Радиочастотный преобразователь солей жесткости с контролем температуры трубопровода

Изобретение относится к области теплоэнергетики и предназначено для защиты и очистки от отложений солей жесткости (накипи) на внутренних поверхностях трубопроводов, систем центрального отопления, водонагревательного и отопительного оборудования (котлы, бойлеры, радиаторы, теплообменники и т.д.), стиральных и посудомоечных машин, холодильной техники и т.д. Предложен радиочастотный преобразователь солей жесткости, содержащий корпус, в котором расположены генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели, навитые во взаимно противоположном направлении на трубопровод. Радиочастотный преобразователь солей жесткости содержит расположенные в корпусе с возможностью измерения температуры трубопровода термометр с индикатором отображения температуры, температурный датчик, соединенный с корпусом, термометром и трубопроводом. При этом на трубопроводе могут быть расположены стяжки, выполненные из токонепроводящего материала с возможностью закрепления проводов-излучателей на трубопроводе. Технический результат - повышение надежности работы и обеспечение непрерывного контроля температурного режима. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области теплоэнергетики и предназначено для защиты и очистки от отложений солей жесткости (накипи) на внутренних поверхностях трубопроводов, систем центрального отопления, водонагревательного и отопительного оборудования (котлы, бойлеры, радиаторы, теплообменники и т.д.), стиральных и посудомоечных машин, холодильной техники и т.д.

Известно устройство для магнитной обработки водных систем, содержащее корпус из диамагнитного материала с патрубками подвода и отвода обрабатываемой водной системы, полый внутренний магнитопровод, расположенный в корпусе с образованием рабочего зазора, и наружные магнитопроводы, выполненные в виде отдельных секций, расположенных в один или более ярусов по высоте корпуса, каждый из которых содержит, по меньшей мере, две секции, причем внутренний магнитопровод снабжен патрубками подвода и отвода водной системы и перегородками из ферромагнитного материала, перпендикулярными образующей корпуса, с образованием прохода лабиринтного типа, а рабочий зазор через патрубок отвода обрабатываемой водной системы соединен с патрубком подвода водной системы внутреннего магнитопровода (патент РФ №2223235, C02F 1/48, 2004.02.10).

Недостатком аналога является сложность конструкции.

Известен электромагнитный гидродинамический активатор, содержащий цилиндроконический корпус из диамагнитного материала с конической частью, выполненной в виде усеченного конуса, расположенную внутри корпуса рабочую камеру, узлы подвода обрабатываемой и отвода обработанной жидкости и расположенную снаружи корпуса систему магнитной обработки, содержащую верхний и нижний кольцевые магнитопроводы из ферромагнитных материалов, расположенные соосно с корпусом соответственно снизу и сверху корпуса, расположенную вокруг корпуса намагничивающую катушку с переменным по высоте сечением, внутренние по отношению к корпусу обводы которой повторяют очертания корпуса, и верхний и нижний прижимные диски из ферромагнитных материалов, соединенные между собой стяжными болтами из ферромагнитных материалов, при этом коническая часть корпуса выполнена с пропорциями "золотого сечения", образующие рабочей камеры параллельны образующим корпуса, узел подвода обрабатываемой жидкости выполнен в виде Г-образного патрубка с тангенциальным выходом в рабочую камеру, узел отвода обработанной жидкости выполнен в виде соосной с корпусом пары чередующихся цилиндрических и конических камер, при этом конические камеры выполнены в виде усеченных конусов с пропорциями "золотого сечения" и направлены навстречу конусу корпуса. (Патент РФ №2226510, C02F 1/48, 2004.04.10).

Недостатком аналога является сложность конструкции и значительные массогабаритные показатели.

Известно устройство для электромагнитной обработки воды и водных сред, включающее подключенные к генераторам электромагнитных импульсов индукторы, охватывающие трубопровод, выполненные из диамагнитного материала, каждый из индукторов выполнен в виде витков электрически изолированного провода, причем устройство состоит из электронного блока, включающего два гальванически развязанных четырехканальных генератора электромагнитных импульсов, вырабатывающих прямой и инверсный сигналы, причем один конец провода каждого индуктора подключен к одному из выходов одного генератора электромагнитных импульсов, а второй конец провода каждого индуктора подключен к соответствующему выходу другого генератора электромагнитных импульсов. (Патент РФ №2524718, C02F 1/48, 10.08.2014).

