Способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера гтд

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера газотурбинного двигателя. Перед испытаниями предварительно выполняют опытный образец диска, соответствующий диску ротора стартера, содержащего обод с лопатками и подободочную часть с утонением в виде двусторонней кольцевой канавки и расположенных равномерно через 120° дополнительных радиальных канавок. Затем уменьшают кольцевое утонение опытного образца диска до меньшей величины, размещают опытный образец диска внутри корпуса и раскручивают до частоты вращения, при которой происходит разрушение. После разрушения опытного образца диска последовательно определяют уровни кинетической энергии для цилиндрических сечений, заданных соответствующими концентричными радиусами, строят график зависимости кинетической энергии от радиуса и по ней определяют величину кинетической энергии для критического сечения. Затем сравнивают величины полученных значений энергий, выбирают максимальное значение кинетической энергии, по ее величине определяют угловую скорость вращения сертификационных испытаний, а по величине последней определяют толщину утонения подободочной части опытного образца диска для сертификационных испытаний. Изобретение позволяет обеспечить гарантированное разрушение диска при выбираемой частоте вращения с допустимым уровнем кинетической энергии по заданному цилиндрическому сечению. 6 ил.

 

Изобретение относится к области авиационного двигателестроения и может быть использовано при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера ГТД.

Стартер является частью системы запуска двигателя, которая необходима для раскрутки ротора до частоты вращения, обеспечивающей надежное воспламенение топлива в камере сгорания. При проектировании воздушно-турбинных стартеров (ВТС) необходимо обеспечить высокую надежность и безопасность эксплуатации в течение всего жизненного цикла стартера. Одно из важнейших условий - обеспечение локализации фрагментов диска ротора ВТС в случае его разрушения. Статическая прочность, циклическая долговечность и несущая способность диска должны быть достаточными для обеспечения требований по ресурсу и прохождения сертификационных испытаний. Бронезащита корпуса должна проектироваться на удержание фрагмента обода диска с максимально возможной кинетической энергией, которая образуется в результате разрушения.

Известен способ испытания корпуса на непробиваемость, согласно которому предварительно перед проведением испытания в заданном сечении одной из лопаток ротора выполняют ослабление в виде отверстия, расположенного вдоль сечения, по которому должен произойти отрыв с сохранением при этом запаса прочности по пределу текучести больше единицы, размещают ротор внутри корпуса, осуществляют выход ротора на определенную частоту вращения, при которой происходит отрыв лопатки, и по результатам разрушения оценивают непробиваемость корпуса (патент РФ №2279047, кл. G01M 15/14, 2004 г.). Отрыв лопатки в заданном сечении при выходе ротора на определенную частоту вращения инициируется при помощи детонирующего устройства. Недостатком известного способа является сложность обеспечения отрыва лопатки. Кроме того, способ не позволяет оценивать стойкость корпуса при разрушении диска ротора, что определяет его недостаточную информативность.

Известен способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера ГТД, заключающийся в том, что в диске ротора стартера, выполненном в виде обода с лопатками и подободочной части с локальным утонением полотна диска в виде двусторонней кольцевой канавки определенной толщины, предварительно выполняют дополнительные локальные утонения в виде радиально расположенных в подободочной части сквозных отверстий, размещают ротор внутри корпуса, раскручивают ротор до частоты вращения, при которой происходит разрушение диска по цилиндрическому сечению, фиксируют значение разрушающей частоты, и определяют уровень кинетической энергии 1/3 оторвавшейся части диска, по величине которой и по характеру разрушения оценивают стойкость корпуса (технический отчет «Исследование непробиваемости корпусов при разрушении дисков», ФГУП ЦИАМ, М., 1999 г.).

