Способ отслеживания кпд прямого вытеснения высоконапорного (вн) насоса в гидравлической системе регулирования турбомашины

Предложен способ отслеживания КПД прямого вытеснения высоконапорного насоса в гидравлической системе регулирования турбомашины. Способ включает в себя следующие этапы, на которых: запускают двигатели упомянутой турбомашины на низкой скорости N0 двигателя, при этом упомянутый клапан закрыт; используют компьютер для осуществления движения исполнительного механизма; постепенно увеличивают скорость N двигателя, пока упомянутая производительность Q не достигает заранее определенного значения Q0, которое достаточно для открывания клапана; запоминают в компьютере, во-первых, положение исполнительного механизма, а во-вторых, скорость N двигателя, соответствующую открыванию клапана; повторяют предыдущие этапы в последовательные моменты времени t1, t2, …, tn в течение срока службы упомянутых двигателей турбомашины; и заменяют упомянутый высоконапорный поршневой насос прямого вытеснения, когда упомянутая скорость N двигателя превышает заранее определенное значение Nпредел. 2 з.п. ф-лы, 4 ил.

 

Предпосылки создания изобретения

Данное изобретение относится к области газовых турбин, а в частности оно относится к способу оперативного контроля КПД прямого вытеснения высоконапорного (ВН) насоса гидравлической системы регулирования турбомашины, осуществляемому, не прибегая к использованию конкретного датчика или системы датчиков.

Область применения изобретения является областью газовых турбин для двигателей самолетов или вертолетов, которые в общем случае включают в себя высоконапорный поршневой насос прямого вытеснения для выработки гидравлической энергии, для подачи горючего в двигатели и для смазки различных агрегатов двигателя. Как известно (например, из документа FR 2923871), КПД ВН насоса оперативно контролируется посредством высоконапорного отсечного клапана (ВНОК), который служит для нагнетания давления в двигателях и который, если известен уровень утечки в гидравлической системе, способен определять уровень утечки в ВН насосе, вычитая утечки из-за других компонентов в системе, таких как исполнительные механизмы, сервоклапаны и различные другие промежуточные клапаны.

Тем не менее, хотя это решение вполне удовлетворительно для оценки общей утечки в системе, невозможно точно отследить КПД ВН насоса, изменяющийся в результате происходящего со временем снижения качества различных компонентов системы, а также потому, что гидравлическое управление лопатками с изменяемой геометрией не отключается на низкой скорости, приводя к возникновению проблемы, когда необходимо оценить способность системы обеспечивать перезапуск двигателей в полете или когда это уместно при планировании замены ВН двигателя таким образом, что эта замена не приведет к какому-либо негативному влиянию на основные рабочие характеристики системы.

Задача и раскрытие изобретения

Таким образом, основная задача данного изобретения состоит в разработке способа отслеживания КПД прямого вытеснения ВН насоса гидравлической системы регулирования турбомашины, позволяющий смягчить такие недостатки.

Эта задача решается посредством способа отслеживания КПД прямого вытеснения высоконапорного насоса в гидравлической системе регулирования турбомашины, имеющей высоконапорный поршневой насос прямого вытеснения, осуществляющий подачу с производительностью Q, которая является функцией скорости N двигателя упомянутой турбомашины, определяемой управляющим компьютером, причем подача с производительностью Q осуществляется в исполнительный механизм для приведения в действие лопаток с изменяемой геометрией упомянутой турбомашины и в перепускной клапан, расположенный в подающей трубе, для подачи горючего в двигатели упомянутой турбомашины, причем способ отличается тем, что включает в себя следующие этапы, на которых:

запускают двигатели упомянутой турбомашины на низкой скорости N0 двигателя, при этом упомянутый клапан закрыт;

используют упомянутый компьютер для осуществления движения упомянутого исполнительного механизма;

постепенно увеличивают скорость N упомянутого двигателя, пока упомянутая производительность Q не достигает заранее определенного значения Q0, которое достаточно для открывания упомянутого клапана;

запоминают в упомянутом компьютере, во-первых, положение упомянутого исполнительного механизма, а во-вторых, скорость N двигателя, соответствующую открыванию упомянутого клапана;

повторяют предыдущие этапы в последовательные моменты времени t1, t2, …, tn в течение срока службы упомянутых двигателей турбомашины; и

заменяют упомянутый высоконапорный поршневой насос прямого вытеснения, когда упомянутая скорость N двигателя превышает заранее определенное значение Nпредел.