Недостатком аналога является сложность конструкции и значительные массогабаритные показатели.

Известна установка для противонакипной обработки водных систем, содержащая магистральный трубопровод обрабатываемой водной системы и байпасный трубопровод с установленным на нем устройством для магнитной обработки водной системы, снабженная баком-резонатором коридорного типа, установленным на байпасном трубопроводе по ходу движения водной системы после устройства для магнитной обработки водной системы и жестко закрепленным на магистральном трубопроводе обрабатываемой водной системы, и генератором несинусоидальных электромагнитных колебаний, установленным на баке-резонаторе, а устройство для магнитной обработки водной системы выполнено в виде корпуса из диамагнитного материала с расположенным в нем с образованием рабочего зазора внутренним магнитопроводом и наружными магнитопроводами, расположенными в один или более ярусов по высоте корпуса и выполненными в каждом ярусе в виде отдельных, по меньшей мере, двух секций, каждая из которых содержит Ш-образный сердечник броневого типа, намагничивающую катушку и два шунтирующих вкладыша, высоту которых h выбирают из соотношения h=2k+(4-6), где k - величина рабочего зазора в мм. (Патент РФ №2185335, C02F 1/48, 2002.07.20).

Недостатком аналога является сложность конструкции и значительные массогабаритные показатели.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является радиочастотный преобразователь солей жесткости (патент РФ №56891, C02F 1/48, 27.09.2006), содержащий магистральный трубопровод обрабатываемой водной системы, генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели, навитые во взаимно противоположном направлении на магистральный трубопровод.

Недостатком аналога являются ограниченные функциональные возможности, обусловленные отсутствием непрерывного контроля за состоянием оборудования радиочастотного преобразователя солей жесткости.

Задачей полезной модели является расширение функциональных возможностей радиочастотного преобразователя солей жесткости за счет введения непрерывного контроля температурного режима.

Техническим результатом полезной модели является повышение надежности работы и обеспечение непрерывного контроля температурного режима.

Поставленная задача решается, а технический результат достигается тем, что радиочастотный преобразователь солей жесткости, содержащий корпус, в котором расположены генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели, навитые во взаимно противоположном направлении на трубопровод, согласно изобретению содержит расположенные в корпусе с возможностью измерения температуры трубопровода термометр с индикатором отображения температуры, температурный датчик, соединенный с корпусом, термометром и трубопроводом.

Кроме того, на трубопроводе могут быть расположены стяжки, выполненные из токонепроводящего материала с возможностью закрепления проводов-излучателей на трубопроводе.

Генератор несинусоидальных колебаний формирует плавно изменяющиеся колебания в диапазоне частот от 1 кГц до 10 кГц, причем частота колебаний непрерывно и плавно изменяется от минимума до максимума и обратно. Иными словами применен генератор несинусоидальных колебаний качающейся частоты (Советский энциклопедический словарь, гл. редактор Прохоров A.M., издание 2, М.: Советская энциклопедия, 1983 г., стр. 287). А провода-излучатели, подключенные к противофазным выходам генератора несинусоидальных колебаний качающейся частоты, совместно с трубопроводом, на который они навиты, или перекачиваемой жидкостью обеспечивают обработку солей жесткости, растворенных в воде, в результате чего последние теряют способность объединяться в кристаллы и оседать на стенках трубопровода в виде накипи.

Существо изобретения поясняется чертежом, на котором изображена схема радиочастотного преобразователя солей жесткости с контролем температуры трубопровода.

