погодных условий в соответствии с международной шкалой видимости, данные которой приведены в таблице.

Таким образом, в предлагаемом изобретении решена задача по достижению технического результата, заключающегося в формировании способа оценки эффективности стрельбы боевого дистанционно-управляемого модуля, определяющего показатели эффективности стрельбы из комплексов вооружений, установленных на подвижных объектах, и необходимый перечень регистрируемой информации, используемой при анализе результатов оценочных операций.

Способ оценки эффективности стрельбы боевого дистанционно-управляемого модуля, размещенного на подвижном объекте, заключающийся в том, что процесс оценки разделен на функциональные блоки контрольных операций, по результатам проведения которых оцениваются работоспособность, возможность осуществления наблюдения и целеуказания, управляемость, точностные характеристики боевого дистанционно-управляемого модуля при использовании по назначению, отличающийся тем, что на первом этапе определяется объем необходимой регистрируемой информации: отклонение показателей выверки вооружения, порядковый номер очереди, поражение цели, дальность до подвижного объекта, скорость движения подвижного объекта, время подготовки и производства очереди, яркость метеорологических щитов, цели и фона, горизонтальная освещенность, температура окружающего воздуха, атмосферное давление, скорость и азимутальное направление приземного ветра, на втором этапе определяются критерии оценки стрельбы, экспериментальные данные о результатах стрельб: количество поражений цели n и количество произведенных очередей N, и рассчитывается частость поражения цели Р, на третьем этапе рассчитывается доверительная вероятность поражения цели γ, на четвертом этапе определяется расчетная максимальная дальность действительной стрельбы Dmax, расчетная ориентировочная дальность действительной стрельбы в условиях неопределенности оценки соответствия с использованием приемочного Ro (соответствие) и браковочного R1 (несоответствие) уровней Do при соблюдении условия Ro>n>R1, на пятом этапе рассчитывается время подготовки и производства очереди по звукозаписи видеокамеры и время подготовки и производства очереди по результатам всех опытов, на шестом этапе рассчитываются максимальное и минимальное значения дальности до цели от рубежа открытия огня, на седьмом этапе рассчитывается количество замеров дальности для стрельбы с ходу по одной цели, на восьмом этапе рассчитывается скорость движения подвижного объекта при производстве очереди и средняя скорость движения подвижного объекта при производстве очередей j-го упражнения, на девятом этапе определяются нижняя РН и верхняя РВ границы доверительного интервала вероятности поражения цели Р, построенные по количеству произведенных очередей N, количеству поражений n, приемочной β и браковочной α вероятностям, на десятом этапе рассчитывается коэффициент пропускания атмосферы, видимый контраст цели и метеорологическая дальность видимости.



 

Похожие патенты:

Изобретение относится к азимутальному прицеливанию мобильных пусковых установок (ПУ) ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели.

Изобретение относится к военной технике, в частности к системе управления огнем бронетанковой техники. Способ управления огнем бронетанковой техники заключается в использовании прибора целеуказания, состоящего из вычислителя, лазерного дальномера, приемопередатчика, датчика угла склонения, источника питания и панели управления, и дополнительного оборудования, устанавливаемого на объект бронетанковой техники: приемопередатчика, связанного со стабилизатором вооружения.

Изобретение относится к военной технике и может быть использовано в реактивных системах залпового огня (РСЗО). Осуществляют наведение пусковой установки (ПУ) в горизонтальной плоскости в направлении на цель, поднимают направляющие с реактивными снарядами (РС) на заданный угол пуска в вертикальной плоскости (ВП), вводят расчетное время (РВ) полета в систему автономной коррекции траектории полета (САКТ) PC по начальному участку траектории, включают твердотопливные ракетные двигатели, осуществляют пуск PC под малым углом в ВП по начальному участку траектории полета (УТП) PC с учётом технических характеристик ПУ и рельефа местности размещения ПУ, осуществляют перевод PC на новую траекторию с большим углом в ВП после истечения РВ с учётом условия необнаружения PC на начальном участке траектории радиолокационной станцией (РЛС) контрбатарейной борьбы (КББ) противника, производят пуск PC с последующим полетом по заданной баллистической траектории, имитирующей запуск PC из фиктивной точки, удаленной от ПУ на безопасное расстояние, исключающее поражение ПУ огнем артиллерии противника по результатам засечки РЛС КББ стартовой позиции РСЗО, управляют углами тангажа и рысканья PC с помощью газодинамических рулей по командам от САКТ PC в зависимости от безопасной высоты полета PC, исключающей обнаружение с помощью РЛС КББ, удаления ПУ от РЛС от линии фронта, минимального угла обзора РЛС КББ в ВП, фиктивного угла пуска, угла пуска PC в ВП, угла вектора скорости PC, поправки к углу пуска PC, скорости полета PC, допустимой перегрузки PC в ВП, ускорения свободного падения, поражают цель.