Наиболее близким по совокупности существенных признаков к предлагаемому изобретению является известный способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера ГТД, заключающийся в том, что в диске ротора стартера, выполненном в виде обода с лопатками и подободочной части с локальным утонением полотна диска в виде двусторонней кольцевой канавки толщиной «h0», предварительно выполняют дополнительные локальные ослабления в виде радиальных канавок, расположенных равномерно через 120°, размещают ротор внутри корпуса, раскручивают ротор до частоты вращения, при которой происходит разрушение диска по цилиндрическому сечению, фиксируют значение разрушающей частоты, определяют уровень кинетической энергии 1/3 оторвавшейся части диска, по величине которой и по характеру разрушения оценивают стойкость корпуса (технический отчет «Результаты разгонных испытаний воздушного стартера с целью определения эффективности бронекольца над диском турбины», ФГУП ЦИАМ, М., 2004 г.). Общим недостатком известных способов является сложность обеспечения гарантированного отрыва 1/3 части диска по цилиндрическому сечению при определенной частоте вращения и неточность определения уровня кинетической энергии разрушения, что обусловливает низкую достоверность результатов испытания.

В основу предлагаемого технического решения положена задача определения параметров сертификационных испытаний.

Технический результат, достигаемый при осуществлении предлагаемого технического решения заключается в обеспечении гарантированного разрушения диска при выбираемой частоте вращения с допустимым уровнем кинетической энергии по заданному цилиндрическому сечению.

Заявленный технический результат достигается за счет того, что при сертификационных испытаниях корпуса на непробиваемость при разрушении диска ротора стартера ГТД, заключающемся в том, что в диске ротора стартера, выполненном в виде обода с лопатками и подободочной части с локальным утонением полотна диска в виде двусторонней кольцевой канавки толщиной «h0», предварительно выполняют дополнительные локальные ослабления в виде радиальных канавок, расположенных равномерно через 120°, размещают ротор внутри корпуса, раскручивают ротор до частоты вращения, при которой происходит разрушение диска по цилиндрическому сечению, фиксируют значение разрушающей частоты, и определяют уровень кинетической энергии 1/3 оторвавшейся части диска, по величине которой и по характеру разрушения оценивают стойкость корпуса. Согласно изобретению предварительно выполняют опытный образец, соответствующий диску ротора стартера, уменьшают кольцевое утонение опытного образца до толщины «h1», меньшей «h0». Величину «h1» определяют из условия обеспечения коэффициента «Kb» запаса по разрушающей частоте вращения при разрушении по цилиндрическому сечению меньше единицы. После разрушения опытного образца последовательно определяют уровни кинетической энергии «Ei» для цилиндрических сечений, заданных соответствующими концентричными радиусами «ri», строят график зависимости «Ei» от «ri», по которому определяют величину кинетической энергии «Екр» для критического цилиндрического сечения, соответствующего радиусу «rкр». Затем сравнивают величины полученных значений энергий, выбирают максимальное значение кинетической энергии «Ei mах» большее «Еi» и по величине «Ei max» определяют угловую скорость ωСЕРТ сертификационных испытаний по формуле:

где: Vi - объем фрагмента, м3; ρ - плотность материала, кг/м3;

rЦТi - радиус центра тяжести фрагмента, м.

Толщину «hсерт.» утонения подободочной части опытного образца для сертификационных испытаний определяют из условия обеспечения разрушения по цилиндрическому сечению и отрыва 1/3 части опытного образца при достижении угловой скорости вращения сертификационных испытаний опытного образца. Последний раскручивают до разрушения при заданной угловой скорости ωСЕРТ и по характеру разрушений судят о стойкости корпуса.

