Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера (варианты)

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент. Устройство снабжено дополнительными входным и выходным коллекторами, соединенными с каналами, которые выполнены капиллярными. Охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярных каналов с дополнительными входным, выходным коллекторами. Технический результат заключается в обеспечении надёжной работы системы охлаждения активного элемента в жёстких условиях эксплуатации. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам конструкции систем охлаждения твердотельных лазеров, и может быть использовано при изготовлении лазерной техники.

Известно изобретение под названием «Устройство лазера», заявка США №2004247003, МПК H01S 3/04, S3/042, 3/06, опубл. 2004 г., в котором описано устройство охлаждения активного элемента (АЭ), которое содержит каналы, соединенные с кольцевым каналом, образованным трубкой, охватывающей активный элемент. В качестве ОЖ используется хладагент D2O, который имеет низкий коэффициент оптического поглощения.

Данное устройство может применяться для твердотельных лазеров высокой и средней мощности, осветителей различной конфигурации, при размещении охлаждающей жидкости между источником накачки и активной средой.

В данном устройстве охлаждения АЭ лазера предлагается эффективное охлаждение прокачкой хладагента D2O вдоль поверхности АЭ, что предусматривает отдельную систему охлаждения лазера с применением насоса, что значительно увеличивает массогабаритные характеристики лазера.

Известно изобретение под названием «Устройство твердотельного лазера», заявка Японии №2001185785, МПК H01S 3/042, 3/094, 3/23, опубл. 2001 г., в котором описано устройство охлаждения активного элемента твердотельного лазера. Данное устройство является наиболее близким аналогом заявляемого изобретения и выбрано в качестве прототипа.

Устройство охлаждения твердотельного лазера содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент.

Каналы направлены в разные стороны с целью уменьшения зон застоя в направлении движения ОЖ. На внутренней поверхности трубки размещена спиралевидная канавка.

Данное устройство позволяет эффективно выравнивать температурные градиенты, возникающие в АЭ, а также позволяет избежать застойных зон в кольцевом канале охлаждения АЭ. Однако оно предназначено для охлаждения АЭ прокачкой теплоносителя, что предполагает использование системы охлаждения с применением насоса, что также соответственно увеличивает массогабаритные характеристики лазера.

Технический результат, получаемый при использовании предлагаемого технического решения, - снижение массогабаритных характеристик устройства охлаждения, обеспечение надежной работы системы охлаждения активного элемента в жестких условиях эксплуатации (при воздействии широкого диапазона рабочих температур, вибраций и ударов).

Сущность первого варианта заключается в том, что устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера, содержащее входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент, согласно изобретению снабжено дополнительными входным и выходным коллекторами, соединенными с каналами, которые выполнены капиллярными, охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярных каналов с дополнительными входным, выходным коллекторами.

Известно, что срок эксплуатации лазера достаточно длителен. Все его составляющие части (элементы, компоненты) при условии герметичности (закрытое состояние) должны надежно работать без обслуживания в течение длительного срока. Защита целостности и сохранности лазера на протяжении всего срока службы весьма важны не только по причине высоких финансовых затрат на создание (обслуживание), но также и в целях предотвращения дополнительных затрат на проведение технического обслуживания лазера и замены его составных частей в результате потери работоспособности.

В целях снижения массогабаритных характеристик лазера авторами было предложено применение устройства надежной системы охлаждения активного элемента без прокачки охлаждающей жидкости (стационарной). Однако в ходе экспериментов по отработке стационарного блока охлаждения лазерного кристалла специалисты столкнулись с рядом серьезных трудностей. Это связано со следующим.

При работе лазера в результате нагрева активного элемента и изменении температуры окружающей среды в объеме с охлаждающей жидкостью стационарной системы охлаждения активного элемента в результате температурного расширения возрастает внутреннее давление. Вследствие этого происходит выдавливание жидкости через уплотнения, герметизирующие активный элемент и трубку, вследствие этого в системе охлаждения активного элемента уменьшается объем жидкости и при последующем сжатии охлаждающей жидкости после остывания возникают паровые пузырьки, приводящие к неработоспособности осветителя и стационарного охлаждения.

