Лопасть ротора ветровой энергетической установки

Авторы патента:


Лопасть ротора ветровой энергетической установки
Лопасть ротора ветровой энергетической установки
Лопасть ротора ветровой энергетической установки
Лопасть ротора ветровой энергетической установки
Лопасть ротора ветровой энергетической установки
Лопасть ротора ветровой энергетической установки
Лопасть ротора ветровой энергетической установки

Владельцы патента RU 2605478:

ВОББЕН ПРОПЕРТИЗ ГМБХ (DE)

Изобретение касается лопасти (1) ротора ветровой энергетической установки, имеющей комель (4) лопасти ротора для присоединения лопасти (1) ротора к ступице ротора и расположенную на противоположной комлю (4) лопасти ротора стороне вершину лопасти ротора, а также ветровой энергетической установки, снабженной такими лопастями ротора. При этом относительная толщина (2) профиля, которая определена как отношение толщины (2) профиля к хорде (3) профиля, имеет локальный максимум в средней области (6) между комлем лопасти ротора и вершиной лопасти ротора. Изобретение направлено на создание лопасти ветровой энергетической установки с меньшей массой и большей жесткостью. 2 н. и 7 з.п. ф-лы, 7 ил.

 

Изобретение касается лопасти ротора ветровой энергетической установки, а также ветровой энергетической установки.

Лопасти ротора для ветровых энергетических установок общеизвестны. Такие лопасти ротора имеют профиль, который учитывает особые аэродинамические требования. Обычно ветровая энергетическая установка имеет аэродинамический ротор, снабженный несколькими лопастями ротора. Такая ветровая энергетическая установка в качестве примера показана на фиг. 5. Аэродинамические свойства таких лопастей ротора являются решающими, так как они сильно влияют на работоспособность лопастей ротора и вместе с тем ветровой энергетической установки. Для повышения работоспособности лопастей ротора профили оптимизируются. Чтобы, например, в регионах с легким ветром, а именно, в частности, в местах, удаленных от моря, обеспечивать наибольшую возможную выработку электроэнергии, аэродинамические роторы имеют диаметр ротора, который может составлять более 80 метров. У таких больших ветровых энергетических установок и вместе с тем также очень больших лопастей ротора это приводит к высокому весу лопасти ротора. Большие и тяжелые лопасти ротора создают высокие нагрузки, которые воздействуют на ветровую энергетическую установку при эксплуатации. Кроме того, изготовление, а также транспортировка к соответствующим местам сооружения сложны и затруднительны. Но реализация лопасти ротора, состоящей из двух частей, которая была бы удобнее для транспортировки таких больших лопастей ротора, из-за возникающих нагрузок и дополнительно возникающего снижения прочности по месту разделения возможна только условно.

Немецкое ведомство по патентам и торговым маркам в приоритетной заявке рассмотрело следующий уровень техники: DE 102008052858 A1, DE 102008003411 A1, DE 10307682 A1, US 5474425 А и ЕР 2339171 А2.

Таким образом, в основе изобретения лежит задача устранить или уменьшить по меньшей мере одну из вышеназванных проблем, в частности предложить лопасть ротора, имеющую низкий вес при наибольшей возможной жесткости, посредством которой снижаются нагрузки на машинное отделение и башню и которая проста в транспортировке. Должно быть предложено по меньшей мере одно альтернативное решение.

Для решения этой задачи в соответствии с изобретением предлагается лопасть ротора по п. 1 формулы изобретения. Такая лопасть ротора ветровой энергетической установки имеет комель лопасти ротора для присоединения лопасти ротора к ступице ротора и расположенную на противоположной комлю лопасти ротора стороне вершину лопасти ротора. При этом относительная толщина профиля, которая определена как отношение толщины профиля к хорде профиля, имеет локальный максимум в средней области между комлем лопасти ротора и вершиной лопасти ротора. Под хордой профиля ниже понимается длина профиля, то есть расстояние между носиком профиля и задней кромкой профиля. Толщина профиля означает расстояние между верхней и нижней стороной профиля. Относительная толщина профиля имеет, таким образом, низкое значение при малой толщине профиля и/или большой хорде профиля.

Относительная толщина профиля между комлем лопасти ротора и вершиной лопасти ротора имеет локальный максимум. Локальный максимум находится в средней области между комлем лопасти ротора и вершиной лопасти ротора, предпочтительно в пределах от 30 до 60% общей длины лопасти ротора, измеренной от комля лопасти ротора к вершине лопасти ротора. При общей длине, равной, например, 60 метрам, локальный максимум находится, таким образом, в пределах предпочтительно от 18 метров до 36 метров. То есть относительная толщина профиля сначала, начиная от комля лопасти ротора, уменьшается, а затем в средней области снова возрастает до локального максимума, а именно до места, вокруг которого относительная толщина профиля не имеет более высокого значения. Локальный максимум в средней области лопасти ротора получается, в частности, за счет того, что хорда профиля, начиная от комля лопасти ротора, до средней области сильно уменьшается. Одновременно или альтернативно толщина профиля может увеличиваться или, соответственно, уменьшаться не так сильно, как хорда профиля. Благодаря этому достигается экономия материала, в частности между комлем лопасти ротора и средней областью, и вместе с тем снижение веса. Благодаря увеличению толщины профиля достигается высокая прочность лопасти ротора.

