Навигация относительно площадки с использованием измерений расстояния

Изобретение относится к способу навигации объекта относительно площадки с использованием измерений расстояния. Достигаемый технический результат – повышение точности навигации объекта. Указанный результат достигается за счет того, что четыре или более передатчика (Т14) сигналов определения положения расположены на и/или около площадки первого объекта и второй объект, приближающийся к площадке, содержит три или более приемника (А13) для приема сигналов определения положения, причем способ содержит действия по: выполнению для каждого полученного сигнала определения положения измерения расстояния между передатчиком сигнала определения положения и приемником сигнала определения положения и оценке относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту напрямую посредством обработки измерений расстояния с помощью алгоритма оценки пространства состояний, реализующего модель системы первого и второго объекта. 6 н. и 9 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к средствам и методам навигации объекта относительно площадки с использованием измерений расстояния.

Предпосылки создания изобретения

Для многих случаев применения должно быть известно относительное положение и ориентация между двумя площадками. К этим случаям применения относятся автоматическая посадка беспилотного летательного аппарата (БПЛА) на неподвижную или движущуюся площадку, такую как корабль, помощь пилоту при посадке, постановка судна в док и многое другое. Кроме того, желательно, чтобы эта информация была также доступной в средах, где в доступе к ГНСС (Глобальной навигационной спутниковой системе) отказано. Простоты ради, одна из вовлеченных площадок в дальнейшем обозначена как судно, другая площадка - как БПЛА.

Навигационная система, которая способна предоставить необходимую информацию об относительном положении и ориентации, состоит из четырех или более транспондеров на борту судна и трех или более антенн на борту БПЛА. Антенны передают запросные сигналы, на которые отвечают транспондеры. Затем эти ответы принимаются антеннами. Измеряется время между передачей запросного сигнала и приемом ответа, что позволяет рассчитать расстояние между антенной и отвечающим транспондером.

Также может быть измерено доплеровское смещение принятого сигнала, что может быть преобразовано в измерение относительной скорости между антенной и транспондером. Кроме того, вместо использования транспондеров на борту судна, также могут быть использованы синхронизированные псевдоспутники (псевдолиты). Эти псевдоспутники передают сигналы, сходные с сигналами глобальной навигационной спутниковой системы (ГНСС), которые принимаются антеннами на борту БПЛА. При таком сценарии БПЛА не нужно передавать сигналы, но измерения расстояния смещаются сдвигом тактового генератора приемника, а доплеровские измерения смещаются погрешностью частоты тактового генератора приемника.

Система относительной навигации, как описанная выше, рассматривается в публикации «Stand-Alone Ship-Relative Navigation System Based on Pseudolite Technology» («Автономная система навигации относительно судна на основе технологии псевдоспутников»); Aulitzky, С; Heinzinger, О; Bestmann, U; Hecker, P.;» AIAA Guidance, Navigation, and Control Conference, 10-13 August 2009, Chicago, Illinois, USA. В способе, представленном в этой работе, относительное положение каждой антенны относительно каркаса корпуса судна оценивается с использованием нелинейного подхода наименьших квадратов и применяются ограничения, чтобы учитывать относительную геометрию между этими антеннами. Затем из относительных положений антенн рассчитывается относительная ориентация. Это решение имеет несколько недостатков:

- количество неизвестных, подлежащих оценке, возрастает с количеством антенн,

- доплеровские измерения не могут быть учтены,

- измерения расстояния, сделанные от всех антенн до всех транспондеров/псевдоспутников, должны быть действительными в один и тот же момент времени, иначе вводятся систематические ошибки. Другими словами, невозможно производить измерения последовательно, то есть измеряя расстояния между первой антенной и транспондерами/псевдоспутниками, затем измеряя расстояния со второй антенной, а после этого измеряя расстояния с третьей антенной. Такой подход дает измерения расстояния с разным временем действительности для каждой антенны. Очень серьезным недостатком является то, что способ, описанный в указанной выше работе, вводит системные ошибки в таком сценарии, потому что многие имеющиеся в наличии системы измерения расстояния работают именно таким образом,

- измерения дополнительных датчиков, таких как блок инерциальных измерений (БИИ) и радиолокационный или лазерный высотомер, не могут быть легко учтены, что также является серьезным недостатком.