В охлаждающей жидкости стационарной системы охлаждения активного элемента твердотельного лазера с диодной накачкой в течение длительного срока службы лазера происходят оптотермодинамические и физико-химические процессы под воздействием мощного излучения диодной накачки. Применение лазера в жестких условиях эксплуатации способствует тому, что охлаждающая жидкость в стационарном блоке при воздействии широкого диапазона рабочих температур, ударов и вибраций может вести себя непредсказуемым образом. В результате может произойти уменьшение объема охлаждающей жидкости по причине разгерметизации блока стационарного охлаждения, а следовательно, и падение энергетики лазера. Для определения причин, состояния и уровня охлаждающей жидкости необходимо было останавливать работу лазера, выполнять сложную разборку, сборку с последующей заменой деталей. В ходе решения проблемы возникла необходимость разработки такой стационарной системы охлаждения, которая обеспечила бы надежную работу лазера в течение всего срока службы.

Для решения этой проблемы существует практика создания дополнительного объема (полости), либо заполненного газом (обычно воздухом), либо вакуумируемого. Однако в случае применения газа при транспортировании, а также работе лазера в условиях воздействия внешних факторов (при воздействии широкого диапазона рабочих температур, вибраций и ударов) происходит образование пузырьков газа в жидкости, попадающих в кольцевой канал охлаждения (зазор, образованный активным элементом и трубкой, его охватывающей). Возникшие пузырьки газа не имеют возможности выйти из зазора, так как его размер невелик. В результате возникновения пузырей между элементами накачки и активным элементом уменьшается коэффициент пропускания охлаждающей жидкости, снижается кпд осветителя. При использовании вакуумированного объема происходит образование пузырьков пара с аналогичными последствиями.

В свете этого легко увидеть, что предшествующие усилия не привели к созданию стационарной системы охлаждения АЭ с необходимым качеством: не обеспечена надежная работа системы охлаждения в жестких условиях эксплуатации. Существующие средства нуждаются в усовершенствовании и не позволяют использовать требуемой стационарной системы для охлаждения активного элемента.

Однако авторами настоящего изобретения сделан важный шаг по направлению к лучшему пониманию тех процессов, которые происходят в стационарной системе охлаждения активного элемента твердотельного лазера с диодной накачкой, работающего в жестких режимах эксплуатации. Это потребовало неординарного подхода к существующей проблеме, поскольку если бы уже существовали эффективные методы и средства, на практике признанные полезными, они имели бы в настоящее время известность и промышленное применение.

Для того чтобы такое усовершенствование существующих средств стало эффективным инструментом, оно должно обеспечить бесперебойную работу стационарной системы охлаждения активного элемента в течение всего срока службы лазера.

В основу данного изобретения положена задача исключить эти проблемы. Для того чтобы дополнительный объем мог выполнять свои функции должным образом, вместе с введением дополнительных коллекторов, вводят и капиллярные каналы. В этом случае (при условии правильного подбора охлаждающей жидкости с учетом рабочих режимов лазера) граница жидкость-газ находится в дополнительном коллекторе и отделена от основного объема капилляром, при этом капилляр препятствует перемешиванию жидкости между объемом охлаждения и дополнительным коллектором, предотвращая попадание пузырьков в основной объем. Поскольку движение жидкости в капилляре обусловлено только тепловым расширением жидкости, а длина капилляра достаточно велика, чтобы случайно попавший в капилляр пузырек в результате сжатия жидкости при охлаждении, а также при расширении охлаждающей жидкости в результате нагрева удалился обратно в дополнительный коллектор. Поэтому, в результате воздействия внешних факторов, при образовании пузырьков в дополнительном коллекторе, пузырьки не имеют возможности попасть в кольцевой канал охлаждения активного элемента.

При этом охлаждающая жидкость имеет такой стационарный объем, что ее уровень всегда превышает место соединения капиллярного канала с дополнительным коллектором таким образом, чтобы при охлаждении до минимальной рабочей температуры случайно попавший пузырек не доходил до конца капилляра.

В настоящем изобретении удалось избежать возникновения пузырей в объеме с охлаждающей жидкостью и таким образом обеспечить надежную работу системы охлаждения активного элемента в жестких условиях эксплуатации, создав компактное герметичное устройство при снижении массогабаритных характеристик лазера в целом.

Таким образом, указанные выше ограничения и недостатки существующих средств преодолеваются настоящим изобретением, при этом предложено новое устройство именно компенсации термического расширения охлаждающей жидкости стационарной системы охлаждения активного элемента. Такое усовершенствованное средство для гарантированно надежной работы стационарной системы охлаждения АЭ твердотельного лазера с диодной накачкой не было известно ранее.