Указанные существенные признаки обеспечивают решение поставленной задачи с достижением заявленного технического результата, так как:

- предварительное выполнение опытного образца, соответствующего диску ротора стартера, и уменьшение кольцевого утонения опытного образца до величины «h1», меньшей исходной величины «h0», и определение «h1» исходя из условия обеспечения коэффициента «Kb» запаса прочности по разрушающей частоте вращения при разрушении по цилиндрическому сечению меньше единицы обеспечивает гарантированное разрушение диска ротора на три части;

- последовательное определение уровней кинетической энергии «Еi» для цилиндрирических сечений, заданных соотвестствующими концентричными радиусами «ri», построение графика зависимости уровня кинетической энергии от радиуса цилиндрического сечения и определение величины «Екр» для критического цилиндрического сечения, соответствующего радиусу «rкр», позволяет повысить достоверность результатов испытаний для различных вариантов разрушения диска;

- определение угловой скорости сертификационных испытаний по заданной формуле в зависимости от максимального значения кинетической энергии «Ei max», большего «Ei», и толщины «hсерт.» утонения подобдочной части опытного образца для сертификационных испытаний из условия обеспечения разрушения по цилиндрическому сечению и отрыва 1/3 части опытного образца при достижении угловой скорости вращения сертификационных испытаний позволяет повысить точность определения данных для обеспечения непробиваемости корпуса при разрушении диска ротора стартера.

Настоящее изобретение поясняется следующим описанием со ссылкой на иллюстрации, представленные на фиг. 1 … фиг. 6, где:

на фиг. 1 изображен диск ротора стартера;

на фиг. 2 изображена схема утонения полотна диска;

на фиг. 3 изображен фрагмент 1/3 части диска при разрушении по цилиндрическому сечению «слабого звена»;

на фиг. 4 изображен фрагмент 1/3 части диска с цидиндрическими сечениями, соответствующими определенному радиусу «ri»;

на фиг. 5 изображен изображен график зависимости «Ei» от «ri»;

на фиг. 6 изображен фрагмент 1/3 оставшейся подободочной части диска после разрушения по цилиндрическому сечению.

Способ осуществляется следующим образом. Диск ротора стартера ГТД выполнен в виде обода 1 с лопатками 2 и подободочной части 3 с локальным утонением полотна диска в виде двусторонней кольцевой канавки 4 толщиной «h0». Диск содержит также дополнительные локальные утонения, выполненные в виде радиальных канавок 5, расположенных равномерно через 120° по окружности диска. Предварительно перед испытанием выполняют опытный образец, аналогичный диску ротора стартера, и в конструкцию опытного образца вносят «слабое звено», уменьшая толщину кольцевых канавок 4 до величины «h1». Последнюю определяют исходя из условия обеспечения коэффициента «Kb» запаса прочности по разрушающей частоте вращения при разрушении по цилиндрическому сечению:

где nразр - разрушающая частота вращения;

nмакс - максимальная (расчетная) частота вращения.

Для приближения условий испытания к реальным условиям работы диска принимают Kb=0,97-0,99. Размещают ротор внутри корпуса, раскручивают до частоты вращения, при которой происходит разрушение опытного образца по цилиндрическому сечению с гарантированным отрывом фрагмента, равного 1/3 части диска, которая находится выше радиуса «слабого звена», и фиксируют значение разрушающей частоты. После разрушения опытного образца определяют уровень кинетической энергии «E1» этого фрагмента, который обуславливается частотой вращения при разрушении «слабого звена»:

где: ρ - плотность материала образца; V - объем фрагмента образца; ω - угловая скорость вращения образца; rЦТ - радиус центра тяжести фрагмента образца.

Далее проводится последовательное определение уровней кинетической энергии «Еi» фрагментов опытного образца при разрушении последнего по цилиндрическим сечениям, заданным соответствующими радиусами «ri», и строится график зависимости «Ei» от «ri». Это позволяет предусмотреть случай, соответствующий ситуации, при которой в образце пропущен такой дефект, который приводит к разрушению и образованию фрагмента, расположенного выше экстремального радиуса «ri» и который при движении в радиальном направлении не имеет препятствий до удерживающего кольца корпуса. Кинетическая энергия этого фрагмента также будет обуславливаться угловой скоростью вращения при разрушении «слабого звена». Для определения наиболее энергоемкого фрагмента, обладающего максимальной кинетической энергией, строится зависимость кинетической энергии «Ei» от экстремального радиуса «ri», по которому происходит разрушение, и по графику определяют величину кинетической энергии «Ei кр» для критического цилиндрического сечения, соответствующего радиусу «ri кр». Если ротор стартера по каким-либо причинам не отсоединяется от ротора основного двигателя, то при максимальной частоте вращения последнего ротор стартера достигнет значения разрушающей частоты, при которой вначале произойдет разрушение по цилиндрическому сечению в зоне локального утонения, а при достижении угловой скорости значения, превышающего значение разрушающей частоты, третья часть оставшейся части образца достигнет максимального значения кинетической энергии «Еmах», и произойдет разрушение оставшейся части диска. В результате сравнения всех величин полученных значений энергий выбирают максимальное значение уровня кинетической энергии «Ei max» исходя из условия, что:

Ei max>Ei

Бронезащита корпуса должна быть спроектирована с соблюдением условия:

Еброни>Ei mах

Для проведения сертификационных испытаний в дальнейшем используется опытный образец, который должен гарантированно разрушаться в области «слабого звена» с образованием 1/3 фрагмента с максимально возможной кинетической энергией «Ei mах» последнего. Ротор помещают в корпус и раскручивают до заданной скорости вращения. При этом величина необходимой для испытания угловой скорости вращения определяется по формуле:

где: Vi - объем фрагмента, м3; ρ - плотность материала, кг/м3; rЦТi - радиус центра тяжести фрагмента, м.

Толщину «hсерт.» утонения подободочной части опытного образца для сертификационных испытаний выбирают исходя из условия обеспечения разрушения по цилиндрическому сечению при достижении угловой скорости вращения «ωсерт.». По характеру разрушения диска в результате сертификационных испытаний оценивают стойкость корпуса.

Предлагаемый способ позволяет обеспечить гарантированное разрушение диска при выбираемой частоте вращения с допустимым уровнем кинетической энергии по заданному цилиндрическому сечению, что обеспечивает достоверность определения параметров сертификационных испытаний.

Способ сертификационных испытаний корпуса на непробиваемость при разрушении диска ротора стартера ГТД, заключающийся в том, что в диске ротора стартера, выполненном в виде обода с лопатками и подободочной части с локальным утонением полотна диска в виде двусторонней кольцевой канавки толщиной «h0», предварительно выполняют дополнительные локальные ослабления в виде радиальных канавок, расположенных равномерно через 120°, размещают ротор внутри корпуса, раскручивают ротор до частоты вращения, при которой происходит разрушение диска по цилиндрическому сечению, фиксируют значение разрушающей частоты и определяют уровень кинетической энергии 1/3 оторвавшейся части диска, по величине которой и по характеру разрушения оценивают стойкость корпуса, отличающийся тем, что предварительно выполняют опытный образец, соответствующий диску ротора стартера, уменьшают кольцевое утонение опытного образца до толщины «h1», меньшей «h0», причем величину «h1» определяют из условия обеспечения коэффициента «Kb» запаса по разрушающей частоте вращения при разрушении по цилиндрическому сечению меньше единицы, после разрушения опытного образца последовательно определяют уровни кинетической энергии «Ei» для цилиндрических сечений, заданных соответствующими концентричными радиусами «ri», строят график зависимости «Ei» от «ri», по которому определяют величину кинетической энергии «Eкр» для критического цилиндрического сечения, соответствующего радиусу «rкр», сравнивают величины полученных значений энергий, выбирают максимальное значение кинетической энергии «Ei max», большее «Ei», и по величине «Ei max» определяют угловую скорость ωСЕРТ, сертификационных испытаний по формуле:

где: V - объем фрагмента, м3;

ρ - плотность материала, кг/м3;

rЦТ - радиус центра тяжести фрагмента, м,

а толщину «hсерт.» утонения подободочной части опытного образца для сертификационных испытаний определяют из условия обеспечения разрушения по цилиндрическому сечению и отрыва 1/3 части опытного образца при достижении угловой скорости вращения сертификационных испытаний опытного образца, последний раскручивают до разрушения при заданной угловой скорости ωСЕРТ, и по характеру разрушений судят о стойкости корпуса.