Изобретение относится к области стрельбы из огнестрельного оружия, в частности к системам наблюдения, наведения и стрельбы из ручного стрелкового оружия. Устройство стрельбы из огнестрельного оружия с использованием компьютерного надзора за положением ствола оружия относительно цели состоит из компьютера, источника питания, курка, светочувствительной матрицы, оптической системы, запоминающего устройства, «надзирателя», дисплея.

Изобретение относится к области вооружений, в частности к области ручного огнестрельного оружия. Пистолетный снайперский комплекс содержит основание оружейного станка, приклад, а также подставку под рукоятку оружия, подставку под дуло оружия с пазом для скобы курка оружия, корректор плоскости оружия, выполненные для создания плоскости стрельбы, параллельной плоскости основания оружейного станка, и оптический (ночной, дневной, тепловизионный, коллиматорный) прицел, закрепленный на подставке для установки прицела.

Изобретение относится к области оптического приборостроения, а именно, к устройствам наблюдения объектов и прицеливания, а также к устройствам для наведения управляемых ракет на цель по лазерному лучу, и может быть использовано в системах управления огнем объектов бронетанковой техники.

Изобретение относится к методам и средствам прицеливания и наводки, используемым в зенитных самоходных установках (ЗСУ) сухопутных войск. Способ применим в случае выхода из строя системы измерения дальности собственной радиолокационной системы, в т.ч.

Изобретение относится к области военной техники. Способ автоматического наведения оружия на подвижную цель, при котором осуществляют формирование периодического, с кадровой частотой, изображения поля военных действий, а после обнаружения цели, определения ее дальности, скорости перемещения и возвышения устанавливаются углы упреждения оружия для последующего выстрела отличается тем, что, с целью повышения вероятности поражения цели и обеспечения безопасности стрелка, после обнаружения цели стрелок с помощью пульта дистанционного управления переводит изображение цели в такую область поля зрения оптико-электронной системы (ОЭС) прицела, которая позволила бы при стабильном положении линии визирования (ЛВ) ОЭС наблюдать цель в течение времени, достаточного для первой операции прицеливания; при этой операции положение ЛВ ОЭС стабилизируется в пространстве; на изображение цели ОЭС набрасывают маркер; переводят режим работы прицела в автоматический, при котором маркер ОЭС перемещается вместе с целью, и ОЭС в начале каждого кадра передает данные об угловых координатах цели (азимут и угол места) на дальномер; дальномер автоматически поворачивается в направлении координат, выдаваемых ОЭС, и по мере входа цели в поле зрения маркера дальномера он посылает импульс излучения и определяет дальность цели, которую передает на прицел, обеспечивая получение первой триады данных (угла места, азимута и дальности цели), которые запоминаются в памяти прицела; через время Δt0, кратное периоду кадровой развертки ОЭС, дальномер вторично измеряет дальность цели и вторично передает информацию о дальности цели в память прицела, который автоматически формирует вторую триаду данных о положении цели относительно прицела; вычислитель прицела, используя обе триады данных и известный интервал времени Δt0, прогнозирует положение цели в определенный момент времени TП; причем при расчете величины TП учитываются: скорость цели; дальность и угол возвышения цели; время полета снаряда с учетом возвышения цели; динамические параметры привода прицела (время поворота прицела в расчетную точку); величина разностных координат второй и первой триады данных; температура окружающей среды; направление и скорость ветра; затем стабилизация ЛВ ОЭС снимается и прицел со стволом оружия поворачивается в направлении предсказанного положения; после установки прицела в расчетное положение в определенный момент времени TП автоматически производится выстрел.

Группа изобретений относится к военной технике, в частности к корабельным оружейным установкам с установленными на них зенитными прицелами и прицелами для стрельбы по морским и наземным целям.

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА.

Предложен способ самонаведения движущегося объекта по информации о факте визирования цели при условии совпадения направления оси локатора с направлением вектора скорости объекта. При этом траекторию объекта формируют в виде циклически повторяющихся дугообразных отрезков, по которым объект движется с заданной (максимальной) угловой скоростью, одинаковой по модулю, но противоположной по знаку. Каждые два отрезка объединяют в цикл, который начинается и заканчивается фактом совпадения направления вектора скорости объекта с линией визирования цели, а смену знака угловой скорости внутри цикла производят по факту совпадения углов наклона относительно инерциальной системы координат линий, соединяющих объект и цель в начале цикла и в данный момент. Также предложены устройства, реализующие указанный выше способ. 4 н.п. ф-лы, 4 ил.

