Способ и устройство для непрерывного определения концентрации растворенных в воде газов

Изобретение относится к способам и устройствам для мониторинга в реальном масштабе времени состояния объектов подводного пространства на наличие газовых течей, а также поиска полезных ископаемых, в частности, метана и других углеводородов. Поток газа-носителя непрерывно перемещают от источника газа-носителя 1 во внутренний объем блока пробоподготовки 2, регулируя скорость потока газа-носителя так, чтобы обеспечить насыщение в мембранном процессе газа-носителя растворенным в воде газом-аналитом. Насыщенный газом-аналитом поток газа-носителя непрерывно перемещают из блока пробоподготовки 2 во внутренний объем газочувствительного элемента 3. С помощью газового сенсора производят определение концентрации газа-аналита в потоке газа-носителя. После определения концентрации газа-аналита газ-носитель, прошедший через газочувствительный элемент 3, вместе с содержащимся в нем газом-аналитом выводят через газоотводную трубку 4. Техническим результатом является непрерывное определение концентрации растворенных в воде газов в реальном масштабе времени. 2 н. и 14 з.п. ф-лы, 1 ил.

 

Область применения

Изобретение относится к способам и устройствам для мониторинга состояния объектов подводного пространства, в том числе морского (океанского) дна и/или шельфа на наличие газовых течей, а также поиска полезных ископаемых, в частности месторождений углеводородов.

Предшествующий уровень техники

Известны способ и устройство, в котором определение концентрации метана, растворенного в воде, производится путем отбора проб воды в специальные емкости с последующим анализом паровой фазы над поверхностью воды с растворенным в ней метаном с помощью газового хроматографа.

Согласно руководящему документу (Руководящий документ. Методика выполнения измерений концентрации метана в водах парофазным газохроматографическим методом. РД 52.24.512-2002. Дата введения 2003-01-01, разработан Гидрохимическим институтом) для проведения каждого единичного анализа требуются трудозатраты 1,8 чел./час.

Таким образом, известные способ и устройство не могут быть использованы для непрерывного определения концентрации растворенных в воде углеводородов в реальном масштабе времени, поскольку процесс измерения концентрации метана посредством указанного способа и устройства состоит из отдельных этапов и не является непрерывным, а на проведение каждого единичного анализа требуется более одного часа.

Известны способ и устройство для определения концентрации углеводородов, растворенных в воде с помощью их экстракции летучими растворителями (Стандарт DIN ISO 9377-2:2000. S. Drozdova, W. Ritter, B. Lendl, E. Rosenberg. Challenges in the determination of petroleum hydrocarbons in water by gas chromatography /hydrocarbon index/. Fuel 113 (2013) 527-536.).

Известные способ и устройство стандартизованы ISO. Они состоят в отборе пробы с последующей экстракцией углеводородов с помощью летучих растворителей и проведении анализа полученного экстракта с помощью хроматографа. Известные способ и устройство не могут быть использованы для непрерывного определения концентрации углеводородов в воде, так как процесс определения концентрации углеводородов занимает несколько часов и состоит из отдельных операций, требующих последовательного и полного выполнения.

Также известен способ поиска залежей нефти и газа (патент RU 2512741, опубл. 10.04.2014, МПК G01V 9/00), который включает выполнение бурения серии неглубоких скважин для взятия кернов и определение концентрации потенциально содержащихся в кернах углеводородных газов в газовой среде. Бурение производится до глубины 1-3 м, анализ углеводородных газов осуществляется барботированием через минерализованную воду. Дополнительно проводится анализ газовоздушной смеси внутри скважин на наличие гелия, радона, водорода, азота, диоксида углерода и кислорода. При этом месторождение нефти или газа определяется как область с наиболее благоприятными содержаниями гелия, радона, водорода, азота, диоксида углерода и кислорода и углеводородных газов.

Известное техническое решение не может быть использовано для непрерывного определения концентрации растворенных в воде углеводородов в реальном масштабе времени, поскольку не является прямым способом определения концентрации растворенных в воде углеводородов и для его реализации требуются продолжительные дополнительные операции - бурение скважин на морском дне и анализ их содержимого.