Радиочастотный преобразователь солей жесткости с контролем температуры трубопровода содержит корпус 1, в котором расположены генератор несинусоидальных колебаний качающейся частоты с противофазными выходами 2, термометр 3 с индикатором отображения температуры 4. С корпусом 1 и термометром 3 соединен датчик температуры 5, который также соединен с трубопроводом 6. На трубопровод 6 обрабатываемой водной системы навиты провода-излучатели 7 и 8, подключенные к противофазным выходам генератора несинусоидальных колебаний качающейся частоты 2. Направление навивки проводов-излучателей 7 и 8 - взаимно противоположное. На трубопроводе 6 обрабатываемой водной системы могут быть расположены выполненные из токонепроводящего материала стяжки 9 с возможностью закрепления проводов излучателей 7 и 8 на трубопроводе.

Радиочастотный преобразователь солей жесткости с контролем температуры трубопровода работает следующим образом.

Воду, подвергаемую противонакипной обработке, подают по трубопроводу 6. Генератор несинусоидальных колебаний качающейся частоты с противофазными выходами 2 через провода-излучатели 7 и 8 посредством электромагнитного поля воздействует на соли жесткости, растворенные в воде, в результате чего последние теряют на некоторое время способность объединяться в кристаллы и оседать на стенках трубопровода в виде накипи, при этом солевой состав воды не изменяется.

Электромагнитное поле попадает внутрь трубопровода, вне зависимости от его материала, следующим образом. На провода-излучатели 7 и 8 подают противофазные импульсы напряжения с частотой, формируемой генератором несинусоидальных колебаний качающейся частоты 2. Благодаря емкостной связи между проводами-излучателями 7 и 8 и трубопроводом 6 (в случае токопроводящего трубопровода) или с водой в трубопроводе 6 (в случае не токопроводящего трубопровода) на участке «А» (см. фиг.) трубопровода 6, между навитыми во взаимно противоположном направлении проводами-излучателями 7 и 8, закрепленными предварительно на трубопроводе 6 стяжками 9, возникают знакопеременные импульсы тока, порождающие знакопеременное магнитное поле как вне, так и внутри магистрального трубопровода 6, которое в свою очередь порождает в проводящей жидкости, в воде, знакопеременные импульсы тока и т.д. Таким образом, в потоке воды, прокачиваемой по трубопроводу 6, создается импульсное знакопеременное электромагнитное поле с постоянно меняющейся во времени частотой.

Расположенный в корпусе 1 термометр 3, показания которого выводятся на индикатор отображения температуры 4, позволяет осуществлять мониторинг изменения температурного режима в трубопроводе 6 в данный момент времени для сравнительного анализа и представления теплообменных процессов в системе.

Итак, заявляемое изобретение позволяет значительно расширить функциональные возможности радиочастотного преобразователя солей жесткости за счет введения непрерывного контроля температурного режима, а также повысить надежность работы за счет надежности крепления проводов-излучателей на трубопроводе посредством стяжек и непрерывного контроля температурного режима.

Кроме того, радиочастотный преобразователь солей жесткости имеет невысокую стоимость, не зависит от солевого состава воды и материала трубопровода.

1. Радиочастотный преобразователь солей жесткости, содержащий корпус, в котором расположены генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели, навитые во взаимно противоположном направлении на трубопровод, отличающийся тем, что содержит расположенные в корпусе с возможностью измерения температуры трубопровода термометр с индикатором отображения температуры, температурный датчик, соединенный с корпусом, термометром и трубопроводом.

2. Радиочастотный преобразователь солей жесткости по п. 1, отличающийся тем, что на трубопроводе расположены стяжки, выполненные из токонепроводящего материала, с возможностью закрепления проводов-излучателей на трубопроводе.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано для получения информации о таянии ледника и температуре в его толще. Устройство содержит термокосу из датчиков температуры, расположенных на известном равном друг от друга расстоянии, и которые последовательно соединены между собой гибким кабелем.

Изобретение относится к области термометрии и может быть использовано для измерения температурных полей в помещении, а также для оценивания динамики изменения состояния температурного поля.

Изобретение относится к области термометрии и может быть использован для медицинского применения. Предложен цифровой термометр из противомикробной меди, внешняя конструкция которого состоит из корпуса (1), крышки (2) батарейного отсека, то есть удаляемой части, посредством которой батарея вставляется в термометр, кнопки (3) питания, т.е.