Описание изобретения

Поэтому целью изобретения является создание способа навигации объекта относительно площадки с использованием измерений расстояний, который может преодолеть, по меньшей мере, часть вышеупомянутых недостатков известной системы относительной навигации.

Эта цель достигнута предметом независимых пунктов формулы изобретения. Другие варианты осуществления изобретения показаны в зависимых пунктах формулы изобретения.

Принципиальная идея изобретения заключается в том, чтобы оценивать относительное положение и ориентацию каркаса корпуса БПЛА относительно судна напрямую, вместо оценки относительных положений антенн БПЛА (второй объект) относительно судна (первый объект), как описано в публикации «Stand-Alone Ship-Relative Navigation System Based on Pseudolite Technology)); Aulitzky, C; Heinzinger, O; Bestmann, U; Hecker, P.;» AIAA Guidance, Navigation, and Control Conference, 10-13 August 2009, Chicago, Illinois, USA, которая включена здесь в качестве ссылки. Это может быть сделано с помощью алгоритма оценки пространства состояний, например фильтра Калмана, фильтра точки сигма или других фильтров, либо в формулировке полного пространства состояний, либо в формулировке пространства состояний ошибки. Изобретательский подход обеспечивает следующие преимущества: количество неизвестных не возрастает с количеством антенн; могут быть учтены доплеровские измерения; измерения расстояния, сделанные от всех антенн до всех транспондеров/псевдоспутников, могут быть действительными в любой момент времени, пока он известен, не требуется, чтобы все антенны производили синхронизированные измерения, что облегчает использование имеющихся в наличии систем измерения расстояния; измерения дополнительных датчиков, таких как блок инерциальных измерений и радиолокационные или лазерные высотомеры, могут быть легко учтены.

Вариант осуществления изобретения относится к способу навигации объекта относительно площадки с использованием измерения расстояния, причем:

- четыре или более передатчика сигналов определения положения расположены на и/или около площадки первого объекта и

- второй объект, приближающийся к площадке, содержит три или более приемника для приема сигналов определения положения и

причем способ содержит действия по:

- выполнению для каждого принятого сигнала определения положения измерения расстояния между передатчиком сигнала определения положения и приемником сигнала определения положения, и

- оценке относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту прямо посредством обработки измерений расстояния с помощью алгоритма оценки пространства состояний, реализующего модель системы первого и второго объекта.

Кроме того, оценка относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту может содержать обработку измерений одного или более дополнительного датчика, прежде всего радиолокационного или лазерного высотомера.

Алгоритм оценки пространства состояний может быть фильтром Калмана, фильтром точки сигма или другим фильтром, позволяющим производить оценку пространства состояний, либо в формулировке полного пространства состояний, либо в формулировке пространства состояний ошибки.

Алгоритм оценки пространства состояний может содержать формулировку пространства состояний ошибки и выполнять следующие итеративные действия по:

предположению относительного положения и относительной ориентации второго объекта из измерений расстояний,

оценке ошибок в предполагаемых относительном положении и относительной ориентации второго объекта и

коррекции предполагаемых относительного положения и относительной ориентации второго объекта на основе оцененных ошибок.

Алгоритм оценки пространства состояний может реализовывать следующее системное дифференциальное уравнение для оценки ошибок в предполагаемых относительном положении и относительной ориентации второго объекта:

причем означает ошибки в относительном положении, означает ошибки в относительно ориентации, nω и nx образуют вектор шума системы.

Предполагаемая относительная ориентация второго объекта может быть распространена на стадии предсказания фильтра алгоритма оценки пространства состояний с использованием измерений дополнительных датчиков, прежде всего блока инерциальных измерений.

Алгоритм оценки пространства состояний может моделировать измерение расстояния между j-тым передатчиком и i-тым приемником следующим образом:

причем означает положение j-того передатчика, nρij означает шум измерения расстояния и причем положение i-того приемника дано выражением

где означает положение начальной точки Ob каркаса корпуса второго объекта, означает плечо кренящего момента от начальной точки Ob каркаса корпуса второго объекта к i-тому приемнику, а означает матрицу направляющих косинусов, которая трансформируется из каркаса корпуса второго объекта в каркас корпуса первого объекта, причем эта матрица направляющих косинусов связана с предполагаемой матрицей направляющих косинусов через ошибки относительной ориентации.