Также известно устройство для прямого масс-спектрометрического определения метана и его летучих гомологов в воде (В.Т. Коган, А.С. Антонов, Д.С. Лебедев, С.А. Власов, А.Д. Краснюк. Прямое масс-спектрометрическое определение метана и его летучих гомологов в воде. Журнал технической физики, 2013, том 83, вып. 3.), в котором в качестве блока пробоподготовки используют глухую ампулу, через стенку которой диффундирует целевой газ (пары углеводородов), а газ из ампулы отбирается с помощью высоковакуумного насоса и направляется на вход масс-спектрометра, используемого в качестве детектора целевого газа.

Недостатком устройства является использование в качестве детектора целевых газов в погружаемом в воду устройстве масс-спектрометра массой 20 кг, что существенно ограничивает его применение на компактных автономных непилотируемых подводных аппаратах. Кроме того, в указанном устройстве принципиальным элементом является высоковакуумный электрический насос, требующий значительного энергообеспечения, что также существенно ограничивает возможности работы под водой выбранного прототипа как в автономном режиме, так и при буксировке за движущимся исследовательским судном.

Так, автономный аппарат-носитель для данного устройства должен обладать внушительными массогабаритными характеристиками и, главное, мощными источниками энергии для обеспечения работы движительной установки и собственно устройства. Указанные обстоятельства неизбежно влекут за собой высокую цену на само устройство и значительные издержки на средства его доставки, пилотирования и обеспечения работы.

Для снижения издержек могут применять т.н. буксируемый вариант, когда основная энергозатратная и наиболее массогабаритная часть устройства размещена на судне-буксире, а под водой постоянно находится элемент для забора водных проб, жестко соединенный с основным устройством. Однако указанное техническое решение может применяться на глубинах не более 30 метров, что существенно ограничивает практическую сферу его применения. А при наличии преград на поверхности воды (например, лед) использование указанного устройства становится практически невозможным. В этой связи применение указанного устройства для решения практических задач, например поиска углеводородов на арктическом шельфе России представляется либо низкоэффективным, либо вообще невозможным.

Помимо этого, естественным следствием применения масс-спектрометра и глухой ампулы в качестве устройства пробоподготовки является то, что постоянная времени определения концентрации метана в воде составляет около 10 минут. Такая длительность проведения каждого единичного измерения метана делает невозможным непрерывное определение концентрации растворенных в воде углеводородов в реальном масштабе времени, так как требует остановки на время измерения концентрации, например, метана. А в случае непрерывного движения аппарата-носителя или судна-буксира с указанным устройством соотнесение точек измерения концентрации растворенных в воде углеводородов с реальными местами их естественной течи будет крайне затруднено и приведет к недопустимо большим погрешностям в определении таких мест.

Например, при буксировке такого устройства за судном со скоростью 20 узлов (примерно 10 метров в секунду) неточность определения места течи углеводородов будет составлять до 6 километров. Такая большая погрешность при соотнесении точек концентрации растворенных в воде углеводородов (метана) с местами их естественной течи на морском дне (шельфе) делает невозможным выполнение задачи высокоточного поиска подводных месторождений углеводородов и мест бурения скважин на морском дне (шельфе).

Сущность изобретения

Технической задачей настоящего изобретения является создание способа и устройства, полностью или частично размещаемого под водой и непрерывно определяющего в реальном масштабе времени концентрацию растворенных в воде газов.

Технический результат данного изобретения заключается в быстром и прямом определении концентрации растворенных в воде газов, в частности метана и других углеводородов (газы-аналиты).

Поставленная задача решается тем, что в способе непрерывного определения концентрации растворенных в воде газов, заключающемся в насыщении в мембранном процессе газа-носителя, контактирующего с водой, газом-аналитом, растворенным в воде, и последующем определении концентрации газа-аналита в газе-носителе, согласно предложенному решению поток газа-носителя непрерывно перемещают в одном направлении, регулируя его скорость, обеспечивая насыщение газа-носителя газом-аналитом, а концентрацию газа-аналита в газе-носителе измеряют в реальном масштабе времени после насыщения газа-носителя газом-аналитом, при этом газ-носитель после измерения в нем концентрации газа-аналита удаляют.

В качестве газа-носителя может быть использован воздух.

Концентрация газа-аналита в газе-носителе может быть определена путем измерения изменения сопротивления нанокристаллического полупроводникового материала при хемосорбции на его поверхности газа-аналита.