Изобретение относится к области термометрии и может быть использовано для измерения температурного профиля по глубине как на ходу судна, так и в дрейфе. Предложен термозонд, содержащий корпус, головную часть с грузом и измерительно-передающий блок, связанный с приемным блоком с помощью гидроакустического канала связи.

Изобретение относится к области измерительной техники и может быть использовано для исследования взаимодействия судна или его модели с водной средой, стратифицированной по глубине слоями разной температуры.

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С5+в в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин.

Изобретение относится к области измерения теплофизических характеристик физических сред и может быть использовано в морской биологии и химии для расчета температурных условий существования биологических объектов и течения химических реакций в верхнем слое донных осадков в условиях изменяющейся температуры водного слоя.

Изобретение относится к области измерительной техники и может быть использовано при измерении температуры расплавленных металлов. Удерживаемый посредством фиксирующего и движущего устройства (11) в области (12) фиксации контактный штырь (10) должен вставляться в имеющий продольную ось (4), открытый с торцевой стороны (5) металлургический зонд (3).

Изобретение относится к области радиотермометрии и может быть использовано для измерения глубинных температур объектов по их собственному радиоизлучению. Радиометр содержит антенну, последовательно соединенные направленный ответвитель, циркулятор, приемник, синхронный низкочастотный фильтр, фильтр высоких частот, компаратор, второй вход которого соединен с общей шиной радиометра, а второй вход циркулятора подключен к первой согласованной нагрузке, переключатель, первый и второй выходы которого соединены с одноименными входами направленного ответвителя, а первый, второй и третий входы подключены ко второй, третьей согласованным нагрузкам и к выходу последовательно соединенных источнику тока и генератору шума.

Изобретение относится к области измерения температур и может быть использовано измерении температуры при точении. Заявлено устройство для измерения температуры, содержащее заготовку, резец, к задней поверхности режущей пластины которого прикреплен проводник, взаимодействующий с измерительным прибором.

Изобретение относится к водоподготовке и может быть использовано в сельском хозяйстве, в жилищно-коммунальном хозяйстве и в промышленности. Способ водоподготовки включает фильтрацию воды через загрузку с ионообменными свойствами, регенерацию и промывку загрузки восходящим потоком регенерата и подготовленной воды в направлении снизу вверх и седиментацию загрузки.

Изобретение относится к способу обработки и повторного использования сточных вод, образованных от производства поливинилхлорида. Способ обработки и повторного использования сточных вод, образованных от производства поливинилхлорида, включает в себя этап полимеризации по меньшей мере одного мономера, содержащего винилхлорид, в водной среде, из которой затем отделяют непрореагировавший мономер и полученный полимер; причем указанный способ включает в себя этапы, на которых: испаряют, по меньшей мере, одну часть указанных сточных вод для того, чтобы получить очищенные, испаренные сточные воды; конденсируют очищенные, испаренные сточные воды для получения очищенных, сконденсированных сточных вод; повторно используют очищенные, сконденсированные сточные воды.

Изобретение относится к способу и системе для обработки воды, предназначенной для использования в промышленных процессах, при низких затратах. Система для обработки воды включает: линию подачи воды, контейнер, включающий средство приема осевших частиц, которое прикреплено к дну указанного контейнера, средство согласования, которое периодически активирует операции, необходимые для регулирования параметров воды в пределах, определяемых оператором или средством согласования, средство введения химических веществ, которое активируют с помощью указанного средства согласования, подвижное средство всасывания, которое перемещается по дну указанного контейнера, всасывая поток воды, содержащий осевшие частицы, движущее средство, которое сообщает движение подвижному средству всасывания, чтобы оно могло перемещаться по дну контейнера, фильтрующее средство, которое обеспечивает фильтрацию потока воды, содержащего осевшие частицы, коллекторную линию, соединяющую подвижное средство всасывания и фильтрующее средство, возвратную линию от указанного фильтрующего средства к контейнеру, и линию отвода воды из указанного контейнера в процесс ниже по потоку.