Модель системы, реализованная с помощью алгоритма оценки пространства состояний, может быть расширена состояниями ошибок относительной скорости, и способ дополнительно содержать действия по:

выполнению доплеровского измерения с каждым принятым сигналом положения и

оценке относительной скорости каркаса корпуса второго объекта по отношению к первому объекту посредством обработки доплеровских измерений с помощью расширенного алгоритма оценки пространства состояний.

Согласно еще одному варианту осуществления изобретения предусмотрен носитель записи для хранения реализующей предлагаемый в изобретении способ компьютерной программы, например CD-ROM, DVD, карта памяти, дискета или аналогичный носитель данных, подходящий для хранения компьютерной программы для электронного доступа.

Еще один вариант осуществления изобретения относится к компьютеру, сконфигурированному с помощью реализующей предлагаемый в изобретении способ компьютерной программы и, как описано здесь, для навигации относительно площадки. Компьютер может быть расположен, например, на борту БПЛА и обрабатывать сигналы определения положения, принимаемые через антенны БПЛА от датчиков, расположенных на или около площадки для управления процедурой автоматического и автономного захода на посадку БПЛА.

Еще один вариант осуществления изобретения относится к устройству для навигации объекта относительно площадки, содержащему

- блок измерения расстояния для выполнения для принятого сигнала определения положения измерения расстояния между передатчиком сигнала определения положения, расположенным на и/или около площадки первого объекта, и приемником второго объекта, приближающегося к площадке, с помощью которого принимается сигнал положения, и

- средства обработки для оценки относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту посредством обработки измерений расстояния между передатчиком сигналов определения положения и приемником сигналов определения положения с помощью алгоритма оценки пространства состояний, реализующего модель системы первого и второго объекта, причем средства обработки сконфигурированы для реализации способа согласно изобретению и как он описан здесь.

Еще один вариант осуществления изобретения относится к транспортному средству, прежде всего БПЛА, содержащему:

- три или более приемника для приема сигналов определения положения, излучаемых четырьмя или более передатчиками, расположенными на и/или около площадки другого транспортного средства, и

- устройство согласно изобретению и как оно описано здесь.

Еще один вариант осуществления изобретения относится к системе навигации объекта относительно площадки с использованием измерений расстояния, содержащей:

- четыре или более передатчика сигналов определения положения, которые расположены на и/или около площадки первого объекта,

- три или более приемника для приема сигналов определения положения, которые расположены на борту второго объекта, приближающегося к площадке, и

- устройство согласно изобретению и как оно описано здесь. В системе передатчик сигнала определения положения может быть реализован в виде транспондера, выполненного для ответа на запросный сигнал, переданный приемником ответным сигналом, а приемник может быть выполнен для приема в качестве сигнала определения положения ответного сигнала от транспондера и для измерения времени между передачей запросного сигнала и приемом ответного сигнала, причем измеренное время обрабатывается для измерения расстояния.

В качестве альтернативы или дополнительно, в системе передатчик сигнала положения может быть реализован в виде псевдоспутника, выполненного для излучения сигнала, сходного с сигналом глобальной навигационной спутниковой системы, в качестве сигнала определения положения, причем несколько псевдоспутников, расположенных на и/или около площадки первого объекта, синхронизированы, а приемник может быть выполнен для приема сигнала определения положения от псевдоспутника и измерения времени передачи сигнала определения положения, причем измеренное время передачи обрабатывается для измерения расстояния.

Эти и другие аспекты изобретения будут очевидными и будут пояснены со ссылкой на варианты осуществления, описанные ниже.

Далее изобретение будет описано более детально со ссылкой на примерные варианты осуществления. Однако изобретение не ограничено этими примерными вариантами осуществления.

Краткое описание чертежей

Показано на:

Фиг. 1: пример геометрии системы БПЛА с тремя антеннами, приближающегося к посадочной площадке судна, которая содержит 4 транспондера, излучающих сигналы определения положения; и

Фиг. 2: вариант осуществления устройства для навигации объекта относительно площадки согласно изобретению.