Концентрация газа-аналита в газе-носителе может быть определена по поглощению света в инфракрасной области в результате его абсорбции газом-аналитом.

Концентрация газа-аналита в газе-носителе может быть определена по тепловому эффекту реакции каталитического окисления газа-аналита.

Концентрация газа-аналита в газе-носителе может быть определена по изменению электрохимического потенциала или тока электрода, контактирующего с газом-носителем с содержащимся в нем газом-аналитом.

Концентрация газа-аналита в газе-носителе может быть определена по изменению теплопроводности газа-носителя с содержащимся в нем газом-аналитом.

Концентрация газа-аналита в газе-носителе может быть определена по изменению резонансной частоты пьезоэлектрического резонатора, покрытого слоем сорбента, при адсорбции газа-аналита.

Поставленная задача решается тем, что в устройстве для осуществления способа, включающем источник газа-носителя, блок пробоподготовки и присоединенные к нему последовательно газочувствительный элемент и газоотводную трубку, согласно предложенному решению блок пробоподготовки выполнен в виде погружаемой в воду прямой или изогнутой трубки, изготовленной из материала, селективно проницаемого для газа-аналита и непроницаемого для воды, а газочувствительный элемент выполнен в виде камеры, не сообщающейся с водой, с помещенным в ней газовым сенсором, соединенным с блоком управления, причем газовый вход газочувствительного элемента присоединен к выходному концу блока пробоподготовки, а выход присоединен к газоотводной трубке.

В качестве газа-носителя может быть использован воздух.

В качестве источника газа-носителя может быть использован компрессор, баллон со сжатым газом или химический источник газа - ампула с химическим веществом, из которой в результате химической реакции выделяется газ.

В качестве материала, селективно проницаемого для газа-аналита и непроницаемого для воды, может быть использован полидиметилсилоксан толщиной от 0,001 до 1 мм.

В качестве материала, селективно проницаемого для газа-аналита и непроницаемого для воды, может быть использована гидрофобизированная пористая керамика толщиной от 0,01 до 10 мм.

В качестве гидрофобизатора могут быть использованы фторированные алкоксисиланы.

В качестве газочувствительного элемента может быть использован газочувствительный сенсор полупроводникового типа, или термокаталитического, или оптического, или пьезоэлектрического, или электрохимического, или фотоакустического, или фотоионизационного типа.

Входной и выходной концы газоотводной трубки могут быть оснащены обратными клапанами, не препятствующими выходу газа-носителя с содержащимся в нем газом-аналитом и не допускающими попадания воды в газоотводную трубку.

Выходной конец газоотводной трубки может быть снабжен поплавком и обратным клапаном, не допускающим попадания воды в газоотводную трубку.

Краткое описание чертежей

На чертеже представлен общий вид устройства.

Устройство состоит из источника газа-носителя 1 с регулятором газового потока (в качестве источника газа-носителя может выступать, например, компрессор, баллон со сжатым газом, химический источник газа), соединенного с блоком пробоподготовки 2, выполненным в виде погружаемой в воду прямой или изогнутой трубки, изготовленной из материала, селективно проницаемого для газа-аналита и непроницаемого для воды. Во внутреннем объеме блока пробоподготовки 2, газочувствительного элемента 3 и газоотводной трубки 4 размещен и непрерывно перемещается по направлению от блока пробоподготовки 2 к газочувствительному элементу 3 и затем к газоотводной трубке 4 газ-носитель. Газочувствительный элемент 3 представляет собой не сообщающуюся с водой камеру с помещенным в ней газовым сенсором, соединенным с блоком управления 5, причем газовый вход газочувствительного элемента 3 присоединен к выходному концу блока пробоподготовки 2, а выход присоединен к газоотводной трубке 4, оснащенной одним или несколькими клапанами, не препятствующими выходу газа-носителя и газа-аналита и не допускающими попадания воды в газоотводную трубку 4.