Было обнаружено, что уменьшение хорды профиля в средней области хотя и может приводить там к уменьшению допустимой нагрузки, но что, однако, одновременно достигается снижение веса лопасти ротора. Возможное ухудшение эффективности лопасти ротора принимается по необходимости для достижения более низкого веса. Но при этом в средней области при наилучшей возможной эффективности сильнее фокусируются на прочности и жесткости, а в крайней области сильнее фокусируются на высокой эффективности. Таким образом, предлагается профиль, у которого хорда профиля от средней области наружу в направлении вершины лопасти ротора уменьшается по меньшей мере менее сильно, чем в средней области.

Предпочтительно относительная толщина профиля локального максимума составляет от 35% до 50%, в частности от 40% до 45%. Обычно относительная толщина профиля у комля лопасти ротора начинается со значения от 100% до 40%. При этом значение, равное примерно 100%, означает, что толщина профиля примерно идентична хорде профиля. После этого значение монотонно уменьшается. В одном из предлагаемых изобретением вариантов осуществления значение, начиная от комля лопасти ротора, сначала уменьшается, пока оно не достигнет локального минимума. После локального минимума относительная толщина профиля испытывает подъем, пока она не составит примерно от 35% до 50%.

В одном из предпочтительных вариантов осуществления лопасть ротора в средней области и/или в области локального минимума имеет хорду профиля, равную от 1500 мм до 3500 мм, в частности примерно 2000 мм. Если лопасть ротора в области комля лопасти ротора имеет хорду профиля, равную примерно 6000 мм, хорда профиля, таким образом, уменьшается до средней области и/или до области локального максимума примерно на треть.

В одном из особенно предпочтительных вариантов осуществления лопасть ротора состоит из первого и второго участка лопасти ротора и первый участок лопасти ротора содержит комель лопасти ротора, а второй участок лопасти ротора вершину лопасти ротора. Первый и второй участок лопасти ротора соединены друг с другом в месте разделения. При этом место разделения расположено в средней области между комлем лопасти ротора и вершиной лопасти ротора и/или в области локального максимума.

Благодаря тому что лопасть ротора состоит из двух участков лопасти ротора, транспортировка лопасти ротора к соответствующему месту установки ветровой энергетической установки значительно облегчается. Если место разделения находится в средней области, при диаметре ротора, равном свыше 80 метров, это означает, что, например, транспортироваться должны только лишь два участка лопасти ротора примерно по 40 метров каждый. Кроме того, в средней области и/или в области локального максимума относительной толщины профиля, в частности, хорда профиля при большой толщине профиля мала. Благодаря этому лопасть ротора в этом месте выполнена прочной. Возникающие вследствие места разделения дополнительные нагрузки, таким образом, в значительной степени амортизируются.

Предпочтительно лопасть ротора рассчитана на коэффициент быстроходности в пределах от 7 до 10, предпочтительно от 8 до 9. При этом коэффициент быстроходности определен как отношение окружной скорости на вершине лопасти ротора к скорости ветра. Высокие расчетные коэффициенты быстроходности приводят к высокому коэффициенту мощности и позволяют получить тонкие, быстро вращающиеся лопасти.

В другом варианте осуществления лопасть ротора в пределах от 90% до 95% общей длины лопасти ротора, измеренной от комля лопасти ротора к вершине лопасти ротора, имеет хорду профиля, которая соответствует примерно от 5% до 15%, в частности примерно 10% хорды профиля в области комля лопасти ротора.

Благодаря такой уменьшенной хорде профиля в области вершины лопасти ротора нагрузки действующие на машинное отделение и башню, в частности, аэродинамические нагрузки, снижаются. Предлагается по существу относительно тонкая лопасть ротора.

В одном из предпочтительных вариантов осуществления изобретения лопасть ротора у комля лопасти ротора имеет хорду профиля, равную по меньшей мере 3900 мм, в частности в пределах от 4000 мм до 8000 мм, и/или в пределах от 90% до 95% общей длины, в частности около 90%, начиная от комля лопасти ротора, хорду профиля, равную максимум 1000 мм, в частности в пределах от 700 мм до 400 мм.

Предпочтительно лопасть ротора в средней области, в частности, при 50% общей длины лопасти ротора и/или в области локального максимума, имеет хорду профиля, которая соответствует примерно от 20% до 30%, в частности, примерно 25% хорды профиля в области комля лопасти ротора. Если, например, хорда профиля в области комля лопасти ротора составляет 6000 мм, хорда профиля в области локального минимума и/или в средней области соответствует только лишь 1500 мм. Благодаря этому быстрому уменьшению хорды профиля от комля лопасти ротора до средней области возникает тонкий профиль с низкими нагрузками, в частности аэродинамическими нагрузками. Эти нагрузки ниже, чем у других известных лопастей ротора. У известных профилей хорда лопасти ротора обычно уменьшается по существу линейно. Благодаря этому, в частности, между комлем лопасти ротора и средней областью хорда профиля больше, и вместе с тем также больше материала.

Кроме того, в соответствии с изобретением предлагается ветровая энергетическая установка, снабженная по меньшей мере одной лопастью ротора по меньшей мере по одному из приведенных выше вариантов осуществления. Такая ветровая энергетическая установка экономически эффективна благодаря по меньшей мере одной тонкой и быстро вращающейся лопасти ротора и благодаря высокому коэффициенту быстроходности и высокому коэффициенту мощности. Поэтому эта ветровая энергетическая установка пригодна, в частности, также для эксплуатации в области частичной нагрузки и/или для слабого ветра и вместе с тем также для мест, удаленных от моря. Ветровая энергетическая установка имеет предпочтительно три лопасти ротора.

Ниже изобретение поясняется подробнее на примерах осуществления со ссылкой на прилагаемые фигуры. При этом фигуры содержат частично упрощенные, схематичные изображения.

