Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы полые металлические цилиндрики, отверстие их обращено наружу. Диск расположен на изолированном основании. Металлический зонд расположен на изолированном штативе с возможностью его введения внутрь каждого цилиндрика при повороте диска, выполнен в виде заостренной иглы и соединен через вольтметр и реостат с источником питания. Зонд вводят внутрь цилиндрика до соприкосновения его с донышком. Техническим результатом изобретения является обеспечение возможности создания на поверхности твердых тел распределенного заряда с контролируемой величиной заряда. 2 н.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма, например электростатики, создания конденсаторов с изменяющейся емкостью, для измерения распределенных зарядов с заданным законом их распределения на поверхности материалов.

Распределение зарядов на поверхности тел имеет принципиальное значение для создания материалов с заданными свойствами, создания систем для фокусировки заряженных частиц.

Демонстрация этого явления, а также создание систем с распределенными зарядами является важной практической задачей измерительной техники и представляет интерес для учебного процесса, так как обучение требует применения творчески поставленных опытов.

Известно устройство создания зарядов на поверхности материалов. Металлический шар помещают в электрическое поле заданной конфигурации и на поверхности шара создают индуцированный заряд с поверхностной плотностью заряда σ, величина которого зависит от полярного угла Θ заряжаемого шара (Иродов И.Е. Основные законы электромагнетизма: Учебное пособие для вузов. - М.: Высш. Шк., 1983. - с. 55). Диэлектрическое непроводящее кольцо заряжают с линейной плотностью λ=λ0cosΘ, где λ0 - положительная постоянная, Θ - азимутальный угол (Иродов И.Е. Основные законы электромагнетизма: Учебное пособие для вузов. - М.: Высш. Шк., 1983. - С. 35). Для демонстрационных опытов тела подвергают трению, электризуют и качественно с помощью электроскопа определяют наличие электрического заряда (Калашников С.Г. Электричество: Учебное пособие: - М.: Наука. - с. 18-20). Известно устройство, состоящее из источника тока, вольтметра, металлического зонда, заряжаемого тела.

С помощью вольтметра демонстрируют наличие заряда на теле и его изменение (Guisasola Jenaro, Zubimendi José L., Zuza Kristina. How much have students learned, Research-based teaching on electrical capacitance - Изучение базовых понятий электроемкости // Physical Review Special Topics - Physics Education Research 6, 020102-2010. - pp. 1-10).

Эти устройства не позволяют устанавливать контролируемые количественные значения распределения зарядов по поверхности тела и предназначены для демонстрационных и оценочных целей.

Наиболее близким аналогом, выбранным в качестве прототипа, является устройство и способ его применения, описанные в патенте (Лидер A.M., Ларионов В.В., Гаранин Г.В. Патент №2541298, МПК G09B 23/18, опубл. 20.05.2014, Бюл. 14). По периметру диэлектрического диска, расположенного на изолированном основании, впрессованы металлические шарики, диаметр которых равен толщине диска. Металлический зонд размещен на изолированном штативе и соприкасается с каждым шариком последовательно при повороте диска на угол Θ от 0 до 360 градусов. Он выполнен в виде заостренной иглы и соединен через вольтметр и реостат с источником питания. По формулам рассчитывают заряды на каждом шарике и получают значения распределенных по периметру диэлектрического диска электрических зарядов для создания электрического поля заданной конфигурации и демонстрации явлений электростатики.

Недостатком устройства и способа является слабая точность получения распределенного заряда с контролируемой величиной, так как не весь заряд переходит с иглы на поверхность шариков.

Это связано с тем, что заряд с несущего заряд тела полностью переносится на другое только при вхождении иглы внутрь заряжаемого тела.

Например, на этом принципе устроен генератор Ван-дер Граафа (Савельев И.В. курс общей физики. Т. 2. Электричество. Магнетизм. Волны. Оптика. М., Наука, 1978. с. 214), когда все заряды переносятся внутрь полости. Кроме того, шарики трудны в изготовлении с заданной точностью.