Осуществление изобретения

Под воду (например, на морском шельфе) погружают устройство для непрерывного измерения концентрации растворенных в воде газов, в частности метана и других углеводородов. Из источника газа-носителя 1 с регулятором во внутреннем объеме блока пробоподготовки 2 поток газа-носителя непрерывно перемещают, регулируя его скорость так, чтобы обеспечить насыщение газа-носителя газом-аналитом. Насыщенный газом-аналитом поток газа-носителя непрерывно перемещают из блока пробоподготовки 2 во внутренний объем газочувствительного элемента 3, соединенного с блоком управления 5, где с помощью газового сенсора производят определение концентрации газа-аналита в потоке газа-носителя, автоматически регистрируемое в памяти устройства. После определения концентрации газа-аналита газ-носитель, прошедший через газочувствительный элемент 3, вместе с содержащимся в нем газом-аналитом выводят через газоотводную трубку 4 и вторично не используют. В течение всего процесса определения концентрации растворенных в воде газов движение газа-носителя во внутреннем объеме устройства не прерывается.

Предложенное решение позволяет непрерывно определять концентрацию растворенных в воде газов, в частности метана и других углеводородов, в реальном масштабе времени.

Изобретение может быть использовано в виде устройств, предназначенных для установки на автономные пилотируемые и непилотируемые подводные аппараты, автономные пилотируемые и непилотируемые водные аппараты, автономные пилотируемые и непилотируемые многосредные аппараты, подводную часть надводных судов; для буксирования за автономными пилотируемыми и непилотируемыми подводными, водными, многосредными аппаратами, надводными судами, а также для установки на морском дне, шельфе или иных объектах, погруженных в водную среду.

1. Способ непрерывного определения концентрации растворенных в воде газов, заключающийся в насыщении в мембранном процессе газа-носителя, контактирующего с водой, газом-аналитом, растворенным в воде, и последующем определении концентрации газа-аналита в газе-носителе, отличающийся тем, что поток газа-носителя непрерывно перемещают в одном направлении, регулируя его скорость, обеспечивая насыщение газа-носителя газом-аналитом, а концентрацию газа-аналита в газе-носителе измеряют в реальном масштабе времени после насыщения газа-носителя газом-аналитом, при этом газ-носитель после измерения в нем концентрации газа-аналита удаляют.

2. Способ по п. 1, отличающийся тем, что в качестве газа-носителя используется воздух.

3. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют, измеряя изменение сопротивления нанокристаллического полупроводникового материала при хемосорбции на его поверхности газа-аналита.

4. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по поглощению света в инфракрасной области в результате его абсорбции газом-аналитом.

5. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по тепловому эффекту реакции каталитического окисления газа-аналита.

6. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по изменению электрохимического потенциала или тока электрода, контактирующего с газом-носителем с содержащимся в нем газом-аналитом.

7. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по изменению теплопроводности газа-носителя с содержащимся в нем газом-аналитом.

8. Способ по п. 1, отличающийся тем, что концентрацию газа-аналита в газе-носителе определяют по изменению резонансной частоты пьезоэлектрического резонатора, покрытого слоем сорбента, при адсорбции газа-аналита.

9. Устройство для осуществления способа, включающее источник газа-носителя, блок пробоподготовки и присоединенные к нему последовательно газочувствительный элемент и газоотводную трубку, отличающееся тем, что блок пробоподготовки выполнен в виде погружаемой в воду прямой или изогнутой трубки, изготовленной из материала, селективно проницаемого для газа-аналита и непроницаемого для воды, а газочувствительный элемент выполнен в виде камеры, не сообщающейся с водой, с помещенным в ней газовым сенсором, соединенным с блоком управления, причем газовый вход газочувствительного элемента присоединен к выходному концу блока пробоподготовки, а выход присоединен к газоотводной трубке.

10. Устройство по п. 9, отличающееся тем, что в качестве материала, селективно проницаемого для газа-аналита, в частности метана и других углеводородов, и непроницаемого для воды, используют полидиметилсилоксан толщиной от 0,001 до 1 мм.

11. Устройство по п. 9, отличающееся тем, что в качестве материала, селективно проницаемого для газа-аналита, в частности метана и других углеводородов, и непроницаемого для воды, используют гидрофобизированную пористую керамику толщиной от 0,01 до 10 мм.

12. Устройство по п. 11, отличающееся тем, что в качестве гидрофобизатора используют фторированные алкоксисиланы.

13. Устройство по п. 9, отличающееся тем, что в качестве источника газа-носителя используют компрессор, баллон со сжатым газом или химический источник газа - ампулу с химическим веществом, из которой в результате химической реакции выделяется газ.