Описание вариантов осуществления

В дальнейшем функционально сходные или идентичные элементы могут иметь одинаковые ссылочные обозначения. Варианты осуществления настоящего изобретения описываются по отношению к (посадочной) площадке судна (первый объект) и БПЛА (второй объект), приближающемуся к посадочной площадке. Однако изобретение не ограничено этим случаем применения, а может быть применено к любому виду относительной навигации второго объекта по отношению к первому объекту. Связь между объектами осуществляется посредством РЧ (радиочастоты), даже если также возможны и другие средства связи, например технологии оптической связи.

На фиг. 1 показан пример геометрии системы, с которой настоящее изобретение может быть использовано. БПЛА обозначен как Ob, что является начальной точкой каркаса корпуса БПЛА. Кроме того, БПЛА содержит 3 антенны А13 в качестве приемников сигналов определения положения. Расстояния между антеннами А13 и начальной точкой Ob каркаса корпуса обозначены как I1-I3, что является плечами кренящего момента антенн А13 относительно начальной точки Ob. Посадочная площадка для БПЛА на судне обозначена 4 передатчиками Т14, которые расположены в углах площадки. Начальная точка судна и общей системы координат для относительной навигации обозначена как Os. Положения антенн А13 в общей системе координат обозначены векторами rA,1-rA,3, а положения передатчиков Т14 обозначены векторами rT,1-rT,4.

Передатчики Т14 могут быть выполнены в виде транспондеров, которые передают сигналы определения положения при приеме запросных сигналов, передаваемых БПЛА через антенны А13. Передатчики Т14 также могут быть выполнены в виде псевдоспутников, которые передают свои сигналы определения положения без получения запросного сигнала.

Сигналы определения положения, передаваемые передатчиками Т14, могут быть аналогичными (сходными) или даже идентичными сигналам ГНСС, таким как сигналы определения положения от системы GPS (Глобальная система навигации и определения положения) или планируемой европейской ГНСС ГАЛИЛЕО. Прежде всего, сигналы определения положения могут быть кодированными мультиплексированными сигналами, содержащими навигационное сообщение с положениями rT,1-rT,4 передатчиков Т14. Каждый передатчик может иметь свою собственную уникальную кодовую последовательность для кодирования передаваемого сигнала определения положения, так чтобы приемник сигнала определения положения мог определить его передатчик.

Согласно настоящему изобретению относительное положение и ориентация каркаса корпуса БПЛА по отношению к судну оценивается напрямую. Это может быть сделано с помощью фильтра Калмана, фильтра точки сигма или других фильтров (алгоритмов) оценки пространства состояний либо в формулировке полного пространства состояний либо в формулировке пространства состояний ошибки. Применение фильтра Калмана подробно описано в публикации «Stand-Alone Ship-Relative Navigation System Based on Pseudolite Technology»; Aulitzky, C; Heinzinger, O; Bestmann, U; Hecker, P.; AIAA Guidance, Navigation, and Control Conference, 10-13 August 2009, Chicago, Illinois, USA.

Применяемый фильтр или алгоритм оценки пространства состояний может быть реализован либо, по меньшей мере частично, в программном обеспечении, например в компьютерной программе, которая может быть исполнена процессором, либо в аппаратных средствах, например в интегральной схеме, такой как навигационный процессор. Вариант в виде фильтра принимает в качестве ввода измерения расстояния и выводит данные по относительной навигации, которые могут быть обработаны, например, автоматической системой определения положения БПЛА для автоматической посадки БПЛА на площадку судна.

В дальнейшем для иллюстрации идеи изобретения будет рассмотрена формулировка пространства состояний ошибки реализации алгоритма (фильтра) оценки пространства состояний согласно изобретению. Если в распоряжении имеется одно или более измерений расстояния, выполненных, как описано ниже, фильтр оценивает ошибки в предполагаемом относительном положении и ориентации БПЛА. Затем эти оцененные ошибки используются для коррекции предполагаемого относительного положения и ориентации. Подходящее дифференциальное уравнение системы, выполняемое фильтром, дано следующим выражением

где δxs означает три ошибки в относительном положении, означает три ошибки в относительной ориентации, nω и nx образуют вектор шума системы. Последний требуется для учета изменений в относительном положении и ориентации.