Фиг. 1: показано схематичное изображение лопасти ротора.

Фиг. 2: показано графическое изображение, на котором представлена относительная толщина профиля в зависимости от нормированного радиуса ротора.

Фиг. 3: показано графическое изображение, на котором представлена хорда в зависимости от радиуса.

Фиг. 4: показано графическое изображение, на котором представлена толщина в зависимости от радиуса.

Фиг. 5: показана ветровая энергетическая установка на виде в перспективе.

Фиг. 6: показана лопасть ротора на виде сбоку.

Фиг. 7: показана лопасть ротора с фиг. 6 на другом виде сбоку.

На фиг. 1 показано распределение разных геометрий профиля лопасти 1 ротора одного из вариантов осуществления. В лопасти 1 ротора на отдельных участках показаны толщины 2 профиля и хорды 3 профиля. Лопасть 1 ротора имеет на одном конце комель 4 лопасти ротора, а на другом, противоположном ему, конце соединительную область 5 для установки вершины лопасти ротора. У комля 4 лопасти ротора лопасть ротора имеет большую хорду 3 профиля. В соединительной области 5 хорда 3 профиля, напротив, намного меньше. Хорда профиля значительно уменьшается, начиная от комля 4 лопасти ротора, который также может называться комлем 4 профиля, до средней области 6. В средней области 6 может быть предусмотрено место разделения (здесь не изображено). От средней области 6 до соединительной области 5 хорда 3 профиля почти постоянна. Показанная лопасть 1 ротора предусмотрена для установки небольшой вершины лопасти ротора, которая составляет менее 1% длины показанной лопасти 1 ротора и которой поэтому здесь можно пренебречь.

На фиг. 2 показано графическое изображение, на котором для разных лопастей ротора ветровой энергетической установки соответственно нанесена относительная толщина профиля в зависимости от нормированного радиуса ротора. Относительная толщина профиля указана по оси ординат в процентах и изменяется шагами по 5% от 10% до 60%. На оси абсцисс соответственно указан нормированный радиус ротора от 0 до 1 шагами по 0,1. Причем этот радиус ротора относится соответственно к ротору, имеющему по меньшей мере одну смонтированную на ступице ротора лопасть ротора. Длина данной лопасти ротора распространяется от комля лопасти ротора к вершине лопасти ротора. Лопасть ротора начинается со своего комля лопасти ротора при значении, примерно равном 0,05 нормированного радиуса ротора, и заканчивается своей вершиной лопасти ротора при значении 1 нормированного радиуса ротора. В области вершины лопасти ротора это значение нормированного радиуса ротора примерно соответствует в процентном отношении длине упомянутой лопасти ротора. В частности, значение 1 нормированного радиуса ротора равно 100% длины лопасти ротора.

На графическом изображении видны всего шесть графиков. Эти графики представляют изменение относительной толщины профиля лопастей ротора разных известных и проектируемых ветровых энергетических установок фирмы Enercon GmbH. При этом график 100 показывает ветровую энергетическую установку с диаметром ротора, равным приблизительно 70 м (тип Е-70), график 102 ветровую энергетическую установку с диаметром ротора, равным приблизительно 82 м (тип Е-82), график 103 ветровую энергетическую установку с диаметром ротора, равным приблизительно 92 м (тип Е-92), график 104 ветровую энергетическую установку с диаметром ротора, равным приблизительно 101 м (тип Е-101), график 105 ветровую энергетическую установку с диаметром ротора, равным приблизительно 115 м (тип Е-115), и график 106 ветровую энергетическую установку с диаметром ротора, равным приблизительно 126 м (тип Е-126). Графики 100, 102, 104 и 106 показывают известный уровень техники, а графики 103 и 105 изменение относительной толщины профиля соответственно одного из примеров осуществления изобретения. По графикам можно видеть, что изменение относительной толщины профиля графиков 100 и 102 является по существу монотонно падающим. Графики 100 и 102 начинаются в области комля лопасти ротора, то есть при нормированном радиусе ротора, равном от 0,0 до 0,1, при относительной толщине профиля от 45% до 50%. Данные графики до нормированного радиуса ротора, равного 0,1, не имеют локальных максимумов или минимумов. Значения относительной толщины профиля постоянно уменьшаются.

График 103 по одному из вариантов осуществления начинается при относительной толщине профиля, равной примерно 55%, у комля лопасти ротора, т.е. соответственно примерно при нормированном радиусе ротора от 0 до 0,1, и затем сначала уменьшается до относительной толщины профиля, равной примерно 40%, при нормированном радиусе ротора, равном 0,3. После этого ход относительной толщины профиля возрастает, пока при нормированном радиусе ротора, равном 0,4, он не достигнет своего локального максимума примерно в 42%. Относительная толщина профиля при этом снова повышается на 2% до ее локального максимума. Локальный максимум находится в средней области лопасти ротора. Он имеет, таким образом, максимальное отклонение, составляющее более 1%. После этого относительная толщина профиля изменяется до нормированного радиуса ротора, равного 0,1, и вместе с тем до длины лопасти ротора, равной 100%, монотонно уменьшаясь до значения, равного примерно 15%.

Ход графика 105 другого варианта осуществления аналогичен ходу графика 103. Относительная толщина профиля начинается у комля лопасти ротора примерно при 45%, затем уменьшается при нормированном радиусе ротора, равном примерно 0,25, до значения, равного менее 40%, и после этого повышается. При нормированном радиусе ротора, равном примерно 0,45, значение относительной толщины профиля достигает локального максимума со значением, равным примерно 42%. Это соответствует повторному подъему, составляющему примерно 3%. Затем изменение относительной толщины профиля является по существу монотонно уменьшающимся, пока при относительной толщине профиля, равной примерно 0,8, не будет достигнуто значение, равное 15%. Дальнейший ход до вершины лопасти ротора остается примерно постоянным при 15%.