Задача - создание устройства и способа для получения электрического заряда на поверхности тел с заданным законом распределения электрического заряда на заряжаемых телах.

Устройство для создания зарядов на поверхности тел содержит заряжаемое тело в виде диэлектрического диска, расположенного на изолированном основании. Металлический зонд размещен на изолированном штативе и соединен с вольтметром, реостатом и источником питания. Диэлектрический диск выполнен с впрессованными по окружности полыми металлическими цилиндриками, диаметр которых равен длине цилиндрика. При каждом повороте диэлектрического диска металлический зонд в виде заостренной иглы вводится внутрь цилиндрика, касаясь его донышка.

Для создания зарядов на поверхности тел диэлектрический диск располагают на изолирующем основании. По окружности

диэлектрического диска впрессовывают полые металлические цилиндрики, диаметр которых равен их длине. Внутрь каждого цилиндрика вводят зонд до соприкосновения с донышком, заряжают его и все последующие цилиндрики. Диэлектрический диск поворачивают последовательно на угол Θ от 0 до 360 градусов, заряжают каждый цилиндрик, устанавливают на зонде нужный потенциал, изменяя подаваемое на зонд напряжение с помощью реостата. Записывают на каждом цилиндрике заданное значение напряжения вольтметра ϕ и угол поворота диска Θ. По формулам рассчитывают заряды на каждом цилиндрике и получают значения распределенных по периметру диэлектрического диска электрических зарядов по закону, необходимому для создания электрического поля заданной конфигурации и демонстрации явлений электромагнетизма.

На фиг. 1 показана схема устройства для реализации способа создания распределенного заряда на поверхности тел.

На фиг. 2 показано расположение внутри полого металлического цилиндрика металлического зонда.

Устройство содержит диэлектрический диск 1 из непроводящего материала (например, тефлон), установленный на изолированном основании 2, металлические цилиндрики 3 с донышком, металлический зонд 4, выполненный в виде иглы длиной 10-12 мм на изолированном штативе 5 диаметром 1 мм, вольтметр 6 - В2-27, реостат 7 - РСП-1-1, включенный по схеме потенциометра, источник питания 8 - APS-1303. Угол поворота диэлектрического диска - Θ.

На фиг. 2 - L - длина зонда, l - длина цилиндрика, равная диаметру цилиндрика d. Реостат является делителем напряжения - от источника питания на зонд подают положительное или отрицательное напряжение в зависимости от типа и требуемого закона распределенного заряда, создаваемого на поверхности тела.

Способ создания заряда на поверхности тел с помощью данного устройства заключается в следующем. С помощью реостата и вольтметра устанавливают заданное значение напряжения ϕ0 на металлическом зонде.

Записывают значение угла Θ, определяя положение цилиндрика и значение напряжения на зонде и, соответственно, на цилиндрике. Вводят зонд до его соприкосновения с донышком цилиндрика, заряжают его, затем выводят зонд из цилиндрика, поворачивают диск на угол Θ до следующего цилиндрика, измеряют и записывают угол поворота Θ, по формуле ϕ=ϕ0cosΘ вычисляют напряжение на зонде, реостатом устанавливают полученное значение напряжения на зонде и записывают его значение. Повторяют действия до тех пор, пока не будут заряжены все цилиндрики диска.