Сущность второго варианта изобретения заключается в том, что устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера, содержащее входной, выходной коллекторы, соединенные с каналом и кольцевым каналом, образованным трубкой, охватывающей активный элемент, согласно изобретению снабжено дополнительным коллектором, соединенным с каналом, который выполнен капиллярным, охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярного канала с дополнительным коллектором.

Принцип действия устройства компенсации по второму варианту аналогичен работе устройства компенсации по первому варианту. А достигаемый при этом технический результат такой же, как и при осуществлении устройства по первому варианту. Отличие заключается в том, что устройство по второму варианту позволяет снизить количество герметизируемых соединений.

Несмотря на простоту изобретение имеет изобретательский уровень, поскольку приводит к техническому результату, который не был очевиден при новой конструкции устройства.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения. При этом устройство в соответствии с настоящим изобретением явно демонстрирует новизну и обеспечивает надежную работу лазера в течение всего срока его службы, что весьма актуально с точки зрения промышленной экономики. Следовательно, заявленное изобретение соответствует условию «новизна».

Несмотря на простоту изобретение имеет изобретательский уровень, поскольку приводит к техническому результату, который не был очевиден при новой конструкции устройства. Следовательно, заявленное изобретение соответствует условию «изобретательский уровень».

На фиг. 1 представлен общий вид устройства по первому варианту.

На фиг. 2 представлен общий вид устройства по второму варианту.

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера по первому варианту содержит входной, выходной коллекторы 1, кольцевой канал δ, капиллярные каналы а и дополнительные входной, выходной коллекторы 2 (фиг. 1). Кольцевой канал δ образован трубкой 3, которая охватывает активный элемент (АЭ) 4, и формирует слой жидкости, охлаждающий АЭ. Трубка 3 выполнена из материала, оптически прозрачного для излучения накачки (например, стекло, плавленый кварц, лейкосапфир и т.д.). Диаметр и толщина трубки рассчитываются, исходя из требуемой фокусировки излучения накачки.

Входной, выходной коллекторы 1 соединены между собой кольцевым каналом δ, а с дополнительными входным, выходным коллекторами 2 - капиллярными каналами а. Объем охлаждающей жидкости (ОЖ) в устройстве компенсации стационарный, а ее уровень в системе охлаждения АЭ всегда превышает место соединения b капиллярных каналов а с дополнительным входным, выходным коллекторами 2. Кольцевой канал δ и входной, выходной коллекторы 1 образуют блок охлаждения АЭ 4.

АЭ 4 и трубка 3 конструктивно установлены в корпусе оптической усилительной головки либо квантового генератора герметично при помощи уплотнений (не показано).

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера по второму варианту содержит входной, выходной коллекторы 1, кольцевой канал δ, капиллярный канал а и дополнительный коллектор 2 (фиг. 2). Кольцевой канал δ образован трубкой 3, которая охватывает активный элемент (АЭ) 4, и формирует слой жидкости, охлаждающий АЭ. Трубка 3 выполнена из материала, оптически прозрачного для излучения накачки (например, стекло, плавленый кварц, лейкосапфир и т.д.). Диаметр и толщина трубки рассчитываются исходя из требуемой фокусировки излучения накачки.

Входной и выходной коллекторы 1 соединены между собой кольцевым каналом δ и соединены с дополнительным коллектором 2 капиллярным каналом а. Объем ОЖ в устройстве компенсации стационарный, а уровень ОЖ в системе охлаждения АЭ всегда превышает место соединения b капиллярного канала а с дополнительным коллектором 2. Кольцевой канал δ и входной, выходной коллекторы 1 образуют блок охлаждения АЭ 4.

АЭ 4 и трубка 3 конструктивно установлены в корпусе оптической усилительной головки либо квантового генератора герметично при помощи уплотнений (не показано).

Устройство компенсации термического расширения по первому варианту работает следующим образом. При заполнении устройства в дополнительный входной коллектор 2 подается ОЖ, объем VОЖ которой фиксирован и получен расчетным путем с учетом диапазона рабочих температур твердотельного лазера. VОЖ из дополнительного входного коллектора 2 проходит по капиллярному каналу а, попадает во входной коллектор 1, позволяющий равномерно заполнить кольцевой канал шириной δ охлаждения АЭ 4. ОЖ заполняет весь объем блока охлаждения АЭ 4 вдоль всей поверхности АЭ и контактирует с ней. На выходе из кольцевого канала δ противоположного конца АЭ 4 ОЖ в обратном порядке собирается в выходной коллектор 1, затем через капиллярный канал а выходит в дополнительный выходной коллектор 2 на выходе устройства и образует в дополнительных коллекторах 2 с двух сторон симметрично АЭ объем жидкости Vжидк и объем воздуха Vвозд.