Таким образом, исключая любой промежуточный элемент между ВН насосом и оперативно контролируемым клапаном, можно точно отслеживать снижение КПД ВП насоса, а также оперативно контролировать способность двигателей турбомашины перезапускаться в полете.

В предпочтительном варианте, упомянутое положение исполнительного механизма замеряют посредством датчика типа линейного измерительного преобразователя переменного вытеснения (ЛИППВ) упомянутого исполнительного механизма, а упомянутое заранее определенное значение Q0 производительности соответствует номинальному порогу пружины упомянутого клапана.

Краткое описание чертежей

Другие отличительные признаки и преимущества данного изобретения приведены в нижеследующем описании со ссылками на прилагаемые чертежи, которые иллюстрируют вариант осуществления, не носящего ограничительный характер, и на которых:

фиг. 1 изображает упрощенную схему гидравлической системы для турбомашины, причем перепускной клапан показан закрытым;

фиг. 2 - упрощенную схему гидравлической системы для турбомашины, причем перепускной клапан показан открытым;

фиг. 3 отображает две кривые, иллюстрирующие, соответственно, положение исполнительного механизма и скорость двигателя как функцию времени при запуске двигателя; и

фиг. 4 отображает кривую, демонстрирующую условия для открывания перепускного клапана как функцию времени.

Подробное описание варианта осуществления

На фиг. 1 и 2 представлены упрощенные схемы гидравлической системы для турбомашины, причем регулируемый перепускной клапан (РПК) показан в двух противоположных положениях.

Как обычно, непосредственно ниже по течению от высоконапорного поршневого насоса 10 прямого вытеснения (ВН насоса) находится перепускной клапан 12, который служит для обеспечения роста давления в гидравлической системе. Этот клапан открывается, когда производительность, с которой в него происходит подача, дает возможность достичь точно известного номинального порога пружины 12А клапана. Это служит, во-первых, для перемещения исполнительного механизма 14, который движет лопатки с изменяемым углом атаки (не показаны) посредством связанного с ним сервоклапана 16, соединенного с помощью расположенной выше по течению трубы 18 с ВН насосом, с помощью расположенной ниже по течению трубы 20 - с перепускным клапаном 12, а также с магистралью подачи горючего в двигатели (не показана), за счет последовательного введения их в сообщение с ВП насосом посредством клапана 22 дозирования горючего (КДГ) и высоконапорного отсечного клапана (ВНОК) 24, соединенного с подающей трубой 26 двигателей. Компьютер 28, соединенный с различными компонентами гидравлической системы, обеспечивает общее управление на основании таких данных, как желаемая скорость N двигателя или желаемое перемещение поршня 14А исполнительного механизма 14, измеряемое с помощью измерительного преобразователя линейных перемещений 14 В (LVDT - linear variable displacement transducer 14B). Естественно, гидравлический контур имеет другие обычные компоненты (например, фильтры, клапаны, теплообменники…), которые не нужно описывать для понимания изобретения и которые поэтому не показаны. Вместе с тем, следует отметить, что имеется труба 30 для рециркуляции потока из перепускного клапана, которая соединена с расположенной ниже по течению трубой 20 через перепускной клапан 12.

Вышеупомянутая система работает следующим образом.

ВН поршневой насос прямого вытеснения запускается посредством низконапорного (НН) насоса (не показан), расположенного выше по течению от него, причем ВН насос 10 осуществляет подачу с производительностью, которая является функцией скорости N двигателя, в исполнительный механизм 14 (через сервоклапан 16) и перепускной клапан 12. Естественно, через ВН насос происходит некоторая утечка, и такие утечки увеличиваются с нарастающим ухудшением качества насоса.