 

Похожие патенты:

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации.

Изобретение может быть использовано в двигателях внутреннего сгорания. Система двигателя (10) внутреннего сгорания содержит датчик (30) давления в цилиндре, датчик (42) угла поворота коленчатого вала, уплотнительный участок и электронный блок управления (40).

Изобретение относится к способу и системе диагностики силовой установки с двумя многоступенчатыми турбокомпрессорами. Способ диагностики силовой установки, оборудованной, по меньшей мере, одним турбокомпрессором (2) низкого давления и, по меньшей мере, одним турбокомпрессором (8) высокого давления, при этом турбокомпрессоры являются многоступенчатыми и питают двигатель внутреннего сгорания, а указанной силовой установкой оборудовано автотранспортное средство, согласно изобретению, содержит следующие этапы, на которых определяют режим работы силовой установки, определяют мощность турбины высокого давления (13) в зависимости от первой совокупности данных и в зависимости от режима работы, определяют мощность турбины высокого давления (13) в зависимости от второй совокупности данных, определяют критерий неисправности как соотношение между мощностью турбины высокого давления (13) в зависимости от первой совокупности данных и мощностью турбины высокого давления (13) в зависимости от второй совокупности данных, и сравнивают критерий неисправности с сохраненными в памяти значениями, чтобы определить, существует ли неисправность.

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ).

Описаны системы и способы оценки эффективности секции паровой турбины. Упомянутые системы и способы включают определение набора данных измерений, получаемых непосредственно от набора датчиков на паровой турбине, определение набора вычисленных данных, связанных с измерениями, которые не могут быть получены непосредственно от упомянутого набора датчиков, и оценку эффективности упомянутой секции с использованием упомянутого набора данных измерений и упомянутого набора вычисленных данных.

Изобретение относится к системам бортовой диагностики для распознавания ухудшения характеристик компонента из-за умышленного повреждения и способу реагирования на состояния, выявленные в бортовом диагностическом блоке моторного транспортного средства, и сигнализирования об ухудшении характеристик компонента моторного транспортного средства.

Изобретение касается способа и системы мониторинга измерительной схемы (3), предназначенной для сбора в течение времени измерений, относящихся к турбореактивному двигателю (13) летательного аппарата, при этом система содержит средства обработки (21), выполненные с возможностью построения индикатора состояния упомянутой измерительной схемы, основанного на подсчете переходов между последовательными словами состояния, определяющими показатель правильности соответствующих последовательных измерений.

Изобретение относится к области турбомашиностроения, а именно к способам оценки стабильности серийного производства газотурбинных двигателей.Технический результат изобретения - возможность оценки стабильности серийного производства газотурбинных двигателей на этапе приемосдаточных испытаний.

Наземная информационно-диагностическая система для безопасной эксплуатации авиационного газотурбинного двигателя, содержащая электронную систему управления по меньшей мере два датчика внешних воздействующих факторов, установленных на по меньшей мере одной электронной системе управления во время проведения технического обслуживания, со своими устройствами согласования и аппаратно-программными интерфейсами, блоком памяти и блоком расчета уровня работоспособности.

Изобретение относится к способам технической диагностики ослабления посадки элементов редуктора двигателя по вибрационным параметрам при его испытаниях или в эксплуатации и может найти применение при его доводке, а также для создания систем диагностики двигателя.