Для осуществления работы устройства определяют электрическую емкость каждого цилиндрика C по формуле

где ε0 - электрическая постоянная, R - радиус цилиндрика. Эта формула справедлива для случая, когда длина цилиндрика равна его диаметру. Заряд каждого цилиндрика Q равен

где ϕ - напряжение на цилиндрике, которое равно напряжению зонда, так как зонд введен внутрь цилиндрика. Напряжение зонда ϕ устанавливают с помощью реостата. В данном случае реостат служит делителем напряжения, которое создает источник тока. Таким образом, заряд i-го цилиндрика Q равен

Так как при каждом повороте диска на угол Θ с помощью реостата изменяют потенциал ϕ зонда, а следовательно, и цилиндрика, то заряд на диске с помощью устройства изменяют по требуемому закону. Например, ϕ=ϕ0cosΘ, тогда

где ϕ0 - начальное значение напряжения зонда и первого цилиндрика. Физической основой устройства является зависимость заряда металлического цилиндрика от его размеров и его места расположения на поверхности диэлектрического тела. Для того чтобы заряд распределялся плавно по периметру диска, размеры цилиндриков должны быть более чем в 10 раз меньше размеров диска.

Конкретный пример создания распределенного электрического заряда на поверхности диска и способ его применения. Вырезают из листа непроводящего материала толщиной 1,5-2 мм (тефлон) диск 1 радиусом 60 мм. Затем с торца диска по окружности сверлят отверстия диаметром 1 мм с допуском -0.01 мм на расстоянии 0.5 мм друг от друга. В отверстия впрессовывают полые металлические цилиндрики 3 диаметром 1 мм и диаметром внутренней полости 0.6÷0.8 мм. Диск устанавливают на жестко закрепленную диэлектрическую подставку 2 с возможностью его вращения относительно оси, проходящей через его геометрический центр. К металлическим цилиндрикам диэлектрического диска подводят жестко закрепленный на изолированном штативе металлический зонд 4. Зонд 4 - металлический стержень в виде заостренной иглы - диаметром 0.5 мм и длиной 15 мм соединяют с вольтметром 6 - В2-27, реостатом 7 - РСП-1-1, включенным по схеме потенциометра, источником питания 8 - APS-1303. Для создания заряда на цилиндриках на зонд 4 подают напряжение от источника питания 8, затем зонд 4 вводят внутрь первого цилиндрика 3 до соприкосновения его с донышком. После соприкосновения выводят зонд 4 из цилиндрика 3. Поворачивают диск на угол Θ до расположения зонда 4 напротив отверстия следующего цилиндрика 3, увеличивают напряжение с помощью реостата, вводят внутрь цилиндрика зонд 4, после соприкосновения с донышком зонд выводят из цилиндрика, записывают показания вольтметра и значения угла Θ. Процесс повторяют до тех пор, пока не будут заряжены все цилиндрики диска или их необходимое число. Величину заряда на каждом цилиндрике рассчитывают по формуле (4). Если напряжение на первом цилиндрике 3 установлено ϕ=10 В, то заряд Q=Cϕ=4πε0Rϕ=(1.122±0.001) пКл. Далее заряд на цилиндриках 3 изменяется по выбранному заранее закону, например по косинусоидальному закону. Погрешность измерения величины заряда находят по формуле (5)

(5)

где ΔR - погрешность измерения радиуса цилиндра, Δϕ - погрешность измерения потенциала зонда.

Техническим результатом изобретения является обеспечение возможности создания на поверхности твердых тел распределенного заряда с контролируемой величиной заряда.

1. Устройство для создания зарядов на поверхности тел, содержащее заряжаемое тело, диэлектрический диск, расположенный на изолированном основании, металлический зонд, размещенный на изолированном штативе, соединенный с вольтметром, реостатом и источником питания, отличающееся тем, что диэлектрический диск выполнен с впрессованными по окружности полыми металлическими цилиндриками, диаметр которых равен длине цилиндрика, с возможностью введения внутрь цилиндрика при каждом повороте диска металлического зонда, выполненного в виде заостренной иглы.