Если имеется блок инерциальных измерений, предполагаемая относительная ориентация может распространяться на стадии предсказания фильтра с использованием измерений БИИ, например гироскопических измерений, что не дает быстрым изменениям ориентации БПЛА вносить вклад в относительную ориентацию, что должно отслеживаться фильтром.

Для оценки относительного положения и ориентации БПЛА измерения расстояния обрабатываются фильтром. Измерение расстояния выполняется для каждого сигнала определения положения, полученного БПЛА от передатчика сигналов определения положения. Измерение расстояния в результате дает псевдорасстояние между передатчиком полученного сигнала определения положения и приемной антенной БПЛА. Измерение расстояния ρij (псевдорасстояние) между передатчиком j и приемной антенной i может быть моделировано следующим образом (верхний индекс «s» означает «ship» («судно») в качестве начальной точки общей системы координат, которая является начальной точкой Os судна):

При этом шум измерения расстояния обозначен как nρij, а положение i-той антенны дано уравнением

где означает матрицу направляющих косинусов, которая трансформируется от каркаса корпуса БПЛА до каркаса корпуса судна. Эта матрица направляющих косинусов связана с предполагаемой матрицей направляющих косинусов через ошибки в относительной ориентации БПЛА.

Вышеуказанное уравнение позволяет определять относительное положение rOb каркаса корпуса БПЛА непосредственно по отношению к судну.

Кроме того, описанная выше система и измерительные модели позволяют разработать подходящую реализацию фильтра.

Чтобы учитывать обработку доплеровских измерений, модель системы может быть расширена тремя состояниями ошибки относительной скорости, что приводит к фильтру девяти состояний. Если измерения расстояния и доплеровские измерения смещаются погрешностью тактового генератора БПЛА и погрешностью частоты, соответственно могут быть расширены модели системы и измерительные модели тоже. Подразумевается, что, если известна абсолютная ориентация БПЛА, информация об относительном положении и скорости может быть легко трансформирована, например, в систему координат локального уровня.

На фиг. 2 показано устройство 10 для относительной навигации, которое может быть установлено, например, на борту БПЛА и использоваться для генерирования данных относительной навигации, которые могут быть обработаны для управления автоматической посадкой БПЛА на посадочную площадку судна.

Устройство 10 содержит блок 12 измерения расстояния и средства 14 обработки. Оно получает в качестве ввода сигналы определения положения, принятые антеннами А13, и измерения от БИИ 16. Блок 12 измерения расстояния выполняет для каждого принятого сигнала определения положения измерение расстояния , чтобы определить псевдорасстояние между передатчиком сигнала определения положения и приемной антенной.

Выполненные измерения расстояния передаются блоком измерения расстояния в средства 14 обработки для генерирования данных 18 относительной навигации. Средства 14 обработки содержат фильтр Калмана в качестве алгоритма оценки пространства состояний, реализующего модель системы судна и БПЛА. Фильтр Калмана выполняет вышеуказанные уравнения 1-3 для обработки измерений расстояний и, кроме того, использует измерения, полученные от БИИ 16, для предположения относительной ориентации БПЛА для распространения на стадии предсказания фильтра Калмана. Блок 12 измерения расстояния и/или средства 14 обработки могут быть реализованы в программных или аппаратных средствах.

Настоящее изобретение делает возможной относительную навигацию с использованием измерений расстояния, причем количество неизвестных, подлежащих оценке, не возрастает с количеством антенн, могут быть учтены доплеровские измерения и легко могут быть учтены измерения дополнительных датчиков, таких как БИИ и радиолокационный или лазерный высотомер.

ССЫЛОЧНЫЕ ОБОЗНАЧЕНИЯ И АКРОНИМЫ

1. Способ навигации объекта относительно площадки с использованием измерений расстояния, причем

- четыре или более передатчика (Т14) сигналов определения положения расположены на и/или около площадки первого объекта и

- второй объект, приближающийся к площадке, содержит три или более приемника (А13) для приема сигналов определения положения и

причем способ содержит действия по:

- выполнению для каждого полученного сигнала определения положения измерения расстояния между передатчиком сигнала определения положения и приемником сигнала определения положения, и

- оценке относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту напрямую посредством обработки измерений расстояния с помощью алгоритма оценки пространства состояний, реализующего модель системы первого и второго объекта.