Предложен адаптивный цифровой спектральный селектор цели. Он содержит оптико-электронный следящий гирокоординатор с тремя каналами спектроделения оптического излучения, тремя фотоприемниками, тремя импульсными усилителями с однократным дифференцированием, выходы которых подключены к амплитудным детекторам, а выходы детекторов к схеме сравнения уровней, или вычислителям отношений уровней, а выходы схемы сравнения, или вычислителей отношений - к схеме определения и формирования "стробов" принадлежности сигналов цели или помехе. При этом в каждый канал введены последовательно соединенные корректоры сигналов в виде дифференцирующего устройства второго дифференцирования и бинарного квантователя, управляемые кодом делители напряжений, компараторы и анализаторы с переменными логическими переключательными функциями. Также введен задатчик коэффициентов деления делителей и логических функций анализаторов, причем первый выход задатчика подключен к входу управления делителей, а второй к входу задания логических функций анализаторов. 4 ил.

Изобретение относится к области вооружения, в частности к противотанковым ракетным комплексам (ПТРК). ПТРК содержит пусковую установку с телетепловизионным прицелом и аппаратурой наведения и управления, транспортно-пусковой контейнер с управляемой ракетой, навигационную систему, включающую измеритель координат местоположения пусковой установки и измеритель углов положения самоходной машины относительно географической системы координат, устройство целеуказания, выполненное в виде двух модулей. На второй самоходной машине дополнительно введен прицельный модуль с возможностью поворота прицельного модуля автоматизированными приводами вертикального и горизонтального наведения и с возможностью запитки от системы электропитания второй самоходной машины. Радиолокатор обнаружения и сопровождения целей и прицельный модуль выполнены в виде модуля разведки с возможностью поворота. Вычислительная система второй самоходной машины подключена к радиостанции канала связи с вычислительной системой устройства целеуказания первой самоходной машины. Достигается повышение эффективности разведки, боевой производительности ПТРК, вероятности выполнения боевой задачи в случае уничтожения одной из самоходных машин. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области военной техники и может быть использовано в стрелковом оружии с лазерными системами наведения. Формирование светового пятна на цели производят лучом, состоящим, по крайней мере, из двух цветов, сочетание которых производит впечатление цвета, соответствующего окраске цели в зоне пятна. Восприятие отраженного от цели излучения осуществляют через фильтр одного из сочетаемых цветов. Через фильтр пропускают часть отраженного излучения, преимущественно исходящего от пятна. Сочетаемые цвета формируют источниками, имеющими спектры излучения, соответственно равные длинам волн этих цветов. Техническим результатом изобретения является расширение функциональных возможностей, обеспечение скрытного прицеливания. 2 з.п. ф-лы, 1 ил.

Изобретение относится к имитаторам, снабженным радиолокационным визиром. Устройство содержит радиолокационный визир с вычислительной машиной, трехстепенной динамический стенд-качалку, имитатор эхо-сигнала, делитель мощности, фазовые модуляторы, блоки задержки, имитаторы доплеровского сдвига частоты, управляемые аттенюаторы, рупорные антенны, подвижные основания, электромеханический имитатор движения целей, безэховую камеру, выполненную в виде помещения, обшитого радиопоглощающим материалом, управляемый аттенюатор сигнала помехи, имитатор сигнала помехи, пульт управления, устройство имитации БПЛА и внешних условий полета, имитатор движения БПЛА, имитатор ветровых порывов, имитатор упругости, имитатор радиовысотомера и подстилающей поверхности, блок выработки сигналов управления, имитатор рулей. Cтенд оснащен цифровыми датчиками углов и скорости разворота платформы, концевыми выключателями. Имитатор движения целей выполнен в виде фермы, на которой закреплено монтажное устройство с установленной на нем направляющей для движения подвижных оснований, выполненных в виде кареток, и оснащено зубчатой рейкой. Технический результат - повышение достоверности моделирования. 1 ил.