2. Способ для создания зарядов на поверхности тел, в котором диэлектрический диск располагают на изолирующем основании, впрессовывают заряжаемые тела, поворачивая последовательно на угол Θ весь диск от 0 до 360 градусов, заряжают их, устанавливая на зонде нужный потенциал и изменяя на каждом теле подаваемое на зонд напряжение с помощью реостата, отличающийся тем, что по окружности диэлектрического диска впрессовывают полые металлические цилиндрики, диаметр которых равен длине цилиндрика, вводят зонд внутрь каждого цилиндрика до соприкосновения с донышком, заряжают его и все последующие цилиндрики, при этом изменяя на каждом цилиндрике подаваемое на зонд напряжение с помощью реостата, записывают показания вольтметра и угла Θ, по формулам рассчитывают заряды на цилиндриках и получают значения распределенных по периметру диэлектрического диска электрических зарядов по закону, необходимому для создания электрического поля заданной конфигурации и демонстрации явлений электромагнетизма.



 

Похожие патенты:

Изобретение относится к моделированию промышленных процессов. Устройство для моделирования электровоза переменного тока, подключенного между контактной сетью и рельсом, содержит первый линейный резистор и параллельно ему включенную цепь с последовательно соединенными индуктивной катушкой и первым нелинейным резистором.

Изобретение относится к наглядным пособиям для изучения электронного состояния поверхности металлов. Пластину из исследуемого металла приводят в контакт с ионной жидкостью, изменяют потенциал пластины относительно электрода сравнения, регистрируют первую и вторую производные поверхностного натяжения исследуемого металла по поверхностной плотности заряда.

Изобретение относится к импульсной технике и может быть использовано для воспроизведения импульсного магнитного поля разрядов молнии при испытаниях технических систем на воздействие близких ударов молнии.

Изобретение относится к электротехнике. Технический результат состоит в возможности выявления физической структуры и поведения магнитного поля между магнитными полюсами, один из которых вращается относительно другого.

Изобретение относится к физике магнитного поля, создаваемого магнитными системами, полюсы которых взаимно перемещаются. Технический результат состоит в исследовании распределения угловых скоростей вращающегося магнитного поля в различных сечениях магнитного зазора при взаимном перемещении магнитных полюсов относительно друг друга.

Изобретение относится к области образования и наглядных учебных пособий, в частности, к наглядным пособиям для демонстрации принципа работы одиночного тросового молниеотвода.

Изобретение относится к стендам для лабораторных работ, применяемым при обучении студентов, изучающих дисциплину «Электротехнология». Автоматизированный тепловой пункт (устройство преобразования электрической энергии в тепловую), содержит параллельно соединенные между собой тэновый, электродный и вихревой подогреватели воды, отопительный прибор, бойлер со змеевиком, насос, термодатчики, щит управления, расходомер, систему трубопроводов, при этом в него введены электромагнитные клапаны, программируемый контроллер для управления и регулирования режимами нагрева, бойлер выполнен сообщающимся с атмосферой для осуществления процесса тепломассообмена, сборка всех элементов выполнена с использованием резьбовых соединений предусматривающее возможность введения в процесс новых элементов.

Изобретение относится к электродинамике и и может быть использовано для экспериментальной проверки эффекта возбуждения вихревого электрического поля при движении магнитного поля, создаваемого движением постоянного магнита.

Изобретение относится к учебным пособиям по физике. Стержень с грузом установлен с возможностью совершать колебательные движения в вертикальной плоскости.

Изобретение относится к обучающим приспособлениям для демонстрации электромагнитных явлений. На одном конце плоского стержня закреплена катушка-моток, а на другом выполнено подвесное отверстие для подвеса стержня и магнит.