Изобретение относится к устройствам для диагностики систем топливоподачи двигателей внутреннего сгорания (ДВС). Комплекс и реализуемый посредством него способ диагностики предназначены для быстрой, точной, экологически и пожаробезопасной бортовой диагностики на месте и в движении системы подачи бензина (СПБ) автомобильного ДВС, оснащенного системой впрыска бензина при низком давлении. Он включает штатные средства системы бортовой диагностики OBD-II автомобиля, дополнительные средства, диагностический сканер и ПО, совместимое с OBD-II, которое формирует и хранит в памяти электронного блока управления ДВС диагностические коды неисправностей (ДКН) компонентов СПБ, а также осуществляет обработку и визуализацию информации в виде цифр и совмещенных графиков в реальном времени текущих значений параметров СПБ. Способ диагностики заключается в том, что на основании результатов анализа полученной информации о ДКН и параметрах СПБ определяют достоверный диагноз СПБ и локализуют дефект, что является необходимым условием своевременной нормализации функционирования ДВС и токсичности отработавших газов. 2 н.п. ф-лы, 24 ил.

Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин. Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин снабжено источником давления газа, подключенным к смесительному ресиверу через регулятор расхода газовой смеси, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего. Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком через отключенный двигатель летательного аппарата. Затем летательный аппарат устанавливают на силоизмерительной платформе в положении, перевернутом на 180°. Продувают испытательную камеру рабочей средой с протоком через работающий двигатель летательного аппарата, измеряют величину газодинамического импульса потока на выходе из двигателя, силу сопротивления летательного аппарата, подъемную силу, величины крутящих моментов и давления на обтекаемых поверхностях. Дополнительно измеряют расход топлива двигателем. Определяют дальность маршевого участка полета летательного аппарата. Изобретение направлено на расширение функциональных возможностей при проведении исследований. 2 ил.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин. Cпособ диагностики машин по косвенным признакам, преимущественно по вибрации корпуса, включает измерение вибрации в информативной точке корпуса машины, восстановление функции распределения вероятности вибрации, по параметрам которой судят о наличии и уровне неисправностей и/или дефектов машины, запоминают временную реализацию вибрации, преобразуют ее в реализацию, значения которой соответствуют оптимальному для диагностики вибропараметру, восстанавливают функцию распределения вероятности мгновенных значений оптимального для диагностики параметра вибрации в текущем измерении, определяют значение выборочного квантиля параметра вибрации при заданной величине функции распределения вероятности, по которому судят о наличии и уровне неисправностей и/или дефектов машины. Затем строят базу знаний в виде табличной зависимости, связывающей место измерения вибрации, узел диагностируемой машины, класс неисправности, квантиль функции распределения параметра вибрации заданного уровня и его значения для различных оценок уровня развития неисправностей и/или дефектов машины, обусловленных причинно-следственными связями между ними и состоянием машины. Длину временной реализации выбирают в зависимости от требуемой достоверности определения квантиля. Позволяет определить состояние соответствующих узлов и деталей поршневой машины. 11 ил., 2 табл.

Изобретение относится к области испытательной техники, в частности к стендам для испытаний крыльчаток вентиляторов, как центробежных, так и осевых. Стенд содержит электропривод с выходным валом, на котором установлено устройство для крепления крыльчатки, пульт управления и индикации, блок управления, к которому подключены электропривод, датчик угловой скорости вращения вала и датчик силы тока электродвигателя электропривода. При этом выходной вал электропривода с устройством для крепления крыльчатки размещен в установленном в направляющих съемном цилиндрическом кожухе, оснащенном датчиком положения кожуха «установлен - снят», при этом кожух размещен в защитном шкафу, оснащенном датчиком положения дверцы шкафа «открыто - закрыто», и зафиксирован его закрытой дверцей, а датчики положения подключены к блоку управления. Технический результат заключается в повышении безопасности, автоматизации процесса испытаний, повышении эргономических характеристик. 2 з.п. ф-лы, 8 ил., 1 табл.