При работе лазера на элементы накачки 5 (фиг. 1) подается ток накачки с заданной амплитудой, возникает излучение накачки, проходящее сквозь трубку 3 и ОЖ кольцевого канала δ, при этом большая часть излучения поглощается АЭ 4, часть поглощенной энергии накачки идет на тепловые потери, нагревая АЭ 4. При нагреве ОЖ от АЭ 4, а также при повышении температуры окружающей среды происходит расширение объема VОЖ, при этом объем Vжидк в дополнительном коллекторе 2 увеличивается, а Vвозд уменьшается. При понижении температуры окружающей среды происходит сокращение объема VОЖ, при этом объем Vжидк в дополнительном коллекторе 2 уменьшается, а Vвозд увеличивается. Охлаждающая жидкость, подобранная с учетом температурных режимов работы лазера, обеспечивает эффективное стационарное охлаждение АЭ во всех режимах эксплуатации лазера. Капиллярный канал а предотвращает образование пузырьков воздуха в блоке охлаждения АЭ 4, которые могут возникнуть при воздействии внешних факторов (повышении или понижении температуры окружающей среды, вибраций и ударов) и в результате снизить эффективность накачки, особенно в кольцевом канале δ, а следовательно, и кпд осветителя.

Устройство по второму варианту работает аналогично устройству по первому варианту, отличие заключается в том, что внутренний объем устройства по второму варианту, содержащего один капиллярный канал а и дополнительный коллектор 2, сначала вакуумируется, затем в дополнительный входной коллектор 2 подается ОЖ, объем VОЖ которой фиксирован и получен расчетным путем с учетом диапазона рабочих температур твердотельного лазера. VОЖ из дополнительного входного коллектора 2 проходит по капиллярному каналу а, попадает во входной коллектор 1, позволяющий равномерно заполнить кольцевой канал шириной δ охлаждения АЭ 4. ОЖ заполняет весь объем блока охлаждения АЭ 4 вдоль всей поверхности АЭ и контактирует с ней. На выходе из кольцевого канала δ противоположного конца АЭ 4 ОЖ собирается в выходной коллектор 1.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в электронной и оптико-механической промышленности при изготовлении лазерных устройств;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».

1. Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера (варианты) содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент, отличающееся тем, что снабжено дополнительными входным и выходным коллекторами, соединенными с каналами, которые выполнены капиллярными, охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярных каналов с дополнительными входным, выходным коллекторами.

2. Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера (варианты) содержит входной, выходной коллекторы, соединенные с каналом и кольцевым каналом, образованным трубкой, охватывающей активный элемент, отличающееся тем, что снабжено дополнительным коллектором, соединенным с каналом, который выполнен капиллярным, охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярного канала с дополнительным коллектором.



 

Похожие патенты:

Изобретение относится к твердотельным лазерам с диодной накачкой большой мощности, в частности к элементам накачки и системам их охлаждения. Мощная оптическая усилительная головка с торцевой диодной накачкой активного элемента в виде пластины содержит блок диодной накачки с элементами накачки, активный элемент в виде пластины и систему охлаждения, содержащую канал охлаждения активного элемента, элементы накачки, расположенные в виде сферы, центр которой совпадает с центром активного элемента.

Изобретение относится к лазерной технике. Оптическая усилительная головка с диодной накачкой содержит размещенные в корпусе: активный элемент в виде стержня, матрицы лазерных диодов, расположенные равномерно на держателях, и систему охлаждения, содержащую трубку, охватывающую активный элемент с образованием кольцевого канала δ, каналы, расположенные в корпусе и каждом держателе, входной, выходной патрубки и выполненные в корпусе входной и выходной коллекторы, трубка выполнена из материала, прозрачного для излучения накачки.

Устройство охлаждения активного элемента твердотельного лазера содержит активный элемент, расположенный в оболочке из оптически прозрачного теплопроводного материала, и металлические ламели, контактирующие с внешней стороной оболочки.

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники.

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного жестко на посадочной поверхности, термоэлектрического модуля, расположенного между теплораспределителем и посадочной поверхностью, и линеек лазерных диодов, размещенных на выступах теплораспределителя равномерно относительно активного элемента и обращенных к нему излучающей частью.

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы.

