Способ получения загрузки биофильтра с иммобилизационными свойствами

Изобретение относится к биологической очистке сточных вод, в частности к получению загрузочного материала для биофильтров. Описан способ получения загрузки биофильтра с иммобилизационными свойствами, включающий изготовление материала загрузки из полимерных веществ, содержащих органические добавки, в котором в полимерном материале в качестве органической добавки используют отход рафинации растительных масел - отработанную микроцеллюлозу, содержащую в своем составе пластифицирующие компоненты, такие как воски, и легколетучие органические примеси, способствующие порообразованию с получением материала плотностью 0,6÷0,8 г/см3 и пористостью от 50 до 150 ячеек/см2, а также биогенные вещества, такие как триацилглицериды, стиролы, каротиноиды, способствующие иммобилизации микрофлоры на загрузке, загрузку готовят при следующем содержании компонентов, мас.%: полиолефин - стрейч-полиэтилен - 60÷80, отработанная микроцеллюлоза - 20÷40, гранулы стрейч-полиэтилена смешивают с отработанной микроцеллюлозой, полученную смесь экструдируют при температуре 170÷180°C в двухшнековом экструдере с гранулирующим устройством с получением гранул диаметром 2÷20 мм и длиной 3÷100 мм. Технический результат - повышение эффективности биологической очистки сточных вод. 1 табл., 1 пр.

 

Изобретение относится к биологической очистке сточных вод, в частности, к получению загрузочного материала для биофильтров.

Применяемые в настоящее время материалы загрузок биофильтров (пластиковые сетки, синтетические волокна и проч.) зачастую имеют недостаток - вымываемость микроорганизмов из материала-носителя ввиду низкой адсорбционной способности или низкой пористости материал, и вследствие этого ухудшение со временем качества очистки, а также повышенное образование избытка активного ила, влекущее за собой необходимость утилизации осадка.

Актуальной задачей повышения качества работы биофильтров с загрузкой является снижение вымываемости микрофлоры и, как следствие, повышение эффективности очистки, снижение нагрузки на вторичные отстойники и уменьшение образования осадка активного ила.

Известен зернистый материал-носитель для биотехнологических процессов [Патент ГДР DD 264887 А1] с удельным весом менее 0,5 г/см3, который получают термической усадкой пенополистироловых хлопьев, которые дополнительно покрыты по своей поверхности адсорбентами и/или инертными наполнителями.

Недостатком аналога является сложность технологии производства, необходимость дополнительной обработки материала адсорбентом для получения необходимой структуры.

Известен способ биологической очистки сточных вод от органических загрязнений [Пат. РФ №2023685, опубл. 30.11.1994], включающий обработку в аэротенке микроорганизмами активного ила, иммобилизованными на плоскостной загрузке, с целью повышения степени очистки и интенсификации процесса, используют плоскостную загрузку, выполненную из материала, содержащего термопластичный полимер и активированный уголь, при следующем соотношении компонентов, мас.%: термопластичный полимер 83-86, активированный уголь 14-17.

Недостатком способа является низкое содержание наполнителя (лимитирующее прочностные показатели материала), приводящее к снижению удельной поверхности загрузки за счет обволакивания расплавом термопласта частичек угля, который становится недоступным для микроорганизмов.

Наиболее близким по технической сущности и достигаемому эффекту является плавучий турбулизируемый материал-носитель для биотехнологических процессов [Пат. РФ №2136611, опубл. 10.09.1999], состоящий из полимерных веществ, содержащих органические и/или неорганические добавки, и снабженный стержнем из пеноматериала с замкнутыми ячейками и мелкопористую структуру ячеек, поверхность структурирована и профилирована, имеет форму цилиндрических полых тел, длина от 3 до 25 мм, наружный диаметр от 3 до 25 мм, внутренний диаметр от 2 до 24 мм и плотность 0,4÷0,98 г/см3, при этом свойства носителя регулируются добавкой 0,1÷2,0% вспенивающих веществ, таких как бикарбонат с лимонной кислотой, крахмал, сахар и/или активированный уголь.