В противоположность графикам 100 и 102, графики 103 и 105 имеют локальный максимум в средней области. Локальный максимум возникает здесь вследствие уменьшения хорды профиля при одновременно меньшем уменьшении толщины профиля в этой области. Профиль, который получается при этом изменении относительной толщины профиля, представляет собой тонкую лопасть ротора, которая, в противоположность известным лопастям ротора, подвергается меньшим нагрузкам благодаря тому, что хорда профиля в зависимости от общей длины лопасти ротора, начиная от комля лопасти ротора, сначала быстро уменьшается. Вследствие этого снижаются также аэродинамические нагрузки и вместе с тем нагрузки, возникающие на машинном отделении. Кроме того, лопасть ротора, начиная со средней области, может иметь примерно постоянную толщину профиля. Благодаря этому лопасть ротора приобретает прочность. У известных лопастей ротора профиль имеет по существу трапецеидальную форму, которая на графическом изображении отличается монотонно падающим изменением относительной толщины.

Относительная толщина профиля графика 104 начинается у комля лопасти ротора при 44%. Относительная толщина профиля сначала уменьшается при нормированном радиусе, равном 0,1, до значения, равного приблизительно 42%. После этого она немного возрастает до нормированного радиуса ротора, равного 0,2, что соответствует примерно 15% длины лопасти ротора, до значения, равного приблизительно 42,5%. Правда, ход графика 104 имеет при этом локальный максимум, который, однако, не находится в средней области лопасти ротора и имеет еле заметный подъем. В частности, такой ход также плох для лопасти ротора, состоящей из двух частей, имеющей место разделения в средней области.

Предпочтительно также линейное изменение толщины от комля лопасти ротора к средней области, как оно показано на фиг. 4 на двух графиках. Такое линейное изменение, которого не имеет лопасть ротора графика 104, конструктивно предпочтительно. Такая лопасть ротора лучше в изготовлении и имеет более равномерный характер напряжений. Кроме того, можно ожидать более равномерной деформации при воздействии внешних нагрузок. Такое линейное изменение принципиально предпочтительно не только для показанных вариантов осуществления. Линейное измерение толщины предлагается в пределах от 5% до 25% общей длины лопасти ротора, предпочтительно от 5% до 35%, в частности, от комля лопасти ротора до средней области.

Изменение относительной толщины профиля графика 106 начинается в области комля лопасти ротора приблизительно при 52%. Затем до нормированного радиуса ротора, равного 0,2, это значение опускается примерно до 42,5%. После этого относительная толщина профиля остается практически постоянной или, соответственно, имеет незначительный подъем. Эта область может также называться седловым местом в математическом смысле. Начиная с радиуса ротора, равного примерно 0,3, относительная толщина профиля изменяется, строго монотонно уменьшаясь.

В области комля лопасти ротора изменение относительной толщины профиля показанных вариантов осуществления начинается не со 100%, как это происходило бы у других известных лопастей ротора. При этом хорда профиля и толщина профиля в области комля лопасти ротора практически идентичны. Более того, представленное изменение начинается между 40% и 55%. Это имеет аэродинамические преимущества, в частности, с точки зрения образования завихрений в области комля лопасти ротора, которое подавляется, по меньшей мере уменьшается благодаря такой форме профиля.

На фиг. 3 представлено графическое изображение, которое представляет хорду профиля, на этом графическом изображении упрощенно названную хордой, в миллиметрах в зависимости от радиуса ротора, на этом графическом изображении упрощенно названого радиусом, в миллиметрах. Хорда профиля показана шагами по 500 от 0 мм до 6000 мм. Радиус лопасти ротора показан шагами по 5000 от 0 мм до 60000 мм. На фиг. 3 можно видеть два графика 200 и 202, при этом график 200 изображает изменение хорды профиля одного из примеров осуществления изобретения. График 202 показывает ход графика другой лопасти ротора для сравнения. График 200 показывает изменение хорды профиля ветровой энергетической установки фирмы Enercon GmbH типа Е-115.

Два графика 200, 202 начинаются у комля лопасти ротора примерно с одной и той же хорды профиля. Хорда профиля лежит в пределах от 5500 мм до 6000 мм. После этого оба графика 200, 202 падают, пока они при радиусе от 20000 мм до 25000 мм не достигнут хорды профиля в пределах от 3000 мм до 3500 мм. После этого хорда профиля графика 200 уменьшается заметно больше, чем хорда профиля графика 202. Так, например, при радиусе, равном 25400 мм, хорда профиля графика 200 составляет уже только лишь 2500 мм, а хорда профиля графика 202 все еще 3000 мм. При радиусе, равном 35000 мм, хорда профиля графика 200 составляет только лишь примерно 1550 м, а хорда профиля другого графика 202 все еще 2500 мм. Только в области вершины лопасти, т.е. при радиусе в пределах от 55000 мм до 60000 мм, хорды профиля снова уменьшаются приблизительно вместе.