Изобретение относится к лекционным демонстрационным устройствам, обеспечивающим наглядность при изучении раздела электричества в курсе общей физики. Способ лекционной демонстрации дифференциальной формы закона Джоуля включает пропускание тока через однородный проводник, площадь сечения которого изменяется по его длине, и регистрацию наибольшего нагревания проводника в месте его наименьшего сечения. Техническим результатом изобретения является демонстрация действия закона Джоуля в дифференциальной форме. 1 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. На прямоугольном планшете уложены два прямоугольных листа и два фигурных листа электропроводящей бумаги (ЭПБ) с прямолинейной границей между двумя областями с различными удельными электрическими сопротивлениями. На противоположных горизонтальных сторонах первого прямоугольного листа ЭПБ установлены параллельно длинные металлические электроды. На противоположных вертикальных сторонах второго прямоугольного листа ЭПБ установлены параллельно короткие металлические электроды. На верхней и нижней сторонах первого фигурного листа ЭПБ установлены фигурные металлические электроды. На левой и правой сторонах второго фигурного листа ЭПБ установлены прямые металлические электроды. Все первые металлические электроды соединены с плюсовой клеммой источника постоянного тока, а вторые электроды - с соответствующими контактами переключателя. С минусовой клеммой источника постоянного тока соединен один концевой контакт реостата, а подвижный его контакт - с общим контактом переключателя. Для переноса координат зонда с листа ЭПБ на документальный лист введен прямоугольный треугольник из диэлектрика. Техническим результатом изобретения является возможность моделирования электростатического поля на границе раздела двух диэлектриков. 4 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по физике. На прямоугольном планшете уложен лист электропроводящей бумаги (ЭПБ), снабженный прямоугольной системой координат в виде взаимно перпендикулярных линеек. На краю левой стороны листа ЭПБ установлен неподвижный прямоугольный электрод, а на правой половине листа ЭПБ установлен подвижный прямоугольный электрод. Рядом с неподвижным прямоугольным электродом на листе ЭПБ установлен съемный проводник круглого сечения, плотно прижатый к листу ЭПБ первым винтом с гайкой. На съемный проводник насажено съемное лекало с разметкой и уложено на листе ЭПБ. Подвижный прямоугольный электрод прижимается вторым винтом с гайкой с помощью металлической рейки, установленной одним концом на опоре, а другим концом - на подвижном прямоугольном электроде. Потенциометр концевыми контактами соединен с источником постоянного тока, а подвижный контакт его соединен с первым вводом амперметра. Второй ввод амперметра соединен с общим контактом первого переключателя на два положения. Контакт первого положения этого переключателя соединен с неподвижным прямоугольным электродом, а контакт второго положения - со съемным проводником круглого сечения. Первый ввод вольтметра соединен с минусовой клеммой источника постоянного тока и с металлической рейкой, а второй ввод его - с общим контактом второго переключателя на два положения. Контакт первого положения этого переключателя соединен со вторым вводом амперметра, а контакт второго положения - с верхним концом зонда. Техническим результатом изобретения является расширение области исследований. 3 ил.

Предлагаемое изобретение относится к области обучающих устройств и может быть использовано для получения практических навыков работы с пассивными и активными аналоговыми, цифровыми, цифроаналоговыми и аналого-цифровыми электронными компонентами. Предлагаемый конфигурируемый учебный стенд по электронике содержит источник питания, блок генераторов сигналов, устройства для измерения токов и напряжений, двухканальный осциллограф, но при этом в качестве объектов изучения используются и аналоговые, и цифровые электронные компоненты, которые расположены на верхнем слое унифицированных печатных плат, закрепленных на верхней поверхности стенда на унифицированных крепежных местах. Предлагаемый конфигурируемый учебный стенд позволяет расширить номенклатуру изучаемых электронных компонентов и схем при повышении дидактических возможностей их изучения, снижает материальные затраты при аппаратном обеспечении лабораторных работ, повышает удобства пользования за счет конфигурирования стенда в соответствии с потребностями пользователя, позволяет «на лету» производить замену вышедших из строя объектов изучения. 2 ил.