Недостатком прототипа является то, что закрепление (иммобилизация) микрофлоры на носителе происходит за счет пористой структуры материала без дополнительных связей между материалом и микроорганизмами, что приводит к вымываемости микрофлоры из объема загрузки и снижению эффективности работы биофильтра, кроме того, недостатком является длительность технологического процесса изготовления загрузки, сложность аппаратурного оформления производственного процесса - применение сопла специальной формы с продольными канавками, что ведет к удорожанию процесса.

При очистке стоков в биофильтрах желательно, чтобы материал-носитель обеспечивал запас энергетического субстрата для микроорганизмов на случай прекращения поступления питательных веществ [Копытина С.В. Разработка технологии очистки сточных вод от нефтяных загрязнений с использованием иммобилизованных микроорганизмов-биодеструкторов. Автореф. на соиск. уч. степ. к.т.н. Москва - 2000]. Известно также [Пат. РФ №2446189, опубл. 27.03.2012, Пат. РФ №2446191, опубл. 27.03.2012], что использование в качестве питательных веществ природных полисахаридов (например, крахмала) и биогенных элементов (например, фосфолипидов) в составе термопластов ведет к лучшему обрастанию материала микроорганизмами, при этом содержание полисахаридов свыше определенного предела (около 30 мас.%) приводит к снижению прочности и преждевременному биоразложению материала, а при содержании наполнителя ниже 20 мас.% его гранулы остаются капсулированными в синтетическом полимере и поэтому труднодоступны для ферментов и микроорганизмов [Д.В. Кряжев, В.В. Романов, В.А. Широков. Последние достижения химии и технологии производных крахмала // Химия растительного сырья. - 2010. - №1. - С. 5-12].

Техническая задача изобретения заключается в разработке способа получения загрузки биофильтра с иммобилизационными свойствами, позволяющего за счет применения в ее составе природных полисахаридов и биогенных элементов повысить эффективность биологической очистки сточных вод за счет низкой вымываемости микроорганизмов из объема загрузки, упростить и интенсифицировать технологию ее изготовления за счет упразднения стадии вспенивания специальными агентами и за счет использования в производстве стандартного оборудования без специальных профилирующих элементов, сохранить длительность срока службы материала без потери прочностных свойств, а также снизить себестоимость материала загрузки за счет применения вторичных сырьевых ресурсов.

Техническая задача изобретения достигается тем, что в способе получения загрузки биофильтра с иммобилизационными свойствами, включающем изготовление материала загрузки из полимерных веществ, содержащих органические добавки, новым является то, что в полимерном материале в качестве органической добавки используют отход рафинации растительных масел - отработанную микроцеллюлозу, содержащую в своем составе пластифицирующие компоненты, такие как воски, и легколетучие органические примеси, способствующие порообразованию с получением материала плотностью 0,6÷0,8 г/см3 и пористостью от 50 до 150 ячеек/см2, а также биогенные вещества, такие как триацилглицериды, стиролы, каротиноиды, способствующие иммобилизации микрофлоры на загрузке, загрузку готовят при следующем содержании компонентов, мас.%:

- полиолефины - стрейч-полиэтилен - 60÷80,

- отработанная микроцеллюлоза - 20÷40;

гранулы стрейч-полиэтилена смешивают с отработанной микроцеллюлозой, полученную смесь экструдируют при температуре 170±180°C в двухшнековом экструдере с гранулирующим устройством с получением гранул диаметром 2÷20 мм и длиной 3÷100 мм.

Технический результат изобретения заключается в повышении эффективности биологической очистки сточных вод за счет низкой вымываемости микроорганизмов из объема загрузки, интенсификации и упрощении технологии изготовления материала загрузки за счет упразднения стадии вспенивания специальными агентами и за счет использования в производстве стандартного оборудования без специальных профилирующих элементов, сохранении длительности срока службы материала без потери прочностных свойств.