На фиг. 4 показано графическое изображение, на котором для хорд профиля фиг. 3 соответственно отображена толщина профиля, на этом графическом изображении упрощенно названная толщиной, в миллиметрах, в зависимости от радиуса ротора, на этом графическом изображении упрощенно названного радиусом, в миллиметрах. Толщина профиля отображается от 0 мм до 2800 мм шагами по 200 мм. Радиус представлен от 0 мм до 60000 мм шагами по 5000. Изображены два графика, причем первый график 300 представляет изменение толщины профиля одного из примеров осуществления изобретения, а график 302 - изменение толщины профиля другой лопасти ротора для сравнения. График 300 показывает изменение толщины профиля у лопасти ротора ветровой энергетической установки фирмы Enercon GmbH типа Е-115.

Лопасть ротора графика 200 или соответственно 300 на фиг. 3 и 4 имеет локальный максимум относительной толщины профиля в средней области между комлем лопасти ротора и вершиной лопасти ротора.

На фиг. 5 показана ветровая энергетическая установка 400, имеющая башню 402, которая сооружена на фундаменте 403. На верхнем, противоположном фундаменту 403 конце находится гондола 404 (машинное отделение), имеющая ротор 405, который состоит по существу из ступицы 406 ротора и установленных на ней лопастей 407, 408 и 409 ротора. Ротор 405 соединен с электрическим генератором внутри гондолы 404 для преобразования механической работы в электрическую энергию. Гондола 404 оперта с возможностью вращения на башню 402, фундамент 403 которой дает необходимую устойчивость.

На фиг. 6 показан вид сбоку лопасти 500 ротора одного из вариантов осуществления по всей ее длине 1, т.е. от 0% до 100%. Лопасть 500 ротора на одном конце имеет комель 504 лопасти ротора, а на другом, противоположном ему конце, вершину 507 лопасти ротора. Вершина 507 лопасти ротора в соединительной области 505 соединена с остальной частью лопасти ротора. У комля 504 лопасти ротора лопасть ротора имеет большую хорду профиля. В соединительной области 505 и у вершины 507 лопасти ротора хорда профиля, напротив, намного меньше. Хорда профиля значительно уменьшается, начиная от комля 504 лопасти ротора, который может также называться комлем 504 профиля, до средней области 506. В средней области 506 может быть предусмотрено место разделения (здесь не изображено). От средней области 506 до соединительной области 505 хорда профиля почти постоянна.

Лопасть 500 ротора в области комля 504 лопасти ротора имеет форму, состоящую из двух частей. При этом лопасть 505 ротора состоит из основного профиля 509, на котором в области комля 504 лопасти ротора установлен другой участок 508 для увеличения хорды лопасти 500 ротора. При этом участок 508, например, приклеен к основному профилю 509. Такая форма, состоящая из двух частей, проще в обращении при транспортировке к месту установки и проще в изготовлении.

Кроме того, на фиг. 6 можно видеть область 510 соединения со ступицей. Посредством области 510 соединения со ступицей лопасть 500 ротора присоединяется к ступице ротора.

На фиг. 7 показан другой вид сбоку лопасти 500 ротора с фиг. 6. Можно видеть лопасть 500 ротора, имеющую основной профиль 509, участок 508 для увеличения хорды лопасти ротора, среднюю область 506, комель 504 лопасти ротора и область 510 соединения со ступицей, а также область 505 соединения с вершиной 507 лопасти ротора. Вершина 507 лопасти ротора выполнена в виде так называемого винглета. Благодаря этому уменьшаются завихрения на вершине лопасти ротора.

1. Лопасть (1) ротора ветровой энергетической установки, имеющая:
- комель (4) лопасти ротора для присоединения лопасти (1) ротора к ступице ротора и
- расположенную на противоположной комлю (4) лопасти ротора стороне вершину лопасти ротора,
при этом относительная толщина (2) профиля, которая определена как отношение толщины (2) профиля к хорде (3) профиля, имеет локальный максимум в средней области (6) между комлем лопасти ротора и вершиной лопасти ротора.

2. Лопасть (1) ротора по п. 1, отличающаяся тем, что относительная толщина (2) профиля локального максимума составляет от 35% до 50%, в частности от 40% до 45%.

3. Лопасть (1) ротора по одному из пп. 1 или 2, отличающаяся тем, что лопасть (1) ротора в области локального минимума имеет хорду профиля, равную от 1500 мм до 3500 мм, в частности примерно 2000 мм.

4. Лопасть (1) ротора по п. 1, отличающаяся тем, что
- лопасть (1) ротора состоит из первого и второго участка лопасти ротора, причем
- первый участок лопасти ротора содержит комель (4) лопасти ротора, а второй участок лопасти ротора вершину лопасти ротора, и
- первый и второй участок лопасти ротора соединены друг с другом в месте разделения,
при этом место разделения расположено в средней области (6) между комлем (4) лопасти ротора и вершиной лопасти ротора и/или в области локального максимума.

5. Лопасть (1) ротора по п. 1, отличающаяся тем, что лопасть (1) ротора рассчитана на коэффициент быстроходности в пределах от 7 до 10, предпочтительно от 8 до 9.

6. Лопасть (1) ротора по п. 1, отличающаяся тем, что лопасть (1) ротора в пределах от 90% до 95% общей длины лопасти ротора, измеренной от комля лопасти ротора к вершине лопасти ротора, имеет хорду (3) профиля, которая соответствует примерно от 5% до 15%, в частности примерно 10% хорды (3) профиля в области комля (4) лопасти ротора, и/или
что от 5% до 25% общей длины лопасти ротора, предпочтительно от 5% до 35%, в частности, от комля лопасти ротора до средней области, лопасть ротора имеет линейное изменение толщины.