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы охлаждения, содержащей трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, каналы в корпусе, каждом держателе и элементах накачки и входной и выходной коллекторы.
Изобретение относится к лазерной технике, а конкретнее к жидкостным охлаждающим средам (теплоносителям) (ЖТС) твердотельных лазеров (например, неодимовых или гольмиевых), являющимся одновременно светофильтром для ультрафиолетового (УФ) излучения лампы накачки лазера.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения. Оптическая усилительная головка с диодной накачкой состоит из размещенных в корпусе активного элемента в виде стержня, матриц лазерных диодов, расположенных на держателях вдоль активного элемента, и системы охлаждения, содержащей стеклянную трубку, охватывающую активный элемент с образованием радиального канала δ.

Изобретение относится к конструкции оптической накачки для оптического квантового генератора, которая содержит активную среду в виде цилиндрического стержня (1), имеющего круглое сечение, причем концы стержня введены в два кольца (11), выполненные из теплопроводного материала, по меньшей мере, три пакета (21, 22) небольших стержней диодов накачки, расположенных звездой вокруг стержня, опору (5) с регулировкой температуры посредством модуля (8) на основе эффекта Пельтье, причем кольца (11) находятся в контакте с опорой (5).

Изобретение относится к лазерной технике. Квантрон с диодной накачкой содержит размещенные в корпусе активный элемент в виде стержня, источники оптической накачки, расположенные на держателях равномерно относительно активного элемента, и систему охлаждения, которая содержит трубку, охватывающую активный элемент с образованием радиального зазора, входной, выходной патрубки и коллекторы, каналы в корпусе и держателях. Квантрон снабжен отражателями, расположенными на держателях напротив каждого источника оптической накачки, система охлаждения выполнена в виде единого контура для охлаждения активного элемента и источников оптической накачки и снабжена каналами, выполненными в прижимах трубки. Входной, выходной патрубки соединены с каналами корпуса, которые соединяются с каналами прижимов, соединяющимися с коллекторами. Коллекторы соединены с радиальным зазором и с дополнительными каналами прижимов трубки, которые соединены с каналами корпуса, соединяющимися с каналами держателей, коллекторы образованы прижимами трубки и активным элементом. 2 з.п. ф-лы, 3 ил.

Изобретение относится к лазерной технике. Квантрон содержит активный элемент в виде стержня, источники оптической накачки, расположенные на держателях вокруг активного элемента, систему охлаждения активного элемента и источников оптической накачки, фланцы и элемент, соединяющий фланцы. Держатели расположены в соосных отверстиях фланцев, система охлаждения содержит трубку, охватывающую активный элемент с образованием радиального зазора, входной, выходной коллекторы и каналы держателей. Элемент, соединяющий фланцы, выполнен в виде рамы, содержащей параллельные пластины, соединенные ребрами. Держатели снабжены выполненными с обеих сторон ограничителями, взаимодействующими с торцевыми поверхностями фланцев, один из ограничителей каждого держателя выполнен с лысками, взаимодействующими с пазами фланца. Технический результат заключается в обеспечении возможности повышения эффективности охлаждения. 6 ил.

Группа изобретений относится к лазерной технике. Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности содержит формирователь импульсов и излучатель с электрооптическим затвором, снабженным драйвером, снабжен управляющим микроконтроллером, нагревателями, термодатчиками элементов накачки, контурной тепловой трубой, термодатчиками и термоэлектрическими модулями. Устройство управления лазером содержит оптический модуль накачки, активный элемент, термоэлектрические модули, драйвер термоэлектрических модулей, управляющий микроконтроллер и термодатчики, выходы которых соединены с входами управляющего микроконтроллера, выход которого соединен с входом драйвера термоэлектрических модулей, выход которого соединен с входом термоэлектрических модулей. Технический результат заключается в обеспечении возможности повышения устойчивости к внешним факторам. 2 н.п. ф-лы, 3 ил.

Изобретение относится к лазерной технике. Квантрон содержит активный элемент в виде стержня, источники оптической накачки, расположенные на держателях вокруг активного элемента, систему охлаждения активного элемента и источников оптической накачки, фланцы и элемент, соединяющий фланцы. Держатели расположены в соосных отверстиях фланцев, система охлаждения содержит трубку, охватывающую активный элемент с образованием радиального зазора, входной, выходной коллекторы и каналы держателей. Элемент, соединяющий фланцы, выполнен в виде рамы, содержащей параллельные пластины, соединенные ребрами. Держатели снабжены выполненными с обеих сторон ограничителями, взаимодействующими с торцевыми поверхностями фланцев, один из ограничителей каждого держателя выполнен с пазом, взаимодействующим с эксцентриком, эксцентрики установлены в отверстия одного из фланцев. Технический результат заключается в обеспечении возможности увеличения мощности и КПД, а также в повышении технологичности конструкции. 7 ил.