Применение в качестве наполнителя микроцеллюлозы способствует снижению биодеструкции материала за счет ее большой молекулярной массы, а переработка композиции в двухшнековом экструдере позволяет получить гомогенную смесь с равномерным распределением наполнителя в полиолефиновой матрице, в этом случае возможно повышение содержания наполнителя до 40 мас.% без преждевременной биодеструкции материала.

В качестве полиолефиновой матрицы материала загрузки биофильтра с иммобилизационными свойствами используют полиэтилен и полипропилен, например стрейч-полиэтилен, обладающий высоким показателем текучести расплава ПТР=2÷4, что способствует равномерному распределению наполнителя (отработанной микроцеллюлозы) в объеме материала, а также позволяет перерабатывать материал в высокоскоростном оборудовании при достаточно низких нагрузках.

Отработанная микроцеллюлоза - отход рафинации растительных масел, применяется для удаления восков из подсолнечного масла, после использования содержит в своем составе пластифицирующие компоненты (воски), а также биогенные вещества (триацилглицериды, стиролы, каротиноиды и некоторые другие). Кроме того, средний размер частиц отработанной микроцеллюлозы составляет около 50 мкм, что способствует гомогенности композиции за счет лучшего распределения наполнителя в полиолефине, и не требует предварительной подготовки наполнителя.

Способ получения загрузки биофильтра с иммобилизационными свойствами осуществляют следующим образом.

В смеситель загружают гранулы полиолефина, например стрейч-полиэтилена, в количестве 60÷80 мас.%, добавляют отработанную микроцеллюлозу (отход рафинации растительных масел) в количестве 20÷40 мас.%, перемешивают в течение 1,0÷2,0 минут при температуре 20÷30°C, далее смесь экструдируют в двухшнековом экструдере с гранулирующим устройством при температуре 170÷180°C с получением гранул диаметром 2÷20 мм и длиной 3÷100 мм.

Готовят загрузку при следующем соотношении компонентов, мас.%:

- полиолефины - стрейч-полиэтилен - 60÷80,

- отработанная микроцеллюлоза - 20÷40.

Готовую загрузку подвергают иммобилизации микрофлорой, например активным илом.

Способ получения загрузки биофильтра с иммобилизационными свойствами поясняется следующими примерами:

Пример 1 (прототип).

Поливинилацетат расплавляют и смешивают с 0,6 кг (0,6%) гранулята, содержащего 40% бикарбоната с лимонной кислотой в качестве вспенивающего агента. Эту смесь формуют в пруток в экструдере с соплом специальной формы с получением полого цилиндра с рифленой в продольном направлении поверхностью. Он имеет наружный диаметр, равный 5 мм, и внутренний диаметр, равный 4 мм. Рифления имеют глубину около 0,6 мм. Затем пруток после охлаждения в ванне с водой разрезают на отрезки длиной 5 мм. При этом получают на каждую частицу носителя поверхность роста свыше 2,7 см2 и на каждый м3 насыпного веса - поверхность свыше 950 м2. Благодаря применению материала-носителя в установке для обработки сточных вод с удалением азота, объемная нагрузка, связанная с биохимическим потреблением кислорода, удваивается по сравнению с известными параметрами до 0,8-1,0 кг биохимически потребляемого кислорода/м3 без возникновения отрицательных воздействий на степень удаления. Анализируют общее количество биомассы сухого вещества (микрофлоры) на носителе. На каждый м3 насыпного объема общее количество биомассы составляет 8 кг сухого вещества (табл. 1).

Пример 2.

Готовят загрузку биофильтра с иммобилизационными свойствами следующим образом.

В смеситель загружают 8 кг стрейч-полиэтилена (80 мас.%) и 2 кг отработанной микроцеллюлозы (20 мас.%), перемешивают в течение 2 минут и экструдируют смесь при температуре 180°C в стандартном двухшнековом экструдере с получением гранул диаметром 3 мм и длиной 20 мм. Определяют плотность и пористость материала. Данные анализа представлены в таблице 1.