7. Лопасть (1) ротора по п. 1, отличающаяся тем, что
лопасть (1) ротора у комля (4) лопасти ротора имеет хорду (3) профиля, равную по меньшей мере 3900 мм, в частности в пределах от 4000 мм до 8000 мм, и/или в пределах от 90% до 95% общей длины, в частности около 90%, начиная от комля (4) лопасти ротора, хорду (3) профиля, равную максимум 1000 мм, в частности в пределах от 700 мм до 400 мм.

8. Лопасть (1) ротора по п. 1, отличающаяся тем, что лопасть (1) ротора в средней области имеет хорду профиля, которая соответствует примерно от 20% до 30%, в частности примерно 25% хорды профиля в области комля (4) лопасти ротора.

9. Ветровая энергетическая установка, снабженная по меньшей мере одной лопастью (1) ротора по одному из пп. 1-8.



 

Похожие патенты:

Изобретение относится к лопасти ротора ветроэнергетической установки и к ветроэнергетической установке, содержащей по меньшей мере одну такую лопасть. Лопасть ротора ветроэнергетической установки содержит переднюю кромку (211) лопасти ротора, заднюю кромку (212) лопасти ротора, основание (214) лопасти ротора для присоединения к ветроэнергетической установке и наконечник (213) лопасти ротора, сторону (216) всасывания и сторону (217) нагнетания, линию (215) критических точек вдоль продольного направления (L) лопасти ротора от основания (214) лопасти ротора до наконечника (213) лопасти ротора при предопределенном угле установки лопасти ротора и множество вихревых генераторов (300) в области линии (215) критических точек, причем линия (215) критических точек находится в области стороны (217) нагнетания.

Изобретение относится к заднему корпусу для лопасти ветроэнергетической установки, имеющему поверхность с напорной стороны, поверхность со стороны разрежения, отделяющую обе поверхности, заднюю кромку и противоположную задней кромке соединительную сторону, которая предназначена для размещения на ответной соединительной поверхности лопасти.

Изобретение относится к области ветроэнергетики, в частности к гондоле ветровой энергетической установки и способу сооружения ветровой энергетической установки с гондолой.

Изобретение относится к лопасти (6) ветряного турбинного генератора (1), ветряному турбинному генератору (1) и способу сборки лопасти (6) ветряного турбинного генератора (1).

Роторная лопасть ветроэнергетической установки, содержащая обращенную к ступице ротора внутреннюю часть роторной лопасти и противоположную ступице ротора наружную часть роторной лопасти.

Изобретение относится к ветроэнергетике. Ветроагрегат с системой ограничения мощности и частоты вращения, в котором через вал пропущена штанга с возможностью перемещения в осевом направлении, связь штанги с лопастями осуществлена через систему тяг, противоположный конец штанги имеет резьбовую нарезку с навинченной на нее конической шестерней, закрепленной на конце вала с возможностью поворота вокруг его осевой линии и связанной через зубчатое зацепление с ведущей шестерней, насаженной на установленную на валу ось, перпендикулярную осевой линии вала, на эту же ось насажен жестко связанный с ведущей шестерней фрикционный диск, образующий пары фрикционного зацепления с двумя расположенными по одну и другую стороны от него в перпендикулярных осевой линии вала плоскостях тормозными кольцами, закрепленными соосно с валом на корпусе подшипника с возможностью осевого перемещения в направлении фрикционного диска под действием исполнительных органов системы автоматического управления, на вход устройства управления которой дополнительно подаются сигналы от двух конечных выключателей, фиксирующих крайние положения штанги в осевом направлении.

Изобретение относится к ветроэнергетике. Система ограничения частоты вращения и мощности ветроагрегата содержит установленный горизонтально в корпусе подшипника вал с пропущенной через него штангой, одним концом системой тяг связанной с закрепленными на валу с возможностью поворота вокруг осей, перпендикулярных валу, лопастями, а другим - с регулирующим органом, выполненным в виде винта с навинченным на него и зафиксированным от продольного перемещения диском с приводом для вращения от первого исполнительного органа устройства управления, другой конец штанги связан с винтом регулирующего органа через упорный подшипник, винт регулирующего органа зафиксирован от проворачивания и механически связан с датчиком угла установки лопастей, устройство управления снабжено вторым исполнительным органом, установленным между электрической сетью и обмотками генератора, а к соответствующим входам устройства управления подключены выходы датчиков: угла установки лопастей, скорости ветра, частоты вращения, мгновенных значений тока и напряжения генератора.

Изобретение относится к способу эксплуатации ветроэнергетической установки, содержащей аэродинамический ротор по меньшей мере с одной роторной лопастью. Способ эксплуатации ветроэнергетической установки содержит стадии эксплуатации ветроэнергетической установки в зависящей от скорости ветра рабочей точке, измерения рабочего параметра рабочей точки, сравнения измеренного рабочего параметра с заданной эталонной величиной и нагревания по меньшей мере одной роторной лопасти, когда измеренный рабочий параметр превышает заданное отклонение относительно эталонной величины, при этом продолжают эксплуатацию ветроэнергетической установки.

Изобретение относится к области ветроэнергетической техники, в частности к конструкциям ветроустановок с горизонтальной осью вращения. Конструкция ветроэнергетической установки, содержащая мачту с горизонтальной поворотной платформой, на которой установлены электрогенератор и ветротурбина с лопастями, механическую передачу вращения от вала ветротурбины к валу электрогенератора.

Лопасть ветряной турбины, содержащая аэродинамический обтекатель, поддерживаемый вдоль по меньшей мере части своей осевой длины лонжероном (12). Лонжерон содержит по меньшей мере два участка (12), соединенных торец к торцу на границе (9) контакта и имеющих, каждый, стенку (3), работающую на срез, с полкой (4) на каждой стороне.