14. Устройство по п. 9, отличающееся тем, что в качестве газочувствительного элемента используют газочувствительный сенсор полупроводникового типа, или термокаталитического, или оптического, или пьезоэлектрического, или электрохимического, или фотоакустического, или фотоионизационного типа.

15. Устройство по п. 9, отличающееся тем, что входной и выходной концы газоотводной трубки оснащены обратными клапанами, не препятствующими выходу газа-носителя с содержащимся в нем газом-аналитом и не допускающими попадания воды в газоотводную трубку.

16. Устройство по п. 9, отличающееся тем, что выходной конец газоотводной трубки снабжен поплавком и обратным клапаном.



 

Похожие патенты:

Изобретение относится к кодированному микроносителю и, в частности, к микроносителю, содержащему пространственный элемент, к тест-системе и к способу проведения химического и/или биологического анализа.

Группа изобретений относится к области биохимии. Предложены диагностический инструмент для анализа образца и способ подготовки и анализа образца.

Изобретение относится к устройствам и способам снижения содержания пероксида водорода и перуксусной кислоты в водном потоке и может быть использовано для водного потока, отбираемого из балластного танка судна.

Изобретение относится к устройству термоциклера для использования при проведении реакций термоциклирования в молекулярной биологии. Термоциклер содержит: термоблок (34) для приема образца; термоэлектрический элемент (36) типа Пельтье; нагревательное устройство (38), отличное от элемента Пельтье; радиатор (28); тепловую трубу (40), соединяющую радиатор с элементом типа Пельтье.

Группа изобретений относится к области медицины и может быть использована для диагностических исследований. Группа изобретений характеризует автоматическую систему количественной амплификации в реальном времени, способ автоматической очистки нуклеиновой кислоты и количественного определения амплификации гена с использованием указанной системы, способ автоматического измерения количества жизнеспособных клеток патогенных бактерий, анализа патогенных бактерий на чувствительность к антибиотикам и автоматического получения антигенной плотности с использованием указанной системы, а также способ очистки связывающей нуклеиновой кислоты-мишени, которой мечен антиген-мишень, содержащийся в биологическом образце, с использованием указанной автоматической системы.

Изобретение относится к держателю предметного стекла, в частности предназначенному для автоматизированной обработки предметных стекол устройству держателя предметного стекла, а также технологии автоматической обработки материала, зафиксированного на предметном стекле.

Группа изобретений относится к области медицины и может быть использована для определения аналита в крови. Система для анализа биологической жидкости содержит сборный элемент (14), принимающий биологическую жидкость в капиллярном зазоре (28), тестовый элемент (18), транспортирующее устройство (20) для создания флюидного соединения между сборным элементом (14) и тестовым элементом (18) и блок (22) детектирования.

Изобретение относится к системе и способу для отслеживания параметров крови. Техническим результатом является повышение точности дозировки при непрерывной подаче медикамента.

Группа изобретений относится к области лабораторной диагностики. Способ изготовления магазина аналитических средств включает: создание первого компонента магазина аналитических средств, содержащего множество приемных частей; создание множества аналитических вспомогательных средств, соединенных друг с другом и ориентированных относительно друг друга посредством удерживающего элемента; введение аналитических вспомогательных средств в приемные части, при этом все отсеки загружаются одновременно; отделение аналитических вспомогательных средств от удерживающего элемента; нанесение химического реактива в виде непрерывной области присутствия химического реактива, нанесенной на не имеющий разрывов носитель, при этом область присутствия химического реактива обеспечивает участки химического реактива для множества отсеков.
Изобретение относится к области охраны окружающей атмосферы при мобильном контроле (мониторинге) содержания вредных газовых компонентов в воздухе. Способ мобильного контроля источников выбросов вредных газовых компонентов в воздухе, содержащий этапы, на которых непрерывно по кольцу вдоль границы санитарно-защитной зоны измеряют координаты местонахождения транспортного средства и локальные концентрации вредных газовых компонентов при помощи идентичных мультисенсорных автоматических газоанализаторов, перемещающихся и расположенных на диаметрально противоположенных местах кольца, передают измеренные значения концентраций и координаты местонахождения транспортного средства на центральный сервер, снабженный программным обеспечением, сравнивают полученные значения радиальных распределений локальных концентраций с предельно допустимыми значениями и на основе такого сравнительного анализа делают вывод о состоянии воздушной среды в различных местах обследуемой территории источников выброса.

