Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера включает в себя измерение диаграммы направленности VCSEL. Используют модель излучения для моделирования дифракционной решетки таким образом, чтобы обеспечить требуемый поворот излучения и диаграмму его распространения. На основании модели изготавливают дифракционную решетку. Разогревают дифракционную решетку и кристалл излучателя. На кристалл излучателя помещают дифракционную решетку и производят их склеивание. Технический результат изобретения - расширение арсенала способов изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера. 2 ил.

 

Описание изобретения

Изобретение относится к радиоэлектронике. Оно может использоваться тогда, когда требуется изменить направление излучения полупроводникового вертикально излучающего лазера. Кроме того, будет уменьшаться и расходимость этого излучения.

Применение этого изобретения в радиоэлектронике объясняется следующим.

При больших частотах (скоростях передачи) в несколько гигабит в секунду в медных проводниках (дорожках) печатной платы возникают сильные искажения сигналов, как за счет увеличения сопротивления самих проводников, так и из-за резонансных явлений, и выход находят в использовании оптических соединений, когда исходный электрический сигнал при помощи микролазера преобразуют в оптический, затем осуществляют передачу оптического сигнала по волокну (полимерному оптическому волноводу), прием оптического сигнала микрофотодетектором и преобразование оптического сигнала в исходный электрический. Оптический сигнал в этом случае необходимо передать с наименьшими потерями, так как мощность микролазера очень мала, а излучение имеет свойство в значительной степени рассеиваться.

Для передачи оптического сигнала между компонентами электронного модуля используют лазеры и приемники, выполненные в виде соответствующих кристаллов. Особенности технологии получения этих элементов определяют их конструктивные особенности: излучающая и приемная площадки элементов могут быть направлены либо вверх (кристалл монтируется на подложку "лицом вверх"), либо вниз (кристалл монтируется на подложку "лицом вниз"). Поэтому для передачи оптического сигнала в этом случае существует и проблема поворота луча.

Во всех известных решениях с высокими эксплуатационными характеристиками для изменения направления лазерного излучения используются микрозеркала (http://www.lps.umd.edu/AdvancedComputing/AdvancedComputingSystemsIndex.html;

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-17-26-24250&id=194158;

https://www.osapublishing.org/aop/fulltext.cfm?uri=oe-17-3-1215&id=176047;

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-13-16-6259&id=85290).

Однако микрозеркала на этапе сборки нуждаются в точной юстировке по трем осям, что является существенной проблемой для серийного производства модулей, содержащих решения с VCSEL (vertical-cavity surface-emitting laser - вертикально излучающий лазер). Кроме того, микрозеркала не решают проблему рассеивания излучения, что негативно сказывается при дальнейшем распространении излучения в волноводе из-за потерь.

В диссертации (Karppinen M. High bit-rate optical interconnects on printed wiring board. Micro-optics and hybrid integration, Edita prima Oy, Helsinki, 2008, p. 71-72) используют зеркала и микролинзы для поворота и уменьшения расходимости лазерного излучения. Однако линзы и зеркала требуют тщательной юстировки, и при серийном производстве это оказывается узким местом.

В диссертации (Takahara H. Optoelectronic Packaging Trends in Japan. Stanford University, US-Asia TMC, May 2003, p. 6) также используют зеркала и микролинзы, которые требуют тщательной установки.

Известно, что использование дифракционных решеток позволяет отклонить пучок лазерных лучей и уменьшить его диаметр (htts://www.osapublishing.org/oe/fulltext.cfm?uri=oe-21-7-7868&id=251662; http://opto.ee.cuhk.edu.hk/Tsang/research.html). Особенностью применения дифракционной решетки в качестве отражательного оптического элемента является отсутствие жестких требований по ее расположению относительно излучающей площадки. Все это позволяет эффективно использовать дифракционную решетку для изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера, когда это требуется, если предполагается серийное производство.

Технический результат изобретения - расширение арсенала способов изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера.

Один из вариантов реализации использования дифракционной решетки для изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера сводится к следующему (пример иллюстрируется фиг. 1 и 2):

1. Снимают характеристики излучателя типа VCSEL (изготовленного ранее, покупного) путем проведения измерения диаграммы оптического излучения.

2. Создают компьютерную модель излучателя, в которой эти характеристики используют как исходные.

3. Используя модель излучателя, моделируют дифракционную решетку (шаг, материал и геометрию нарезки решетки) таким образом, чтобы обеспечить требуемый поворот излучения и диаграмму его распространения и после соединения с кристаллом излучателя оставить доступными электрические контактные площадки VCSEL или часть их.

4. На основании модели изготавливают кристалл дифракционной решетки 1.

5. Кристаллы излучателя 2 и дифракционной решетки разогревают до температуры 100…140°C.

6. Берут клей (например, Namics DA8483, ЕРО-ТЕК H20S, или КТК-7), также разогревают до температуры 100…140°C и выдерживают 4…6 мин.

7. Кристалл излучателя располагают в рабочем положении (в данном случае излучающей площадкой вверх).

8. На необходимую часть поверхности кристалла VCSEL методом трафаретной печати посредством шприцевания наносят клей, причем толщина слоя клея не должна превышать 7 мкм.

9. С помощью позиционера на кристалл излучателя помещают кристалл дифракционной решетки и производят склеивание соответствующих поверхностей с допуском по обеим координатам ±2…4 мкм. При этом прикладывают усилие монтажа в пределах 1…3 кгс в течение 0,5 с.

10. Сборку помещают в сушильную камеру на 120 мин для отверждения клея при температуре 170…180°C.