Изобретение относится к способу изготовления корневой секции рабочей лопатки (41) ветровой турбины. Он содержит этапы сборки (A) множества опорных стержней (1) с секцией (17) сопряжения со средством сопряжения втулки ветровой турбины по существу в округлой форме так, чтобы между опорными стержнями (1) имелись промежутки (33), расположения (B) первых волокон (31) в промежутках (33), причем первые волокна (31) являются физически и/или химически совместимыми с литьевым материалом, размещения (C) первого формовочного инструмента (35) вдоль наружной поверхности округлой формы и второго формовочного инструмента вдоль внутренней поверхности округлой формы, обработки (D) литьевого материала так, чтобы образовалось его сцепление с первыми волокнами (31). Изобретение также относится к удерживающему устройству (39) опорных стержней для такой цели и корневой секции рабочей лопатки (41), изготовленной таким способом. Изобретение направлено на упрощение процесса изготовления конца корневой части для рабочей лопатки ветровой турбины. 3 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к ветроэнергетике, в частности к ветродвигателям с горизонтальной осью вращения ветроколеса. Ветродвигатель содержит горизонтальный вал, закрепленное на нем многолопастное ветроколесо с внутренней и наружной обечайками, между которыми расположены основные лопасти первого уровня, на наружной обечайке расположены плоские лопасти второго уровня в количестве, равном длине наружной обечайки в метрах, соединенные с ребрами жесткости посредством шарниров для изменения угла атаки воздушному потоку в зависимости от скорости ветра, начальное положение плоских лопастей второго уровня, связанных шарнирными планками, обеспечивается пружинами растяжения и штыревыми ограничителями хода ребер жесткости. Изобретение направлено на повышение коэффициента использования энергии ветра и предотвращение аварийных ситуаций. 6 ил.

Изобретение относится к законцовке лопасти ротора ветровой электростанции. Лопасть (30) ротора ветровой электростанции (100) имеет главный компонент лопасти и законцовку (260) лопасти, в которой законцовка (260) лопасти съемным образом присоединена к главному компоненту посредством соединительного устройства (202), и соединительное устройство (202) имеет секцию (206) законцовки, присоединенную к законцовке (260) лопасти и основную секцию (204), присоединенную к главному компоненту лопасти для приема секции (206) законцовки. Секция (206) законцовки имеет по меньшей мере один крепежный элемент (242), который проходит к основной секции (204) для крепления секции (206) законцовки к основной секции (204), и крепежный элемент (242) для выполнения прикрепления приспособлен для вставки через отверстие (286) в поверхности (282) законцовки (260) лопасти. Законцовка (260) лопасти отклоняется, в частности, в направлении стороны давления лопасти (30) ротора, и в получающемся направленном наружу отклонении (266) выполнено отверстие (286) для обеспечения доступа к крепежному элементу (242). Изобретение направлено на упрощение разборки лопасти ротора и на снижение повреждений лопасти ротора. 5 н. и 9 з.п. ф-лы, 13 ил.

Изобретение касается способа установки гребенки задней кромки на лопасть ротора ветровой энергетической установки, причем лопасть ротора имеет лицевую сторону и тыльную сторону и по существу прямую концевую кромку, включающего в себя следующие шаги: выполнение на концевой кромке выступающего назад участка гребня, так чтобы в области участка гребня с лицевой стороны и с тыльной стороны было выполнено по одной ступени; насаживание гребенки задней кромки, или ее части, на участок гребня, так чтобы гребенка задней кромки в области указанной ступени заканчивалась заподлицо с соответственно тыльной стороной или лицевой стороной. Выполнение выступающего назад участка гребня осуществляют путем снятия по одной полосе материала с тыльной стороны и с лицевой стороны в области прямой концевой кромки или с помощью формы для изготовления лопасти ротора, предусматривающей комплементарную ступень, ответную указанной ступени. Изобретение направлено на упрощение монтажа гребенки задней кромки лопасти ротора. 5 н. и 10 з.п. ф-лы. 8 ил.