Очистку сточных вод, загрязненных синтетическими поверхностно-активными веществами (СПАВ), в биофильтре с загрузкой с иммобилизационными свойствами проводили следующим образом.

В емкость с суспензией активного ила помещали загрузку биофильтра на 2 суток, при этом для удобства перемещения гранул загрузки их предварительно помещали в капроновые сетки, не препятствующие проникновению микрофлоры в объем загрузки, но и не позволяющие гранулам высыпаться. Затем в биофильтр помещали загрузку с иммобилизованным активным илом насыпью, и через слой загрузки пропускали сточную воду с pH 6,5, содержащую 10 мг/л СПАВ, при этом осуществляли аэрацию внутри биофильтра воздухом со скоростью 10 м32·ч. Температура очистки составляла 25°C. Через 5 часов очищенную воду сливали в отстойник, где в течение 2 часов вода отстаивалась от избыточного ила. Загрузка извлекалась из биофильтра и исследовалась на сухой остаток биомассы. Очищенная вода исследовалась на остаточное содержание СПАВ. Данные анализа представлены в таблице 1.

Пример 3.

Загрузку биофильтра с иммобилизационными свойствами получали аналогично примеру 2, но содержание стрейч-полиэтилена составляет 6,0 кг (60 мас.%), содержание отработанной микроцеллюлозы - 4,0 кг (40 мас.%).

Как видно из таблицы 1, способ получения загрузки биофильтра с иммобилизационными свойствами при содержании микроцеллюлозы в композиции 20÷40 мас.% дает возможность повысить сухой остаток биомассы на носителе, что говорит о лучшей иммобилизации микрофлоры и, следовательно, повышении эффективности очистки сточных вод в биофильтре с данной загрузкой.

При содержании микроцеллюлозы в композиции менее 20 мас.% снижается пористость и иммобилизационная способность материала, а при содержании более 40 мас.% понижается прочность материала и, как следствие, снижается срок его службы.

Использование способа получения загрузки биофильтра с иммобилизационными свойствами позволяет:

- снизить вымываемость микрофлоры из объема загрузки биофильтра за счет применения в его составе природных полисахаридов и биогенных элементов, способствующих лучшей иммобилизации;

- повысить эффективность биологической очистки сточных вод за счет низкой вымываемости микроорганизмов из объема загрузки, а также снизить нагрузку на вторичные отстойники и сократить объем образующегося избыточного активного ила за счет лучшей иммобилизационной способности материала,

- интенсифицировать технологический процесс получения загрузки биофильтра,

- упростить технологию изготовления материала за счет упразднения стадии вспенивания специальными агентами, а также за счет использования в производстве стандартного оборудования без специальных профилирующих элементов, что способствует снижению себестоимости материала,

- снизить себестоимость материала загрузки за счет использования вторичных сырьевых ресурсов.

Способ получения загрузки биофильтра с иммобилизационными свойствами, включающий изготовление материала загрузки из полимерных веществ, содержащих органические добавки, отличающийся тем, что в полимерном материале в качестве органической добавки используют отход рафинации растительных масел - отработанную микроцеллюлозу, содержащую в своем составе пластифицирующие компоненты, такие как воски, и легколетучие органические примеси, способствующие порообразованию с получением материала плотностью 0,6÷0,8 г/см3 и пористостью от 50 до 150 ячеек/см2, а также биогенные вещества, такие как триацилглицериды, стиролы, каротиноиды, способствующие иммобилизации микрофлоры на загрузке, загрузку готовят при следующем содержании компонентов, мас.%:
- полиолефин - стрейч-полиэтилен - 60÷80,
- отработанная микроцеллюлоза - 20÷40;
гранулы стрейч-полиэтилена смешивают с отработанной микроцеллюлозой, полученную смесь экструдируют при температуре 170÷180°C в двухшнековом экструдере с гранулирующим устройством с получением гранул диаметром 2÷20 мм и длиной 3÷100 мм.