2. Способ по п. 1, причем оценка относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту содержит также обработку измерений одного или более дополнительного датчика, прежде всего радиолокационного или лазерного высотомера.

3. Способ по п. 1 или 2, причем алгоритм оценки пространства состояний является фильтром Калмана, фильтром точки сигма или другим фильтром, позволяющим выполнять оценку пространства состояний, либо в формулировке полного пространства состояний, либо в формулировке пространства состояний ошибки.

4. Способ по п. 3, причем алгоритм оценки пространства состояний содержит формулировку пространства состояний ошибки и выполняет следующие итеративные действия по:

- предположению относительного положения и относительной ориентации второго объекта из измерений расстояний,

- оценке ошибок в предполагаемых относительном положении и относительной ориентации второго объекта, и

- коррекции предполагаемых относительного положения и относительной ориентации второго объекта на основе оцененных ошибок.

5. Способ по п. 4, причем алгоритм оценки пространства состояний реализует следующее системное дифференциальное уравнение для оценки ошибок в предполагаемых относительном положении и относительной ориентации второго объекта:

причем означает ошибки в относительном положении,означает ошибки в относительной ориентации, nω и nx образуют вектор шума системы.

6. Способ по п. 2, 4 или 5, причем предполагаемая относительная ориентация второго объекта распространяется на стадии предсказания фильтра алгоритма оценки пространства состояний с использованием измерений дополнительных датчиков, прежде всего блока инерциальных измерений.

7. Способ по п. 2, 4 или 5, причем алгоритм оценки пространства состояний моделирует измерение расстояния между j-тым передатчиком и i-тым приемником следующим образом:

причем означает положение j -того передатчика, nρij означает шум измерения расстояния и причем положение i-того приемника дано выражением

где означает положение начальной точки Ob каркаса корпуса второго объекта, означает плечо кренящего момента от начальной точки Ob каркаса корпуса второго объекта к i-тому приемнику, а означает матрицу направляющих косинусов, которая трансформируется из каркаса корпуса второго объекта в каркас корпуса первого объекта, причем эта матрица направляющих косинусов связана с предполагаемой матрицей направляющих косинусов через ошибки относительной ориентации.

8. Способ по п. 1, 2, 4 или 5, причем модель системы, реализуемая алгоритмом оценки пространства состояний, расширяется с помощью состояний ошибки относительной скорости, и способ, кроме того, содержит действия по:

- выполнению доплеровского измерения с каждым принятым сигналом определения положения,и

- оценке относительной скорости каркаса корпуса второго объекта по отношению к первому объекту посредством обработки доплеровских измерений с помощью расширенного алгоритма оценки пространства состояний.

9. Носитель записи, хранящий компьютерную программу, реализующую способ по одному из пп. 1-8.

10. Компьютер, конфигурируемый посредством компьютерной программы, реализующей способ по одному из пп. 1-8.

11. Устройство (10) для навигации объекта относительно площадки, содержащее:

- блок (12) измерения расстояния для выполнения для принятого сигнала определения положения измерения расстояния между передатчиком (Т14) сигнала определения положения, расположенным на и/или около площадки первого объекта, и приемником (А13) второго объекта, приближающегося к площадке, с помощью которого принимается сигнал определения положения, и

- средства (14) обработки для оценки относительного положения и относительной ориентации каркаса корпуса второго объекта по отношению к первому объекту посредством обработки измерений расстояния между передатчиком (Т14) сигналов определения положения и приемником (А13) сигналов определения положения с помощью алгоритма оценки пространства состояний, реализующего модель системы первого и второго объекта, причем средства обработки сконфигурированы для реализации способа по одному из пп. 1-7.

12. Транспортное средство, прежде всего беспилотный летательный аппарат, содержащее:

- три или более приемника (А13) для приема сигналов определения положения, излучаемых четырьмя или более передатчиками (Т1-Т4), расположенными на и/или около площадки другого транспортного средства, и

- устройство (10) по п. 11.