Изобретение относится к ветровым и солнечным энергетическим установкам, объединенным в единую конструкцию. Энергоэффективная солнечно-ветровая энергетическая установка содержит: трехлопастную конусно-шнековую ветроэнергетическую установку с горизонтальным вращающимся валом, которая образована тремя половинками спиральных цилиндров, расположенных относительно друг друга под углом 120°, усеченных криволинейными поверхностями второго порядка; поворотную платформу с вертикальным валом; солнечную энергетическую установку, представляющую собой пленочную солнечную фотоэлектронную батарею, нанесенную на внешнюю поверхность трех лопастей конусно-шнековой ветроэнергетической установки; вертикальную пластину, расположенную под поворотной платформой; монтажные фигурные пластины для крепления к ним примыкающей части половинок спиральных цилиндров, неподвижно соединенные с горизонтальным вращающимся валом; основание, к которому крепятся примыкающие части трех лопастей конусно-шнековой ветроэнергетической установки; переднюю треугольную опорную стойку с подшипниковым узлом; две задние параллельные стойки с подшипниковым узлом, установленным между ними и служащим для крепления задней части горизонтального вращающегося вала; две поперечные планки, прикрепленные к двум задним параллельным стойкам; тихоходный магнитоэлектрический генератор, установленный на двух параллельных стойках и двух поперечных планках; конфузор-диффузор с цилиндрической частью между ними, выполненные из прозрачного поликарбоната, причем трехлопастная конусно-шнековая ветроэнергетическая установка с горизонтальным вращающимся валом, подшипниковыми узлами, передней треугольной стойкой и двумя задними параллельными стойками расположены в цилиндрической части конфузора-диффузора; передний и задний ложементы, служащие для крепления к ним цилиндрической части конфузора-диффузора, прикрепленные к поворотной платформе; двояковыпуклые продольные линзы, встроенные вдоль цилиндрической части конфузора-диффузора; литиевые аккумуляторные батареи; контроллер заряда-разряда литиевых аккумуляторных батарей; инвертор. Изобретение направлено на повышение выработки электроэнергии при слабых скоростях ветра и увеличение КПД выработки электроэнергии пленочными солнечными фотоэлектронными батареями. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области ветрогидроэнергетики. Ветрогидроэнергетическая установка с составными лопастями, использующая в потоке эффект Магнуса, содержит ветрогидроколесо с горизонтальной осью вращения, на которой закреплен электрогенератор, и радиально установленные на махах цилиндры с приводом, каждый из цилиндров имеет на одном конце невращающуюся корневую часть, на другом - вращающуюся концевую часть, оснащенную шайбой, усеченным конусом, и содержит на своей поверхности и на поверхности конуса спиральные ребра-шнеки, при этом основание конуса обращено к цилиндру, диаметр которого больше диаметра цилиндра. По обе стороны цилиндров на махах закреплены с возможностью поворота кронштейны, между кронштейнами расположены по оси направления потока роторы, типа Савониуса, причем роторы расположены впереди или позади цилиндров, а их лопасти установлены на согласованное с цилиндрами направление вращения. Изобретение направлено на увеличение аэродинамической подъемной силы рабочих цилиндров на основе эффекта Магнуса. 2 н. и 2 з.п. ф-лы, 4 ил.

Группа изобретений относится к устройству (1) и способу для изготовления заготовок (101) концевых частей для роторных лопастей ветроэнергетических установок (варианты) и ветроэнергетической установке. Устройство содержит намоточную оправку (3a), которая выполнена с возможностью вращения для намотки предпочтительно лентообразного волокнистого композиционного материала. Устройство (1) содержит также установленное с возможностью перемещения вдоль намоточной оправки пропиточное устройство (5) для пропитки волокнистого композиционного материала перед намоткой на намоточную оправку и загрузочный механизм (7) с накопителем для снабжения волокнистым композиционным материалом, установленный с возможностью перемещения вдоль намоточной оправки, предпочтительно синхронно с пропиточным устройством. Способ содержит операции подачи волокнистого композиционного материала посредством загрузочного механизма. Материал подают через пропиточное устройство к намоточной оправке и наматывание волокнистого композиционного материала на намоточную оправку путем ее вращения. Технический результат заключается в том, чтобы обеспечить изготовление концевых частей для роторных лопастей с незначительными колебаниями в прочности. 4 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к ветроэнергетической установке и блоку молниезащиты для ветроэнергетической установки. Ветроэнергетическая установка включает гондолу (104) и ротор, который имеет по меньшей мере две лопасти (108) ротора. Лопасти (108) ротора имеют каждая комлевую часть (108a) лопасти ротора, по меньшей мере один металлический проводник (220), служащий проводником для ударившей молнии, и соединенное с ним проводящее кольцо (230), которое предусмотрено в области комлевой части лопасти ротора. На невращающейся части гондолы (104) закреплен блок (240) молниезащиты таким образом, что блок (240) молниезащиты опирается на кольцо (230). Блок (240) молниезащиты имеет два ролика (241) и молниеотводную мачту (242), при этом свободный конец молниеотводной мачты (242) находится от наружного конца роликов (241) на расстоянии, задающем искровой промежуток. Изобретение направлено на повышение надежности отвода молнии в области лопасти. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к роторной лопасти (2) ветроэнергетической установки (100). Роторная лопасть (2) содержит носовую часть (4) роторной лопасти, заднюю кромку (6) роторной лопасти, зону комлевой части (28) роторной лопасти для крепления роторной лопасти (2) на ступице ветроэнергетической установки (100), вершину (40) роторной лопасти, при этом роторная лопасть (2) проходит от зоны комлевой части (28) роторной лопасти вдоль продольного направления к вершине (40) роторной лопасти, и роторная лопасть (2) содержит внутри по меньшей мере одно первое полое пространство (18), ближнее к носовой части (4) роторной лопасти, и одно второе полое пространство (20), ближнее к задней кромке (6) роторной лопасти, первое полое пространство (18) нагревается с помощью первого, второе полое пространство (20) нагревается с помощью второго нагревательного средства (30), с целью нагревания носовой части (4) роторной лопасти, соответственно, задней кромки (6) роторной лопасти. Изобретение направлено на исключение обледенения лопасти. 4 н. и 9 з.п. ф-лы, 9 ил.

Изобретение относится к способу расчета подлежащей изготовлению задней кромки для роторной лопасти. Способ расчета подлежащей изготовлению задней кромки для роторной лопасти аэродинамического ротора ветроэнергетической установки, при этом роторная лопасть имеет относительно ротора радиальные положения, роторная лопасть имеет локальный, зависящий от радиальных положений относительно ротора профиль лопасти, и задняя кромка имеет зубчатое прохождение с множеством зубьев, при этом каждый зуб имеет высоту зуба и ширину зуба, и высота зуба и/или ширина зуба вычисляется в зависимости от его радиального положения и/или в зависимости от профиля лопасти его радиального положения. Изобретение направлено на снижение шумовых эффектов. 2 н. и 4 з.п. ф-лы, 15 ил.
Наверх