Изобретение относится к устройству (1), предназначенному для манипулирования объектами (О), находящимися в канале (2) внутри текучей среды (F), в частности жидкости. Устройство включает в себя - канал (2), идущий вдоль продольной оси (X), причем канал (2) имеет поперечное сечение с шириной (L), измеренной вдоль первой поперечной оси (Y), и толщиной (е), измеренной вдоль второй поперечной оси (Z), перпендикулярной к первой. Ширина (L) больше толщины (е) или равна ей и канал имеет располагающиеся вдоль второй поперечной оси (Z) первую (3) и вторую (4) стенки. Устройство содержит генератор (10) акустических волн, генерирующий акустические волны в канале по меньшей мере от одной из указанных стенок (3; 4), причем указанный генератор (10) акустических волн работает на частоте f, отличной от резонансной частоты f0 канала (2) вдоль второй поперечной оси (Z). В результате происходит формирование по меньшей мере одного слоя (N) объектов посредством акустической фокусировки. Технический результат: возможность менять положение фокусировки объектов внутри канала, возможность фокусировки объектов по всему размеру канала. 8 н. и 19 з.п. ф-лы, 5 пр., 13 ил.

Изобретение относится к области экологии и касается способа экологического мониторинга качества листвы дерева в придорожной зоне. Сущность способа заключается в том, что производят укладку подложки с белой поверхностью снизу на измеряемый лист, а сверху накладывают прозрачную палетку для картографических измерений. Продольную ось листа растения совмещают с одной из линий сетки палетки, затем лист через прозрачную палетку с сеткой фотографируют. Далее проводят измерения длины и ширины листа по клеткам сетки палетки на увеличенном изображении листа растения. Причем при выборе листьев осуществляют выбор на поверхности кроны дерева локальной зоны с одинаковым солнечным освещением, в этой локальной зоне выделяют не менее 10 учетных листьев. Выполнение цифровой фотографии без срезки листьев проводят в разные периоды времени не менее 10 раз в течение полного вегетационного периода. Расчет периметра учетного листа выполняют по формуле Р=0,28284IP, где Р - периметр учетного листа, см, IP - количество по периферии листа неполных клеток, шт., расчет площади листа выполняют по формуле S=0,04IS+0,02IP, где S - площадь учетного листа, см2, IS - количество на изображении листа полных клеток, шт., IP - количество по периферии листа неполных клеток, шт. Далее по результатам измерений на основе статистического моделирования по известным формулам в программной среде типа CurveExpert выявляют биотехнические закономерности: a=f(t), b=f(t), P=f(t), S=f(t), где а - длина учетного листа, b - ширина учетного листа, Р - периметр учетного листа, S - площадь учетного листа, t - время с начала цикла онтогенеза каждого учетного листа по распусканию почек у дерева. Использование способа позволяет рассчитать скорость роста листьев дерева во всем цикле онтогенеза от начала распускания почек до опадения учетных листьев вплоть до конца вегетационного периода. 6 з.п. ф-лы, 10 ил., 3 табл.

Изобретение относится к лабораторным исследованиям. Настольная система для анализа пробы включает корпус и множество модулей внутри корпуса, причем отдельно взятый модуль из указанного множества содержит минимум одну станцию, выбранную из группы, состоящей из станции подготовки проб, аналитической станции и станции детектирования. Причем система включает в свой состав систему манипуляций с жидкостями, сконфигурированную на выполнение переноса пробы или реагентов в пределах отдельного модуля или из отдельного модуля в другой модуль в пределах корпуса системы. При этом корпус устройства является непрозрачным и препятствует неконтролируемому проникновению света в систему. Причем система для манипуляций с жидкостями выполнена приспособленной как к а) аликвоте пробы, так и к б) транспортировке аналитического блока к станции подготовки проб, аналитической станции или станции детектирования. Техническим результатом является обеспечение возможности своевременной и точной диагностики. 3 н. и 10 з.п. ф-лы, 123 ил.