Когда перепускной клапан 12 находится в закрытом состоянии (фиг. 1), труба 20 между выходом сервоклапана 16 и перепускным клапаном 12 перекрыта перепускным клапаном. Разность давлений на отводах исполнительного механизма 14 равна нулю, а две камеры исполнительного механизма находятся под одинаковыми давлениями, так что поршень 14А сохраняет неподвижность, как и приводимые им в действие лопатки с изменяемым углом атаки.

Как только давление в перепускном клапане 12 превышает номинальный порог пружины 12А, т.е. когда отслеживаемая производительность оказывается достаточно высокой, клапан переключается в полностью открытое состояние (фиг. 2), а труба 20 между выходом сервоклапана 16 и перепускным клапаном 12 больше не перекрыта. Тогда горючее оказывается под низким давлением, а поршень 14А подвергается воздействию разности давлений (ненулевой разности давлений), которая вызывает его движение, как показано посредством кривой 40 на фиг. 3.

Поскольку исполнительный механизм снабжен измерительным преобразователем линейных перемещений 14В, оказывается возможным - посредством компьютера 28 - точное определение момента, когда поршень начинает двигаться, который, таким образом, соответствует открыванию перепускного клапана, и наблюдение за связанной с этим скоростью N двигателя (см. кривую 42).

В соответствии с изобретением, чтобы отследить КПД прямого вытеснения ВН насоса гидравлической системы регулирования турбомашины, авторы изобретения начали с наблюдения за тем, ухудшается ли качество ВН насоса со временем, при этом вышеупомянутые наблюдаемые скорости N двигателя тоже будут разными, а также разработали новый способ, основанный на следующих этапах.

Сначала двигатель запускают на земле с низкой скоростью N0, а перепускной клапан 12 закрыт.Затем компьютер 28 начинает выдавать команды, обуславливающие движение исполнительного механизма 14. Вместе с тем, поскольку перепускной клапан закрыт, исполнительный механизм не может реагировать на эти команды и поэтому остается неподвижным. Параллельно с этими командами, постепенно увеличивают скорость N двигателя. Пока подача в перепускной клапан 12 недостаточна для достижения должной производительности, перепускной клапан остается закрытым, а исполнительный механизм 14 не движется. Как только производительность оказывается достаточной (имеющей определенное значение Q0, соответствующее номинальному порогу пружины 12А), перепускной клапан 12 открывается, а исполнительный механизм 14 начинает двигаться. За скоростью N двигателя, соответствующей открыванию перепускного клапана 12 и тем самым - началу движения исполнительного механизма, наблюдают посредством измерительного преобразователя линейных перемещений 14 В исполнительного механизма, с которым соединен компьютер 28, и эту скорость запоминают в компьютере.

Повторяя вышеупомянутые этапы в последовательные моменты t1, t2, …, tn в течение срока службы двигателей, получают кривую 50, как показано на фиг. 4, которая делает возможным точное отслеживание снижения КПД ВН насоса 10, а путем определения предельного значения Nпредел, которое не может быть превышено, для скорости двигателя, можно решить, какое действие следует предпринять, в частности, касательно замены ВН насоса.

1. Способ отслеживания кпд прямого вытеснения высоконапорного насоса в гидравлической системе регулирования турбомашины, содержащей высоконапорный поршневой насос (10) прямого вытеснения, осуществляющий подачу с производительностью Q, которая является функцией скорости N двигателя упомянутой турбомашины, определяемой управляющим компьютером (28), причем подачу с производительностью Q осуществляют в исполнительный механизм (14) для приведения в действие лопаток с изменяемой геометрией упомянутой турбомашины и в перепускной клапан (12), расположенный в подающей трубе (26), для подачи горючего в двигатели упомянутой турбомашины, причем способ отличается тем, что включает в себя следующие этапы, на которых:

запускают двигатели упомянутой турбомашины на низкой скорости N0 двигателя, при этом упомянутый клапан (12) закрыт;