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера, заключающийся в том, что для его реализации снимают характеристики излучателя типа VCSEL путем проведения измерения диаграммы оптического излучения, создают компьютерную модель излучателя, в которой эти характеристики используют как исходные, используя модель излучателя, моделируют дифракционную решетку таким образом, чтобы обеспечить требуемый поворот излучения и диаграмму его распространения и после соединения с кристаллом излучателя оставить доступными электрические контактные площадки VCSEL или часть их; на основании модели изготавливают кристалл дифракционной решетки, кристаллы излучателя и дифракционной решетки разогревают до температуры 100…140°C, берут клей (например, Namics DA8483, ЕРО-ТЕК H20S, или КТК-7), также разогревают до температуры 100…140°C и выдерживают 4…6 мин; кристалл излучателя располагают в рабочем положении, на необходимую часть поверхности кристалла VCSEL методом трафаретной печати посредством шприцевания наносят клей, причем толщина слоя клея не должна превышать 7 мкм, с помощью позиционера на кристалл излучателя помещают кристалл дифракционной решетки и производят склеивание соответствующих поверхностей с допуском по обеим координатам ±2…4 мкм с усилием монтажа в пределах 1…3 кгс в течение 0,5 с, наконец, сборку помещают в сушильную камеру на 120 мин для отверждения клея при температуре 170…180°C.



 

Похожие патенты:

Лазерный элемент поверхностного испускания включает в себя полупроводниковую подложку и множество лазеров поверхностного испускания, сконфигурированных с возможностью испускания света со взаимно различными длинами волн.

Изобретение относится к лазерной технике. Матрица VCSEL содержит несколько VCSEL, расположенных рядом друг с другом на общей подложке (1).

Способ относится к оптическому приборостроению и касается способа изготовления дифракционных оптических элементов и масок для изготовления фазовых структур. Способ включает нанесение молибденовой пленки толщиной 35-45 нм на поверхность диэлектрической подложки с последующим воздействием на нее сфокусированным лазерным излучением.

Изобретение относится к области лазерной оптики, а именно к острой фокусировке когерентного излучения, и может быть использовано для высокоразрешающей оптической записи и сканирующей оптической микроскопии.

Изобретение относится к способу управления распределением интенсивности поля волны или волн частично когерентного или некогерентного оптического излучения на конечном расстоянии от его источника или в дальней зоне и устройству, реализующему заявленный способ.

Изобретение относится к световой панели, содержащей источник света и панельный элемент. .

Изобретение относится к световым индикаторам, подсвечиваемым источником света. .

Изобретение относится к области оптических измерений с применением дифракционной оптики и может найти применение при поиске, определении пространственного положения и ориентации группы рассеивающих частиц в различных оптических элементах, а также при получении достоверных измерений пространственно-частотных спектров этих рассеивающих частиц с целью их точной идентификации, повышения точности в определении их размеров и расстояний между ними.

Изобретение относится к области оптических измерений и может быть использовано для измерения расстояния до излучающего объекта, в частности для определения расстояния до точечного источника света.

Изобретение относится к методам и средствам преобразования оптического излучения для формирования изображения объектов в некогерентном свете. .

Изобретение относится к осветительной системе, содержащей: плату СИД, несущую СИДы; и оптическую плату на плате СИД; причем оптическая плата выполнена из оптических модулей, расположенных рядом друг с другом согласно заранее определенным ориентациям по отношению друг к другу, причем каждый оптический модуль содержит, по меньшей мере, один оптический элемент, выполненный с возможностью быть обращенным к, по меньшей мере, одному из упомянутых СИДов и изменять параметр света, излучаемого этим, по меньшей мере, одним СИД, причем осветительная система снабжена механическими элементами защиты от неправильного обращения, выполненными с возможностью препятствовать размещению оптических модулей согласно ориентациям по отношению друг к другу, отличным от упомянутых заранее определенных ориентаций.

Линза для формирования излучения лазерного диода включает расположенные по ходу излучения излучающего элемента диода внутреннюю и внешнюю поверхности. Центральная зона внутренней поверхности имеет оптическую силу, обеспечивающую коллимирование потока излучения.

Лазерный диод содержит излучающий элемент с линзой для формирования излучения. Линза включает центральную зону, которая имеет оптическую силу и обеспечивает коллимирование потока излучения.

Линза содержит нижнюю поверхность; поверхность падения света для приема света источника света; первую выпуклую поверхность, используемую в качестве первой поверхности выхода света; первую кольцеобразную наклонную поверхность, используемую в качестве второй поверхности выхода света; вторую выпуклую поверхность, используемую в качестве третьей поверхности выхода света.

Изобретение относится к лазерной технике и может быть использовано для получения световых пучков с заданным пространственным профилем интенсивности. Устройство формирования пространственного профиля интенсивности лазерного пучка включает последовательно расположенные по ходу распространения лазерного пучка прозрачный оптический элемент, по световой апертуре которого распределены элементы, изменяющие параметры проходящего через них лазерного излучения, фильтр пространственных частот, ретранслятор изображения.

Изобретение относится к области светотехники. Техническим результатом является повышение мощности.

Изобретение относится к лазерной оптике. Устройство для формирования лазерного излучения (3) содержит гомогенизаторы (1), выполненные с возможностью отдельно гомогенизировать множество частичных лучей (6) или множество групп (7) частичных лучей (6) лазерного излучения (3) таким образом, чтобы идущие от гомогенизаторов (1) частичные лучи (6) или их группы (7) в рабочей плоскости (8) создавали соответственно линейное распределение (9, 19) интенсивности с круто спадающими на концах фронтами (10).
Наверх