13. Система навигации объекта относительно площадки с использованием измерений расстояния, содержащая:

- четыре или более передатчика (Т14) сигналов определения положения, которые расположены на и/или около площадки первого объекта,

- три или более приемника (А13) для приема сигналов определения положения, которые расположены на борту второго объекта, приближающегося к площадке, и

- устройство (10) по п. 11.

14. Система по п. 13, причем

- передатчик (Т14) сигнала положения реализован в виде транспондера, выполненного для ответа на запросный сигнал, переданный приемником, ответным сигналом, а

- приемник (А1-A3) выполнен для приема в качестве сигнала определения положения ответного сигнала от транспондера и для измерения времени между передачей запросного сигнала и приемом ответного сигнала, причем измеренное время обрабатывается для измерения расстояния.

15. Система по п. 13 или 14, причем

- передатчик (Т14) сигнала определения положения реализован в виде псевдоспутника, выполненного для излучения сигнала, сходного с сигналом глобальной навигационной спутниковой системы, в качестве сигнала определения положения, причем несколько псевдоспутников, расположенных на и/или около площадки первого объекта, синхронизированы, а

- приемник (А13) выполнен для приема сигнала определения положения от псевдоспутника и для измерения времени передачи сигнала определения положения, причем измеренное время передачи обрабатывается для измерения расстояния.



 

Похожие патенты:

Изобретение относится к области определения местоположения беспроводных средств связи. Техническим результатом является улучшение осведомленности о местоположении устройства, обеспечивающее активацию целевого приложения на устройстве пользователя.

Изобретение относится к области определения местоположения мобильных клиентских терминалов. Техническим результатом является обеспечение возможности управления компонентами мобильных клиентских терминалов на основании их местоположения.

Изобретение относится к космической области и может быть использовано для осуществления контроля целостности спутниковой радионавигационной системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально.
Изобретение относится к области спутниковой навигации и может быть использовано в навигационной аппаратуре потребителей сигналов глобальных спутниковых навигационных систем ГЛОНАСС и GPS, в том числе устанавливаемой на борту космических аппаратов.

Изобретение относится к спутниковой навигации и может быть использовано для испытаний и проверки навигационной аппаратуры потребителей (НАП) спутниковых навигационных систем (СНС), размещенной в замкнутом или экранированном пространстве.

Изобретение может быть использовано в космической радионавигации и геодезии. Достигаемый технический результат - повышение точности глобального определения в реальном времени местоположения потребителей при работе навигационной аппаратуры потребителя (НАП) в автономном режиме.

Изобретение относится к технике связи и может использоваться в системах связи с тремя или более несущими. Технический результат состоит в повышении скорости определения неоднозначности сигналов GNSS.

Изобретение относится к области систем мониторинга смещения инженерных сооружений и может быть использовано для ведения непрерывного контроля смещений и колебаний элементов конструкций мостов, плотин, башен и других инженерных сооружений с целью ранней диагностики целостности сооружения, а также оперативного обнаружения потери устойчивости сооружения.

Изобретение относится к области радиотехники, а именно, к способу и устройству, предназначенным для получения более точной оценки местоположения путем использования набора измерений.

Изобретение относится к радиотехнике и может использоваться в системе передачи данных. .

Изобретение относится к области навигации летательных аппаратов (ЛА) и предназначено для обеспечения безопасности полета группы ЛА. Определение относительного положения соседних ЛА по отношению к данному ЛА может быть определено несколькими способами с последующей комплексной обработкой навигационной информации. Первый способ предусматривает определение навигационной информации каждым ЛА, ее передачу и прием через каналы информационного обмена ЛА, а второй способ - автономное определение относительных координат соседних ЛА радиолокационным способом. При этом дополнительно формируют вектор положения приемоизлучающей антенны для каждого ЛА в локальной системе координат, передают в общем информационном пакете сообщение о координатах упомянутого вектора положения антенны другим ЛА с шифром данного ЛА, выполняют прием и дешифрацию упомянутого сообщения соседних ЛА, вычисляют разности векторов положения приемоизлучающих антенн данного и соседних ЛА, с помощью которых вычисляют уточненные относительные координаты соседних ЛА и используют их в комплексной обработке навигационной информации упомянутых способов. Технический результат - повышение точности и надежности определения относительного положения ЛА. 4 з.п. ф-лы, 4 ил.