 

Похожие патенты:

Изобретение относится к резиновым смесям и пневматическим шинам, полученным из них. Резиновая смесь включает на 100 масс.% каучукового компонента по меньшей мере 35 масс.% бутадиен-стирольного каучука, сопряженный диеновый полимер и диоксид кремния с удельной поверхностью, измеренной из адсорбции азота от 40-400 м2/г.

Изобретение относится к резиновым смесям и пневматическим шинам, полученным из них. Резиновая смесь включает сопряженный диеновый полимер и диоксид кремния с удельной поверхностью, измеренной из адсорбции азота от 40-400 м2/г.

Изобретение относится к диеновому полимеру, способу его получения, полимерной эмульсии, резиновой смеси и пневматической шине. Диеновый полимер получают радикальной полимеризацией способного к радикальной полимеризации мономера в присутствии содержащего полярную функциональную группу тиолового соединения.
Изобретение относится к резиновым композициям, содержащим графеновые углеродные частицы, и может быть использовано, в частности, в протекторах шин. Резиновая композиция содержит базовую композицию резиновой смеси, которая содержит каучук, и добавку, выбираемую из технологических масел, антиоксидантов, вулканизаторов и оксидов металлов; а также - 0,1-20,0 мас.% графеновых углеродных частиц, обладающих 3D морфологией и содержанием кислорода менее чем 2% атомной массы; и 1-50 мас.% частиц наполнителя.

Изобретение относится к способам получения изделий из полимера для использования в медицине. Предлагаемый способ содержит стадии получения раствора полимера путем смешивания первого соединения, содержащего карбодиимидные группы, со вторым соединением, содержащим карбоксилированные группы, нанесения раствора полимера на формирователь, где стадию нанесения осуществляют в течение не более 2 часов после получения раствора полимера, и отверждения раствора полимера.

Изобретение относится к области резинотехнической промышленности, а именно к промотору адгезии на основе природного минерала шунгита для крепления резин к армирующим металлическим материалам, и может быть использовано при производстве резинометаллокордных шин.

Изобретение относится к полиэтиленовой композиции для наружного слоя покрытия стальных труб. Композиция содержит ПЭВП, представляющий собой гомополимер этилена и/или сополимер этилена с альфа-олефином с плотностью 0,940 до 0,964 г/см3, ПЭНП, представляющий собой разветвленный полиэтилен высокого давления с плотностью от 0,91 до 0,925 г/см3, или сополимер этилена с альфа-олефином с плотностью от 0,904 до 0,935 г/см3, или сополимер этилена с винилацетатом с содержанием от 5 до 30 мас.% винилацетатных групп и имеющий плотность от 0,925 до 0,955 г/см3.

Изобретение относится к резиновой композиции, содержащей диоксид кремния. Резиновая композиция содержит: (А) каучуковый компонент, содержащий от 90 до 100% по массе одного типа диенового каучука, синтезированного полимеризацией в растворе, и от 0 до 10% по массе другого типа диенового каучука; (В) диоксид кремния, у которого удельная площадь поверхности адсорбции n-гексадецилтриметиламмоний бромида (СТАВ) составляет 180-300 м2/г при определении методом, описанным в ASTM D3765-92; (С) силановый связывающий агент, выбранный из соединений общей химической формулы; и (D) ускоритель вулканизации, причем средняя площадь агрегированных агрегатов диоксида кремния резиновой композиции после вулканизации составляет 300-1700 нм2.