Изобретение в целом относится к аппарату для захвата изделий в форме кассеты, в частности для захвата, удерживания и обеспечения движения реагента или кассеты образца как части автоматического диагностического анализатора. Заявленная группа содержит аппараты для захвата изделий в форме кассеты и способы захвата изделий в форме кассеты. При этом аппарат для захвата изделий в форме кассеты содержит корпус опоры, линейный исполнительный механизм, подвижный вдоль оси x относительно опоры, набор зажимов для захвата изделий в форме кассеты, причем каждый зажим имеет проксимальный и дистальный концы и дистальный конец приспособлен для захвата изделий в форме кассеты, подвижный узел, расположенный на проксимальном конце каждого зажима для его соединения с линейным исполнительным механизмом, фиксированный узел относительно опоры, расположенный между проксимальным и дистальным концами каждого зажима для соединения каждого зажима с опорой, где фиксированный узел опосредованно расположен на зажимах и соединен с ними при помощи сцепления и подвижного узла на зажимах и где движение линейного исполнительного механизма обеспечивает движение подвижного узла по осям x и y, тем самым поворачивая зажимы вокруг фиксированного узла, что приводит к раскрытию и закрытию зажимов. Технический результат заключается в создании аппарата, способного действовать в ограниченном пространстве, имеющего минимальное количество частей, способного к захвату кассет с образцами со значительным смещением и придающего движение аппарату, в частности способствующего захвату и удерживанию контейнеров с образцами, которые не имеют форму пробирки. 5 н. и 6 з.п. ф-лы, 8 ил.

Предложенное изобретение относится к средствам сопряжения между лабораторной автоматизированной системой и платформой для обработки расходных материалов и жидкостей в области молекулярной биологии. Предложен способ для автоматического заполнения лунок (41) планшетов (4) биологическим материалом из лабораторной автоматизированной системы (12) для транспортировки биологических образцов или реагентов, содержащихся в пробирках (13), и автоматического направления упомянутых планшетов (4) в направлении обрабатывающих модулей (18) для упомянутого биологического материала. Указанный способ реализуется при помощи платформы (1), расположенной между упомянутой лабораторной автоматизированной системой (12) и системой (14) обработки расходных продуктов (4, 42, 100), которая содержит горизонтальную перекладину (6), на которой с возможностью скольжения установлены первый робот (7) и второй робот (8), причем первый робот (7) оснащен захватным средством (9) для пипеток (10), выполненным с возможностью получения и выпуска биологического материала или реагента, и второй робот (8) оснащен захватным средством (11) для расходных продуктов (4, 42, 100). Данное изобретение позволяет реализовать способ для автоматической загрузки биологических образцов на платформу, в котором снижена вероятность ошибок переноса образцов биологического продукта. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу медицинского анализа. Заявленный способ медицинского анализа, в котором используют медицинский автоматический анализатор, оснащенный многоосным роботом (70), содержащим шарниры, определяющие по меньшей мере шесть осей вращения (A1, А2, A3, А4, А5, А6), и выполненным с возможностью перемещения и/или ориентирования конечного звена (66) по шести степеням свободы, при этом конечное звено содержит захватный орган (78), выполненный с возможностью удержания емкости (16), содержит, по меньшей мере, последовательные этапы, на которых готовят емкость (16), предварительно заполненную предназначенной для обработки пробой, взятой у человека или животного. Указанную емкость (16) перемещают в направлении, по меньшей мере, одного поста обработки медицинского автоматического анализатора (100) при помощи многоосного робота. Пробу обрабатывают на посту обработки, а емкость перемещают в направлении поста получения изображений и результаты обработки выводят на интерфейс пользователя. 15 з.п. ф-лы, 4 ил.

Группа изобретений относится к способу и аппарату для локализации и отбора колонии микроорганизмов на чашке для культивирования и идентификации микроорганизмов в указанной отобранной колонии с помощью МАЛДИ. Способ включает автоматизированные этапы локализации и отбора колонии микроорганизмов на чашке для культивирования; получения образца указанной отобранной колонии микроорганизмов; нанесения по меньшей мере части указанного образца указанной отобранной колонии микроорганизмов на мишень и переноса указанной мишени с указанным образцом в аппарат для осуществления МАЛДИ для идентификации указанного образца указанной отобранной колонии микроорганизмов. Образец колонии микроорганизмов автоматически наносят в точку нанесения таким образом, что образец покрывает не более чем около половины одной из точек нанесения мишени. Суспензию образца микроорганизмов автоматически получают с помощью автоматического сбора образца с помощью инструмента для отбора колоний и погружения инструмента для отбора колоний с указанным образцом в суспензию, после чего инструмент для отбора колоний приводят в вибрацию в вертикальном направлении исключительно для того, чтобы высвободить образец из инструмента для отбора колоний. Обеспечивается повышение воспроизводимости приготовления суспензии образца микроорганизмов, повышение надежности и воспроизводимости высвобождения образца в точку нанесения на мишени при локализации и отборе колонии микроорганизмов и их идентификации с помощью МАЛДИ. 2 н. и 10 з.п. ф-лы, 1 ил.