Изобретение относится к области вооружения и военной техники, в частности к стабилизаторам вооружения дистанционного управления боевыми модулями (БМ). Стабилизатор вооружения дистанционно управляемого боевого модуля дополнительно содержит, связанные между собой, задающее устройство стабилизации с датчиками положения независимо стабилизированного в пространстве инерциального объекта по горизонтальному наведению (ГН) и вертикальному наведению (ВН), блок управления, усилитель мощности, блок коммутации, электродвигатель ГН, электродвигатель ВН, электромагнитный стопор ГН, электромагнитный стопор ВН, датчик положения ГН, датчик положения ВН, датчик абсолютной угловой скорости по ГН, датчик абсолютной угловой скорости по ВН, первую последовательную шину, вторую последовательную шину, третью последовательную шину, четвертую последовательную шину, прицел-дублер, в шасси объекта военного назначения дополнительно введены аппаратура управления и видеосмотровое устройство. Достигается обеспечение дистанционного наведения установленного на БМ вооружения. 1 з.п. ф-лы, 1 ил., 1 прил.

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Для наведения управляемого боеприпаса определяют координаты цели, подсвечивают область подстилающей поверхности лазерным излучением, захватывают и наводят самонаводящийся боеприпас класса воздух-поверхность (СБПВП) по отраженному лазерному излучению от области подсвета подстилающей поверхности. При этом область подсвета подстилающей поверхности лазерным излучением перемещают по заданной относительно координат цели траектории, исключающей подсвет лазерным излучением самой цели. Затем определяют параметры наведения СБПВП на цель относительно параметров траектории перемещаемой области подсвета подстилающей поверхности лазерным излучением и их значения передают на СБПВП. Обеспечивается повышение эффективности применения самонаводящихся боеприпасов на излучение целеуказания за счет снижения электромагнитной доступности сигналов подсвета на объекте поражения. 3 ил.

Изобретение относится к прицельным приспособлениям для оружия. Прицел имеет два входных окна, расстояние между которыми служит внутренней базой для параллактического угла с вершиной на цели. Прицел имеет компенсатор параллакса для совмещения двух изображений цели из входных окон в одно. Подвижная часть компенсатора через механическое соединение или через датчик положения подвижной части, баллистический калькулятор и приводы придает стволу оружия угол прицеливания и поправку на деривацию, соответствующие той дальности, на которой текущее положение подвижной части компенсатора полностью компенсирует параллактический угол, или подвижная часть компенсатора перемещает прицельную метку в поле зрения стрелка, чтобы ствол оружия получал такие угол прицеливания и поправку на деривацию при наведении метки в цель. Обеспечивается установка на оружии такого угла прицеливания и поправки на деривацию, которые по всей глубине прицельной дальности точно соответствуют дальности до цели любого линейного размера, видимой под любым ракурсом, без применения излучающих средств дальнометрирования. 6 ил.

Изобретение относится к области боевого применения артиллерии и может быть использовано для корректировки стрельбы артиллерии по целям, ненаблюдаемым с огневых позиций. Пристрелку цели (1) производят с помощью квадрокоптера (3) с видеокамерой (2) и пультом управления с планшетом (4). Определяют масштаб видеоизображения в районе цели по измерениям на планшете расстояния в миллиметрах между точками разрывов двух пристрелочных дымовых снарядов, отстрел которых производился с установками прицелов, отличающимися на 200 м. На видеоизображении планшета относительно цели измеряют в миллиметрах и с учетом масштаба переводят в метры отклонения по дальности и направлению точки падения второго пристрелочного снаряда. Вводят в прицел рассчитанные с учетом полученных на видеоизображении отклонений поправки для выстрела боевым снарядом. Обеспечивается повышение точности пристрелки в условиях отсутствия прямой видимости цели при минимальном расходе снарядов и снижении риска для жизни корректировщика без применения оптических измерительных приборов, звуковой и радиолокационной станций. 2 ил.

Изобретение относится к средствам прицеливания, предназначенным для стрелкового оружия для безопасного ведения огня из закрытой позиции. Устройство для ведения прицельного огня стрелковым оружием содержит бронезащитную опору для ствола оружия (1). Опора размещена в бойнице на стволе оружия (1) в области его дульного среза в контакте с участком ствола и повторяет его контуры. Видеокамера (5) обращена к зоне поражения и соединена кабелем (9) с монитором (8), размещенным вне зоны поражения в поле зрения бойца. При этом бойница состоит из бронекорпуса (6), в котором закреплен с возможностью вращения бронезащитный шар (3), содержащий внутри себя опору (2) для установки и фиксирования ствола оружия (1) со стороны бойца. Оружие (1) размещено в опоре (2). Видеокамера (5) установлена в бронезащитном шаре (3) в сторону противника (12) таким образом, что ее ось параллельна стволу оружия (1) бойца. Обеспечивается защищенность бойца, надежность прицеливания и возможность продолжения боя при повреждении бойницы. 6 з.п. ф-лы, 2 ил.
Наверх