Изобретение относится к резиновой смеси, содержащей диоксид кремния. Резиновая смесь содержит: (А) каучуковый компонент, содержащий 10% по массе или более одного типа каучука, выбранного из синтезированного эмульсионной полимеризацией диенового каучука и натурального каучука и 90% по массе или менее другого типа диенового каучука; (В) диоксид кремния, имеет удельную площадь поверхности по адсорбции н-гексадецилтриметиламмоний бромида (СТАВ), составляющую 60 м2/г или более и менее 140 м2/г при определении методом ASTM D3765-92; (С) силановый связывающий агент в соответствии с общей формулой; и (D) ускоритель вулканизации.

Изобретение относится к пневматической шине, содержащей, по меньшей мере, один компонент, который содержит каучуковую композицию. Каучуковая композиция содержит: эластомер на диеновой основе и от 5 до 10 мас.ч.

Изобретение раскрывает способ приготовления резиновой смеси, включающей по меньшей мере один каучуковый компонент (А), выбранный из натуральных каучуков и диеновых синтетических каучуков, наполнитель, содержащий неорганический наполнитель (В), силановый связующий агент (С) и ускоритель вулканизации (D), в котором резиновую смесь смешивают в несколько стадий, каучуковый компонент (А), весь или часть неорганического наполнителя (В), весь или часть силанового связующего агента (С) и ускоритель вулканизации (D) добавляют и смешивают на первой стадии смешения, и удельная энергия смешения на первой стадии составляет 0,05-1,50 кВт·ч/кг, при этом удельная энергия определяется делением мощности, потребляемой двигателем устройства смешения на первом этапе смешения, на общую массу резиновой смеси, при этом скорость вращения лопастей устройства смешения на первой стадии составляет 30-90 об/мин, ускоритель вулканизации (D) представляет собой по меньшей мере один ускоритель вулканизации, выбранный из гуанидинов, сульфенамидов, тиазолов, тиурамов, дитиокарбаматов, тиомочевин и ксантогенатов, и неорганический наполнитель (В) представляет собой по меньшей мере один наполнитель, выбранный из диоксида кремния и газовой сажи.

Изобретение относится к полимерному материаловедению и может быть использовано для изготовления футеровок, в том числе резинометаллических, для обеспечения защиты от многократных ударных деформаций, гидроабразивного и абразивного износа внутренних металлических поверхностей горнообогатительного и горнодобывающего оборудования.

Изобретение относится к области биотехнологии, в частности к композициям гомогенных биоразлагаемых пленок, которые можно использовать для производства различных изделий промышленного, бытового и медицинского назначения.

Изобретение относится к прикладной химии, а именно к твердым горючим (ТГ) для прямоточных воздушно-реактивных двигателей (ПВРД) активно-реактивных снарядов (АРС). Твердое горючее содержит органическое горючее-связующее, ультрадисперсный порошок высокоэнергетического металла и карборан и/или фенилкарборан.

Настоящее изобретение относится к способам для обеспечения стабильных жидких смесей а) пентаэритритол тетракис(3-(3,5-ди-трет-бутил-4-гидроксфенил)пропионата, b) октадецил 3-(3,5-ди-трет-бутил-4-гидроксфенил)пропионата и с) трис-(2,4-ди-трет-бутилфенил)фосфита, которые могут найти применение в химической промышленности.
Данное изобретение относится к биологически разлагаемому пластику, обладающему повышенной скоростью биологического разложения. Биологически разлагаемый пластик с повышенной скоростью биологического разложения отличается тем, что он содержит: (а) примерно от 0,1 до 40% масс.
Изобретение относится к раствору ускорителя и может использоваться при получении окислительно-восстановительной системы, совместно с пероксидами. Раствор ускорителя содержит соединение Cu(I), соединение переходного металла, фосфорсодержащее соединение формулы P(R)3 или Р(R)3=O, где каждый R независимо выбирают из водорода, алкила, алкоксигрупп, имеющих от 1 до 10 атомов углерода, азотсодержащее основание, выбираемое из третичных аминов, полиаминов, вторичных аминов, этоксилированных аминов и ароматических аминов, и гидроксифункциональный растворитель формулы НО-(-СН2-С(R1)2-(СН2)m-О-)n-R2, где каждый R1 независимо выбран из группы, состоящей из водорода, алкильных групп, имеющих 1-10 атомов углерода, и гидроксиалкильных групп, имеющих от 1 до 10 атомов углерода, n=1-10, m=0 или 1, и R2 представляет собой водород или алкильную группу, имеющую 1-10 атомов углерода.