Изобретение относится к электротехнике и может быть использовано при исследовании закономерности возникновения вихревого электрического поля относительно траектории движения постоянного магнита, а также в измерительной технике и приборостроении в качестве датчика. Технический результат состоит в упрощении конструкции. Устройство для исследования вихревого электрического поля состоит из вращающегося от синхронного электродвигателя, подключенного к регулируемому по частоте многофазному генератору переменного тока, ферромагнитного тороида, намагниченного по кругу, и многовитковой измерительной катушки, установленной бесконтактно вблизи указанного вращающегося тороида и подключенной к измерителю постоянного напряжения через усилитель постоянного тока. Витки измерительной катушки расположены в плоскостях, коллинеарных относительно оси вращения намагниченного по кругу ферромагнитного тороида. 2 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит: первый зонд; потенциометр, соединенный двумя концевыми контактами с источником постоянного тока; прямоугольный планшет; съемный проводник круглого сечения; два прямоугольных электрода; вольтметр с большим входным сопротивлением, первый ввод которого соединен с верхним концом первого зонда, а второй ввод - с минусовой клеммой источника постоянного тока; неподвижную линейку, закрепленную на левой стороне прямоугольного планшета и которая выполняет роль оси ординат системы координат прямоугольного планшета; направляющий шток, установленный на правой стороне прямоугольного планшета, параллельно неподвижной линейке; движок, установленный подвижно на направляющем штоке; подвижная линейка, выполняющая роль оси абсцисс системы координат прямоугольного планшета, один конец которой жестко закреплен на движке, а второй конец ее лежит на неподвижной линейке; ползунок, перемещающийся по подвижной линейке, снабженный риской для отсчета положения первого зонда на подвижной линейке и вертикальным отверстием для нижнего конца первого зонда; первое съемное лекало из диэлектрика, насаженное на съемный проводник круглого сечения, на котором изображены внутреннее и наружное кольца с разметкой и отверстиями. На прямоугольный планшет уложен квадратный лист электропроводящей бумаги, а на нем установлен съемный проводник круглого сечения и упругая стойка, на которой верхним концом закреплен второй зонд. Для выбора требуемого режима работы установлены амперметр, первый и второй переключатели на два положения. На квадратном листе электропроводящей бумаги установлено второе съемное лекало из диэлектрика, на котором изображены внутреннее и наружное кольца с разметкой и отверстиями для касания нижним концом первого зонда квадратного листа электропроводящей бумаги. В центре второго съемного лекала из диэлектрика расположен элемент конечно-разностной сетки с нулевым, первым, вторым, третьим и четвертым узлами с отверстиями, при этом второй зонд нижним концом через нулевой узел с отверстием постоянно касается квадратного листа электропроводящей бумаги. Для переноса координат эквипотенциальных линий электрического поля, снимаемых с квадратного листа электропроводящей бумаги, установка содержит квадратный документальный лист из обычной бумаги и систему координат, аналогичную системе координат прямоугольного планшета. 2 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит: первый зонд; потенциометр, соединенный двумя концевыми контактами с источником постоянного тока; прямоугольный планшет; съемный проводник круглого сечения; два прямоугольных электрода; вольтметр с большим входным сопротивлением, первый ввод которого соединен с верхним концом первого зонда, а второй ввод - с минусовой клеммой источника постоянного тока; неподвижную линейку, закрепленную на левой стороне прямоугольного планшета и которая выполняет роль оси ординат системы координат прямоугольного планшета; направляющий шток, установленный на правой стороне прямоугольного планшета, параллельно неподвижной линейке; движок, установленный подвижно на направляющем штоке; подвижная линейка, выполняющая роль оси абсцисс системы координат прямоугольного планшета, один конец которой жестко закреплен на движке, а второй конец ее лежит на неподвижной линейке; ползунок, перемещающийся по подвижной линейке, снабженный риской для отсчета положения первого зонда на подвижной линейке и вертикальным отверстием для нижнего конца первого зонда; первое съемное лекало из диэлектрика, насаженное на съемный проводник круглого сечения, на котором изображены внутреннее и наружное кольца с разметкой и отверстиями. На прямоугольный