Изобретение относится к технологиям отображения позиции на карте, включающим определение точки кривой, наиболее близкой к позиции. Техническим результатом является повышение быстродействия при поиске точки на кривой, ближайшей к текущей позиции, за счет исключения необходимости расчета расстояния до всех точек кривой. Предложен способ, реализованный на компьютере, для определения точки кривой, ближайшей к позиции на карте, выполняемый электронным устройством, вызывающим отображения карты. Способ содержит этап оценивания координат позиции, оценивания координат объекта карты, имеющего кривую около позиции. А также согласно способу включают определение точки кривой, ближайшей к позиции, которое включает определение первого сегмента кривой и второго сегмента кривой, ограниченного второй областью. 4 н. и 27 з.п. ф-лы, 11 ил.

Изобретение относится к способам определения расстояния между пунктами на поверхности Земли на основе использования глобальных космических систем GPS и ГЛОНАСС. Достигаемый технический результат – повышение точности определения расстояния между пользовательскими пунктами. Сущность способа заключается в том, что предварительно на поверхности Земли оборудуют полигоны со стационарными пунктами, периодически между этими пунктами измеряют расстояние системами GPS или ГЛОНАСС Lгкс и геодезическими способами Li(t), находят их отношение Li(t)/Lгкс=Ki(t) по изменению этого отношения во времени, осуществляют прогноз на ближайшее время периодического изменения размеров Земли для отдельных территорий и регионов, при этом пользователи определяют координаты рабочих пользовательских пунктов и расстояния между ними, вводя поправки в данные ГКС в конкретное время по зависимости Полигон с расстояниями между пунктами десятки и сотни метров оборудуют вне зоны влияния подземных работ в подземных выработках, определяют относительную деформацию массива горных пород εм, определяют ее изменение за определенное время и вводят поправки в измеренные расстояния на поверхности, используя зависимость 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике и может использоваться в системах навигации. Технический результат состоит в повышении точности определения показателя надежности. Для этого положение подвижного объекта оценивают на основании приема навигационных сигналов GNSS, передаваемых спутниковой группировкой, навигационные сигналы модулируют при помощи кода, и приемник содержит локальный дубликат кода. Для определения показателя надежности производят оценку скорости перемещения приемника на идентифицированном сегменте траектории, на основании этого выводят функцию доплеровской задержки, соответствующую движению приемника, при помощи функции задержки корректируют функцию автокорреляции навигационного сигнала GNSS, принятого от каждого спутника группировки, сравнивают скорректированную функцию автокорреляции с теоретической функцией автокорреляции, применяя квадратичный критерий, соответствующий показателю надежности. 4 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано для высокоточного определения с помощью летательных аппаратов координат источников радиоизлучений (ИРИ), излучающих непрерывные или квазинепрерывные сигналы. Достигаемый технический результат - снижение аппаратурных затрат при реализации способа на базе изделий функциональной электроники, а при реализации способа на базе аппаратных средств цифровой обработки сигналов - повышение быстродействия за счет уменьшения количества арифметических операций. Указанный результат достигается за счет того, что способ определения координат ИРИ заключается в приеме сигналов ИРИ на трех летательных аппаратах, их ретрансляции на центральный пункт обработки и вычислении координат ИРИ по разностям радиальных скоростей, при этом дополнительно находятся доплеровские сдвиги частоты как аргумент максимизации амплитудного спектра произведения сигнала с одного ретранслятора на сигнал с другого ретранслятора, подвергнутый комплексному сопряжению и сдвигу на временную задержку, которая определяется как аргумент максимизации модуля функции взаимной корреляции преобразованных сигналов, полученных путем перемножения исходных сигналов на эти же сигналы, подвергнутые комплексному сопряжению и временному сдвигу на интервал T, превышающий величину, обратно пропорциональную удвоенной ширине спектра сигнала.
Наверх