Изобретение относится к машиностроению и может быть использовано при испытании жидкостных ракетных двигателей (ЖРД) и других энергетических установок. Стенд для испытаний энергетических установок содержит систему подачи компонентов топлива с агрегатами управления и систему подачи технологического газа, при этом на выходе энергетической установки установлен трубопровод, связанный с газгольдером, газгольдер соединен с компрессором, который в свою очередь соединен с системой баллонов высокого давления, газгольдер установлен на подвижной платформе, полость наддува газом расходной емкости с компонентом топлива соединена со входом компрессора, а выход компрессора соединен со входом газа в систему баллонов высокого давления. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к двигателестроению, в частности к устройствам для измерения расхода жидкости и цикловой подачи в многоцилиндровых дизельных двигателях. Изобретение позволяет повысить точность измерения неравномерности подачи топлива путем увеличения быстродействия отрыва плунжера от корпуса измерительного устройства за счет устранения залипания бортика плунжера к корпусу измерительного устройства. Устройство содержит корпус 1 с измерительной камерой 2, образованной сливным электромагнитным клапаном, форсунками 5 и плунжером 6 с возвратной пружиной 7; узел съема сигнала, представляющий собой упругую пластину 10 с наклеенными на ней тензометрическими датчиками 11 и 12, соединенными по мостовой схеме; аналого-цифровой преобразователь 15, подключенный к ЭВМ 13 и через усилитель 14 к узлу съема сигналов; электронный блок 16, подключенный к электромагнитному клапану. Устройство снабжено предохранительным клапаном 3. Корпус 1 устройства снабжен ограничителем 30 перемещения плунжера 6. 1 ил.

Изобретение относится к области двигателестроения, конкретно к способам исследовательских испытаний двигателей внутреннего сгорания с искровым зажиганием по оценке совершенства процессов подготовки и сгорания топлива. Способ включает проведение сравнительных испытаний на моторном стенде двигателя на заданном скоростном и нагрузочном режиме работы при питании двигателя углеводородным топливом и при введении в топливную смесь промотора, например водорода, в количестве 3÷6% по массе от углеводородного топлива. Затем рассчитывают величину определяемого по результатам измерений расхода топлива и промотора и их теплотворных способностей безразмерного коэффициента, представляющего отношение количества тепла, подведенного с топливом и добавкой промотора, к количеству тепла, подведенному только с углеводородным топливом, и при его значении меньше единицы делают вывод о невысоком уровне совершенства процессов подготовки и сгорания смеси. Техническим результатом является вывод о возможности выполнения доводочных работ на выявленных режимах работы по улучшению показателей рабочего процесса двигателя в части совершенствования процессов подготовки и сгорания топливной смеси. 1 ил., 1 табл.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Давление газа измеряют за компрессором, в качестве параметра сравнения используют давление и частоту вращения ротора, измерения производят при постоянной температуре газа за турбиной через промежутки времени 0,2…0,5 с, а сравнивание измерений и определение пороговых отклонений производят, по крайней мере, по двум предшествующим и двум последующим текущим значениям параметров, а остановку двигателя производят при снижении частоты вращения ротора на 0,2…0,5% и давления за компрессором на 1,0…1,5%. Технический результат изобретения – предотвращение развития разрушения газовоздушного тракта двигателя, вызванного различными причинами (неправильная эксплуатация, повреждение рабочих лопаток и т.д.) при эксплуатации газотурбинного двигателя в наземной установке. 1 ил.

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Техническим результатом заявленного способа является повышение надежности турбомашин. Регистрируют пульсации давления воздушного потока при помощи по меньшей мере четырех датчиков, установленных с допустимым отклонением на корпусе турбомашины в поясе осевого размера периферийной части лопаток рабочего колеса, минимум два из которых расположены вдоль продольной оси турбомашины, а минимум три - поперек последней, выделяют резонансные временные отрезки для каждого из датчиков в осциллограмме, определяют моменты прохождения лопаток под датчиками в выделенных резонансных временных отрезках, устанавливают отклонения от теоретического момента прохождения каждой из лопаток под каждым из датчиков в отсутствие колебательных процессов, по которым определяют характер колебаний, диагностируют форму резонансных колебаний путем сравнения полученных данных с эталонными формами колебаний лопаток рабочего колеса турбомашины. 1 з.п. ф-лы, 7 ил.
Наверх