используют компьютер (28) для осуществления движения упомянутого исполнительного механизма (14);

постепенно увеличивают скорость N упомянутого двигателя, пока производительность Q не достигает заранее определенного значения Q0, которое достаточно для открывания клапана (12);

запоминают в компьютере (28), во-первых, положение упомянутого исполнительного механизма, а во-вторых, скорость N двигателя, соответствующую открыванию упомянутого клапана;

повторяют предыдущие этапы в последовательные моменты времени t1, t2, …, tn в течение срока службы упомянутых двигателей турбомашины; и

заменяют высоконапорный поршневой насос (10) прямого вытеснения, когда упомянутая скорость N двигателя превышает заранее определенное значение Nпредел.

2. Способ отслеживания по п. 1, отличающийся тем, что упомянутое положение исполнительного механизма замеряют посредством измерительного преобразователя линейных перемещений указанного исполнительного механизма.

3. Способ отслеживания по п. 1, отличающийся тем, что упомянутое заранее определенное значение Q0 производительности соответствует номинальному порогу пружины (12А) упомянутого клапана.



 

Похожие патенты:

Компрессор (1) турбореактивного двигателя летательного аппарата содержит решетку (2) неподвижных лопаток и систему для отбора воздуха на уровне проходов (5) между двумя лопатками (3) через щели (6), выполненные в упомянутой стенке (4).

Изобретение относится к энергетике. Способ управления заклиненным сопловым аппаратом, установленным между первой и второй турбинами, соединенными последовательно с компрессором.

Газотурбинный двигатель, например двухконтурный турбореактивный двигатель, включает промежуточный кожух, содержащий выполненную в виде тела вращения внутреннюю стенку, ограничивающую с наружной стороны канал течения первичного потока воздуха и средства отбора воздуха.

Изобретение относится к области теплоэнергетики и может быть использовано в энергетических парогазовых установках с газотурбинными двигателями, паровыми турбинами и котлами-утилизаторами, снабженными блоками дожигающих устройств.

Изобретение относится к компрессору газотурбинного двигателя, оборудованного системой отбора воздуха, а также к газотурбинному двигателю, такому как авиационный турбореактивный или турбовинтовой двигатель, оборудованному компрессором этого типа.

Изобретение относится к поточному каналу для компрессора, который расположен концентрично вокруг проходящей в осевом направлении оси машины и для направления в осевом направлении основного потока ограничен круглой в поперечном сечении ограничительной стенкой, при этом ограничительная стенка имеет множество распределенных по окружности проходов обратного потока, через которые ответвляемый из основного потока в месте отбора частичный поток направляется обратно в основной поток в лежащем по потоку выше места отбора месте ввода, и который содержит расположенные лучевидно в поточном канале перья лопаток лопаточного венца, при этом вершины перьев лопаток лежат противоположно ограничительной стенке с образованием зазора, при этом перья рабочих лопаток установлены с возможностью движения в заданном направлении вращения вдоль окружности ограничительной стенки, или ограничительная стенка установлена с возможностью движения в заданном направлении вращения относительно перьев направляющих лопаток лопаточного венца.

Изобретение относится к газотурбинным установкам. .