планшет уложен квадратный лист электропроводящей бумаги, а на нем установлен съемный проводник круглого сечения и упругая стойка, на которой верхним концом закреплен второй зонд. Для выбора требуемого режима работы установлены амперметр, первый и второй переключатели на два положения. На квадратном листе электропроводящей бумаги установлено второе съемное лекало из диэлектрика, на котором изображены внутреннее и наружное кольца с разметкой и отверстиями для касания нижним концом первого зонда квадратного листа электропроводящей бумаги. В центре второго съемного лекала из диэлектрика расположен элемент конечно-разностной сетки с нулевым, первым, вторым, третьим и четвертым узлами с отверстиями, при этом второй зонд нижним концом через нулевой узел с отверстием постоянно касается квадратного листа электропроводящей бумаги. Для переноса координат эквипотенциальных линий электрического поля, снимаемых с квадратного листа электропроводящей бумаги, установка содержит квадратный документальный лист из обычной бумаги и систему координат, аналогичную системе координат прямоугольного планшета. 2 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит измеритель разности фаз, планшет, на котором установлена неподвижная катушка индуктивности, подключенная к генератору переменного тока, и подвижная катушка индуктивности, подключенная к измерителю ЭДС. Подвижная катушка индуктивности снабжена штырем, установленным перпендикулярно ее оси и планшету, выводы катушки соединены с первыми вводами измерителя разности фаз. На планшете изображен контур обхода в виде окружности, в центре которой расположена неподвижная катушка индуктивности, при этом контур обхода разбит на четное число интервалов, кратное четырем, и в средних точках интервалов сделаны отверстия для штыря подвижной катушки индуктивности. На планшете изображена шкала расстояний, проведенная от центра контура обхода в первую его точку, которая снабжена отверстиями для штыря подвижной катушки индуктивности и разметкой расстояния. На планшете установлена опорная катушка индуктивности со штырем в отверстие рядом с подвижной катушкой индуктивности в окрестности первой точки контура обхода, выводы которой соединены со вторыми вводами измерителя разности фаз. На каждой катушке в торце и параллельно их осям установлены указатели направления катушки. 5 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит измеритель разности фаз, планшет, на котором установлена неподвижная катушка индуктивности, подключенная к генератору переменного тока, и подвижная катушка индуктивности, подключенная к измерителю ЭДС. Подвижная катушка индуктивности снабжена штырем, установленным перпендикулярно ее оси и планшету, выводы катушки соединены с первыми вводами измерителя разности фаз. На планшете изображен контур обхода в виде окружности, в центре которой расположена неподвижная катушка индуктивности, при этом контур обхода разбит на четное число интервалов, кратное четырем, и в средних точках интервалов сделаны отверстия для штыря подвижной катушки индуктивности. На планшете изображена шкала расстояний, проведенная от центра контура обхода в первую его точку, которая снабжена отверстиями для штыря подвижной катушки индуктивности и разметкой расстояния. На планшете установлена опорная катушка индуктивности со штырем в отверстие рядом с подвижной катушкой индуктивности в окрестности первой точки контура обхода, выводы которой соединены со вторыми вводами измерителя разности фаз. На каждой катушке в торце и параллельно их осям установлены указатели направления катушки. 5 ил.

Устройство относится к моделированию системы электроснабжения переменного тока электрических железных дорог, а именно к модели электровоза переменного тока. Технический результат - повышение точности воспроизведения кривой тока электровоза в модели системы тягового электроснабжения. Устройство для моделирования электровоза переменного тока содержит источник питания и последовательно соединенные модели линии электропередачи, трансформатора тяговой подстанции и контактной сети с первой индуктивной катушкой и первым резистором, а также модель электровоза, содержащую второй линейный резистор и включенную параллельно ему электрическую цепь, состоящую из последовательно соединенных второй индуктивной катушки и третьего нелинейного резистора. Для достижения технического результата параллельно электрической цепи, состоящей из последовательно соединенных индуктивной катушки и нелинейного резистора введена электрическая цепь с последовательным соединением индуктивной катушки и линейного резистора. 1 ил.
Наверх