Изобретение относится к способу изготовления полимерного полого изделия, где способ включает: а) заполнение пресс-формы полимерной композицией и полимер-стабилизирующим количеством композиции стабилизаторов, где композиция стабилизаторов содержит: по меньшей мере, одно соединение на основе хромана согласно формуле V где R21 представляет собой заместитель, который может быть одинаковым или различным в положениях от 0 до 4 ароматической части формулы V и независимо выбирается из: C1-C12-гидрокарбила; NR′R′′, где каждый заместитель из R′ и R′′ независимо выбирают из Н и C1-C12-гидрокарбила; или OR27, где R27 выбирают из: Н; C1-C12-гидрокарбила; COR′′′; или Si(R28)3, где R′′′ выбирают из Н или C1-C20-гидрокарбила; и где R28 выбирают из C1-C12-гидрокарбила или алкоксигруппы; R22 выбирают из: Н; или C1-C12-гидрокарбила; R23 выбирают из Н; или C1-C20-гидрокарбила; и каждый заместитель из R24-R25 независимо выбирают из: Н; C1-C12-гидрокарбила; или OR′′′′, где R′′′′ выбирают из Н или C1-C12-гидрокарбила; и R26 представляет собой Н или связь, которая вместе с R25 образует =O, при условии, что, в случае когда R27 представляет собой Н, композиция стабилизаторов не включает антистатический агент, состоящий из этоксилированного амида и/или этоксилированного амина; b) вращение пресс-формы вокруг, по меньшей мере, 1 оси, при одновременном нагревании пресс-формы в сушильной камере при температуре, достаточной для сплавления полимерной композиции и распределения ее по стенкам пресс-формы; c) охлаждение пресс-формы; и d) раскрытие пресс-формы для удаления получающегося в результате продукта, в результате чего получают полимерное полое изделие.
Изобретения относятся к раствору ускорителя, подходящему для использования при получении окислительно-восстановительной системы совместно с пероксидами. Раствор ускорителя содержит соединение первого переходного металла, выбираемого из меди, соединение второго переходного металла, выбираемого из кобальта, азотсодержащее основание и гидроксифункциональный растворитель.

Изобретение раскрывает шину, поверхность качения которой содержит каучуковую композицию, включающую, по меньшей мере: от 40 до 100 phr эмульсионного бутадиен-стирольного сополимера "E-SBR", называемого первым диеновым эластомером, в котором доля бутадиеновых звеньев структуры транс-1,4 составляет более 50% от веса всех бутадиеновых звеньев; необязательно, от 0 до 60 phr другого диенового эластомера, называемого вторым диеновым эластомером; от 90 до 150 phr усиливающего неорганического наполнителя; пластифицирующую систему, содержащую: количество А: между 10 и 60 phr, углеводородной смолы с Tg выше 20°С; количество В: между 10 и 60 phr, пластификатора, жидкого при 20°С, Tg которого составляет менее -20°С; при условии, что общее количество пластификаторов, А+В, находится в интервале между 50 и 100 phr.

Изобретение относится к охране окружающей среды и может быть использовано для очистки природных и доочистки ливневых и сточных вод. Биореактор для очистки водных сред состоит из корпуса 1, снабженного окнами для подсоса воздуха 2 с воздуховодами 3, куполообразным отражателем 4 с устройством для выпуска воздуха 5, с трубопроводами подачи исходной водной среды на очистку 6, отвода очищенной водной среды 7, сборно-распределительной системой 8, соединенной с трубопроводом отвода промывной воды 9.
Наверх