Изобретение относится к лазерной технике. Малогабаритный квантрон с жидкостным охлаждением содержит установленные в прямоугольной полости корпуса активный элемент в виде стержня и отражатель, источник оптической накачки, цилиндрическую линзу, пластину из прозрачного для излучения накачки материала, закрепленную рамкой на корпусе напротив источника оптической накачки, и каналы в корпусе. При этом активный элемент зафиксирован прижимами в корпусе, отражатель закреплен к дну полости корпуса, к которому прикреплен держатель, установленный через регулировочную пластину. На держателе размещен источник оптической накачки, в качестве которого используется матрица лазерных диодов, на излучающей части которой размещена цилиндрическая линза, расположенная вдоль активного элемента. На держатель установлены входной, выходной патрубки с каналами, соединенными с каналами держателя, которые соединяются с каналами регулировочной пластины, соединенными с каналами корпуса, которые соединены с полостью корпуса. Между рамкой и корпусом установлены регулировочные элементы. Технический результат заключается в обеспечении возможности повышения эффективности накачки и охлаждения квантрона. 4 ил.

Изобретение относится к лазерной технике. Модуль слэб-лазера с диодной накачкой и зигзагообразным ходом лучей содержит установленные в корпусе: активный элемент, элементы накачки, расположенные на теплоотводах симметрично с двух сторон активного элемента, систему охлаждения и пластины из оптически прозрачного материала, размещенные с обеих сторон активного элемента, каждый элемент накачки снабжен линзой. Корпус выполнен в виде двух параллелепипедов, двух корпусов соответственно, между которыми расположен активный элемент, между каждым элементом накачки и теплоотводом размещен термоинтерфейс, система охлаждения выполнена в виде единого контура и снабжена входным, выходным каналами, каналами в теплоотводах и диафрагмами, каналы охлаждения активного элемента образованы активным элементом и пластинами из оптически прозрачного материала, а линзы выполнены конформными. Технический результат заключается в обеспечении возможности повышения КПД лазера. 4 н. и 4 з.п. ф-лы, 7 ил.

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим элементом, оптоволоконный жгут с полированным торцом, собранный из световодов, концевой участок которого установлен внутри камеры с помощью, по меньшей мере, двух фиксирующих элементов, один из которых обеспечивает плотную упаковку световодов на его приторцевой части, между соседними световодами имеются зазоры, образующие межволоконное пространство. Камера разделена на, по меньшей мере, две области, сообщающиеся через межволоконное пространство, первая область ограничена оптическим и фиксирующим элементами, а остальные ограничены соседними фиксирующими элементами, первая область снабжена установленным на стенке камеры штуцером для подачи теплоносителя, вторая область снабжена установленным на стенке камеры штуцером для откачки теплоносителя. При этом оптический элемент представляет собой плоскопараллельную пластину прямоугольной формы, размеры которой по высоте и ширине превосходят соответствующие размеры оптоволоконного жгута прямоугольного сечения, расположенную перпендикулярно оси оптоволоконного жгута, причем оптоволоконный жгут имеет плотную упаковку световодов на всей длине концевого участка. Технический результат - увеличение ресурса непрерывной работы устройства в условиях высокой передаваемой мощности за счет повышения эффективности охлаждения концевого участка оптоволоконного жгута и организации защиты приторцевой области жгута протоком теплоносителя. 9 з.п. ф-лы, 5 ил.

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие покрытия, на один из торцов наносят металлизирующее покрытие и монтируют активный элемент на радиатор, выполненный из высокотеплопроводного диэлектрического материала. Диэлектрические покрытия наносят с использованием ионного сопровождения, монтаж активного элемента на радиатор выполняют путем пайки без использования вакуумной камеры или замкнутой камеры с восстанавливающей атмосферой. Изобретение обеспечивает минимальные потери лазерного излучения в активном элементе с сохранением высокой величины лазерного пробоя при работе с импульсным излучением и минимальной величины фазовых искажений излучения, а также позволяет снизить тепловое сопротивление между активной средой и радиатором и получить максимальную однородность теплового контакта. 4 з.п. ф-лы, 3 ил.
Наверх