Исполнительное устройство содержит: неподвижную часть, образующую корпус, содержащий вход для прохождения текучей среды, главный выход и второй выход отбора и возвратные средства, действующие механическим усилием на подвижную часть; подвижную часть, содержащую затвор, содержащий шток, перемещающийся между положением открывания и положением закрывания; термостатическое устройство, содержащее переворотный конусный диск, при этом переворот диска при значении сверх известной критической температуры приводит к перемещению затвора в его положение закрывания; устройство управления, обеспечивающее создание силы удержания затвора, при этом устройством управления управляют таким образом, чтобы при значении ниже критической температуры открывание или закрывание затвора происходило в результате равновесия сил между удерживающей силой и механическим усилием. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение касается газовой турбины, а также способа ее эксплуатации. Газовая турбина имеет компрессор для подготовки воздуха, камеру сгорания с горелкой и турбину для сброса давления. Предусмотрен байпасный проточный канал, который выполнен для того, чтобы во время работы газовой турбины направлять воздух компрессора на горелку и на поток горячего газа, образовавшийся в камере сгорания. При этом поперечное сечение отверстия байпасного проточного канала можно регулировать с помощью регулирующего органа, причем скорость изменения поперечного сечения отверстия выбирается таким образом, чтобы относительная потеря давления в камере сгорания или температура материала камеры сгорания были постоянными. Изобретение позволяет опускать диапазон с частичной нагрузкой для создания более низких мощностей без превышения предельных значений выброса окиси углерода. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике. Способ управления работой камеры сгорания газотурбинного двигателя, содержащего компрессор, две горелки, камеру сгорания, расположенную ниже по потоку за указанными горелками, турбину, два температурных датчика ниже по потоку за указанной камерой сгорания. При этом выполнен один отвод для отбора части кислородсодержащего газа ниже по потоку за указанным компрессором и выше по потоку перед указанной камерой сгорания. Причем указанный отвод является частью системы перепуска кислородсодержащего газа в обход камеры сгорания и содержит клапан для регулирования количества отбираемого газа. Способ включает этапы, на которых контролируют температуру продуктов сгорания, сравнивают показания указанных температурных датчиков, открывают указанный клапан или увеличивают степень его открытия в случае, если в результате указанного сравнения будет обнаружено, что разность между показаниями указанных температурных датчиков превышает установленный предел перепада температур. Изобретение позволяет устранить вероятность возникновения высоких выбросов окиси углерода путём автоматического регулирования положения клапана отбора. 9 з. п. ф-лы, 6 ил.

Изобретение относится к газотурбинным двигателям, в частности к клапанным устройствам для газотурбинных двигателей, и может найти применение в авиадвигателестроении. Клапанный узел канала перепуска компрессора, содержащий корпус компрессора, внешний и внутренний корпуса канала перепуска с установленным с возможностью осевого перемещения внутри внутреннего корпуса кольцевым затвором профилированной формы, привод. Корпус компрессора снабжен осевыми пазами с установленными в них с возможностью перемещения продольными направляющими. Кольцевой затвор усилен продольными ребрами жесткости, соединенными с продольными направляющими и приводом. Привод размещен внутри кольцевого затвора и закреплен на корпусе компрессора. Продольные направляющие выполнены прямоугольного сечения. Кольцевой затвор имеет возможность перемещаться по поверхности внутреннего корпуса канала перепуска. Изобретение позволяет снизить габаритные размеры и массу клапанного узла канала перепуска компрессора, увеличить прочность конструкции. 2 з.п. ф-лы, 1 ил.

Узел турбомашины содержит компрессор низкого давления, компрессор высокого давления, промежуточный корпус, размещенный между ними, клапан перепуска воздуха и приводной силовой гидроцилиндр клапана перепуска воздуха. Клапан перепуска воздуха расположен между компрессором низкого давления и компрессором высокого давления и установлен во внутреннем кожухе промежуточного корпуса. Приводной силовой гидроцилиндр клапана перепуска воздуха содержит цилиндр, продолженный разделителем, используемым для крепления приводного силового гидроцилиндра к стенке корпуса турбомашины, и стержень поршня, окруженный разделителем и предназначенный для соединения с концом механизма передачи. Разделитель не содержит боковые отверстия, а расположенный вниз по потоку фланец промежуточного корпуса крепится на боковой стороне разделителя. При сборке приводного силового гидроцилиндра размещают стержень поршня так, что он выступает из разделителя, затем соединяют выступающий стержень поршня с концом механизма передачи, выступающим из стенки корпуса на стороне приводного силового гидроцилиндра. Втягивают стержень поршня так, чтобы подводить цилиндр ближе к указанной стенке корпуса, и крепят разделитель к стенке корпуса. Группа изобретений позволяет обеспечить противопожарную защиту приводного силового гидроцилиндра клапана перепуска воздуха без существенного усложнения процесса его сборки. 2 н. и 8 з.п. ф-лы, 9 ил.
Наверх