Группа изобретений относится к приборам для качественного и количественного анализа нуклеиновых кислот (ДНК и РНК) и может быть использована в медицинской практике при диагностике инфекционных, онкологических и генетических заболеваний человека и животных, в также в исследовательских целях. Устройство для одновременного контроля в реальном масштабе времени множества амплификаций нуклеиновой кислоты содержит термоциклер, включающий теплопроводящий элемент с расположенными в нем углублениями для пробирок с реакционными смесями, термокрышку и устройство автоматического управления температурным режимом, оптическую систему, включающую источник излучения, коаксиальные волоконно-оптические световоды для передачи света возбуждения от источника и излучения флуоресценции из пробирок, детектор для детектирования флуоресценции, микропроцессорное устройство управления и персональный компьютер. Устройство снабжено пневмогидравлической системой, которая содержит две емкости, частично заполненные жидкостью, трубопроводы, воздушный компрессор, четыре электромагнитных клапана, радиаторы, контроллер и воздушные фильтры, при этом теплопроводящий элемент имеет сквозные внутренние каналы, которые соединены трубопроводами через электромагнитные клапаны, которые управляются контроллером, с емкостями, частично заполненными жидкостью. Группа изобретений относится также к варианту указанного устройства, пневмогидравлическая система которого содержит одну емкость, частично заполненную жидкостью. Группа изобретений обеспечивает увеличение скорости изменения температуры в режиме охлаждения, повышение быстродействия и производительности путем сокращения времени анализа. 2 н.п. ф-лы, 6 ил.

Группа изобретений относится к системам для анализа биологических жидкостей. Раскрыто устройство для соединения по текучей среде для приборов биологического анализа, предназначенное для одновременного соединения нескольких каналов (10), проводящих текучую среду, и по меньшей мере одного компонента (3) для текучей среды, имеющего поверхность соединения с несколькими проходами (11) для текучей среды. Устройство включает в себя опорную пластину (1), съемные средства фиксации, выполненные с возможностью прижимать опорную пластину (1) к поверхности соединения, соединительные элементы (2), выполненные с возможностью фиксироваться на конце каналов (10) и средства герметизации (4), обеспечивающие герметичное соединение между соединительными элементами (2) и проходами для текучей среды (11). При этом опорная пластина (1) имеет сквозные отверстия, расположенные напротив проходов для текучей среды (11), и выполнена с возможностью приема соединительных элементов (2) в сквозных отверстиях и их удержания в прижатом состоянии к поверхности соединения. Также раскрыт прибор биологического анализа, включающий компоненты для текучей среды (3), каналы (10) и устройство для соединения по текучей среде. Группа изобретений обеспечивает надежную герметизацию соединений за счет вставки соединительных элементов (2) в каналы (10) и за счет средств герметизации между соединительными элементами (2) и проходами для текучей среды (11). 2 н. и 7 з.п. ф-лы, 2 ил.

В заявке описаны способы, системы и устройства контроля качества (КК) с использованием датчиков, предназначенные для применения с устройствами для проведения биологических/экологических диагностических экспресс-тестов (ДЭТ). Технический результат заключается в повышении качества контроля, предусматривает автоматические таймеры, напоминания и/или изображения кассет ДЭТ. Датчики калибруются и оптимизируются, и обеспечивают контроль качества устройств для проведения ДЭТ. Путем анализа изображений идентифицируется кассета и данные пациента и оценивается технологический процесс и состояния устройств для проведения ДЭТ, кассет и ДЭТ. Доступ к результатам и их анализ могут осуществляться на удалении от устройств для проведения ДЭТ. Отслеживается цепочка операций обеспечения сохранности ДЭТ и последовательности операций, инкубации и считывания. Для ДЭТ каждого отдельного пациента определяется показатель КК на основании критериев КК. 4 н. и 62 з.п. ф-лы, 1 ил.
Наверх