Изобретение относится к биоцидам. Композиция для контроля микроорганизмов включает: гидроксиметил-замещенное фосфорсодержащее соединение - соль тетракис(гидроксиметил)фосфония, и соединение изотиазолинона, выбранное из 1,2-бензизотиазолин-3-она и 2-метил-1,2-бензизотиазолин-3-она.

Изобретение относится к установке очистки поверхностного стока на очистных сооружениях ливневой канализации. Установка включает блок первичной очистки, состоящий из по меньшей мере двух унифицированных, автономно функционирующих секций 1, и блок глубокой доочистки.

Изобретение относится к устройствам для активации жидкостей, в частности водных растворов, и может быть использовано для обработки питьевой и минерализованной воды, физиологических, лечебных растворов, а также крови.

Система биоинтенсивного орошаемого земледелия включает стационарные грядки, траншеи посередине грядок, заполненные растительными остатками, поливные борозды, систему с переносными трубопроводами для полива по бороздам, туманообразующие установки с генератором омагниченной и электризованной воды, участки полива которых ограничены ветрозащитными экранами.

Изобретение относится к охране окружающей среды и может быть использовано для очистки природных и доочистки ливневых и сточных вод. Биореактор для очистки водных сред состоит из корпуса 1, снабженного окнами для подсоса воздуха 2 с воздуховодами 3, куполообразным отражателем 4 с устройством для выпуска воздуха 5, с трубопроводами подачи исходной водной среды на очистку 6, отвода очищенной водной среды 7, сборно-распределительной системой 8, соединенной с трубопроводом отвода промывной воды 9.

Изобретение относится к способу получения биоразлагаемых ингибиторов солеотложений и может быть использовано для предотвращения отложений солей в водооборотных системах.

Изобретение относится к опреснению морских вод путем обратного осмоса и может быть использовано для создания опреснительных установок, обеспечивающих на постоянной основе питьевой водой локальных потребителей в регионах, не имеющих централизованного водоснабжения.

Изобретение относится к системам очистки жидкости, преимущественно воды, применяемым в бытовом и/или питьевом водоснабжении в бытовых и/или промышленных условиях, на дачных и садовых участках. Система очистки жидкости содержит источник исходной жидкости, линию подачи очищенной жидкости потребителю, блок очистки жидкости, включающий емкость типа жидкость-жидкость, состоящую из корпуса и средства, формирующего накопительную полость для очищенной жидкости и вытеснительную полость, расположенного внутри корпуса, по меньшей мере одно средство очистки жидкости, линию дренажа и систему управления потоками жидкости, включающую узел подачи исходной жидкости и узел подачи очищенной жидкости. В блоке очистки жидкости система управления потоками жидкости выполнена с узлом распределения исходной жидкости с возможностью поддержания давления жидкости в вытеснительной полости, предназначенной, преимущественно, для исходной жидкости емкости выше, чем атмосферное давление. Узел распределения исходной жидкости выполнен по противоточной схеме движения жидкости и включает линию рециркуляции исходной жидкости, соединенную с одного конца с вытеснительной полостью для исходной жидкости емкости и с другого конца - с источником исходной жидкости и узлом подачи исходной жидкости. Либо узел распределения исходной жидкости выполнен по двухлинейной схеме в виде линии поступления исходной жидкости в вытеснительную полость для исходной жидкости емкости, соединенной на входе с источником исходной жидкости, а на выходе - с вытеснительной полостью для исходной жидкости емкости, и линии вытеснения исходной жидкости из вытеснительной полости емкости, соединенной на входе с вытеснительной полостью емкости и на выходе - с узлом подачи исходной жидкости. Технический результат: повышение надежности системы очистки жидкости и упрощение ее конструкции при одновременном улучшении ее эксплуатационных свойств, в том числе обеспечение подачи очищенной жидкости потребителю в любой момент процесса очистки жидкости и после его завершения. 2 н. и 22 з.п. ф-лы, 7 ил.
Наверх