Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи



Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи
Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи
Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи
Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи
H04B10/118 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2608060:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-морского Флота "Военно-морская академия имени адмирала флота Советского Союза Н.Г. Кузнецова" (RU)

Изобретение относится к области оптической связи и может быть использовано на искусственных спутниках Земли или на самолетах для приема и передачи информации. Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи выполнен в виде двух модулей. В первый модуль входят блоки управления комплексом, телеметрии, системой наведения, а также информационный приемник и оптический передатчик. Во второй модуль входят привод с датчиками, электрооптический координатор, разделитель, лазерный маяк, оптическая антенна, опорно-поворотное устройство, скоростной оптический дефлектор, светоделительный блок и блок упреждений. Техническим результатом является увеличение пропускной способности при одновременном снижении массы бортовой аппаратуры. 3 ил.

 

Настоящее изобретение относится к области оптической связи и может быть использовано на искусственных спутниках Земли или на самолетах для приема и передачи информации.

Современные тенденции развития спутниковых систем связи и передачи информации характеризуются ростом потребности в пропускной способности линий до 10 Гбит/с, увеличением дальности до 80 тысяч км, уменьшением массы, энергопотребления и габаритных размеров спутниковой аппаратуры - все это достигается при обеспечении скрытности и защищенности передачи, уменьшения зависимости функционирования линии от наземных пунктов управления и существенного увеличения срока активного существования аппаратуры на орбите (до 15 лет). Наилучшие возможности удовлетворения этим требованиям имеет новый для спутниковых систем связи и передачи информации диапазон - оптический.

Для организации высокоскоростной транспортной среды сейчас широко применяются линии волоконно-оптической, радиорелейной и спутниковой связи. В ряде применений: надводные корабли, мобильные командные пункты различного базирования и т.п., спутниковые средства связи являются практически единственными для организации высокоскоростного информационного обмена [Журнал национальная оборона №12 декабрь 2010].

Известен бортовой ретранслятор - радиотехническое приемо-передающее устройство, устанавливаемое на ИСЗ и предназначенное для приема и передачи информации (Л.Н. Новик, И.Д. Морозов, В.И. Соловьев. Спутниковая связь на море. Л. Судостроение, 1987 г. С. 101-130. Построение аппаратурных комплексов морских систем спутниковой связи). Данное техническое решение выбрано за прототип.

Бортовой комплекс спутниковой связи представляет собой приемо-передающую систему с блоком управления и электропитания, антенное устройство и оконечную аппаратуру. Оконечная часть станции выполнена в виде стойки, состоящей из блока управления антенной, приемо-передающих блоков и пульта управления станцией. Стабилизация и наведение антенн производится с помощью следящих систем, работающих от датчиков, и процессора, входящего в состав станции.

Недостатками существующих систем спутниковой связи являются большие массогабаритные размеры и низкая пропускная способность.

Цель изобретения - увеличение пропускной способности при одновременном снижении массы бортовой аппаратуры.

Поставленная цель достигается тем, что автоматизированный аппаратурный комплекс спутниковой открытой оптической связи выполнен в виде двух модулей, соединенных между собой посредством линий связи, при этом в первый модуль входят блоки управления комплексом, телеметрии, системой наведения, а также информационный приемник и оптический передатчик, во второй модуль входят привод с датчиками, электрооптический координатор, разделитель, лазерный маяк, оптическая антенна, опорно-поворотное устройство, скоростной оптический дефлектор, светоделительный блок и блок упреждений, причем блок управления комплексом получает команды и данные от оконечной аппаратуры, установленной на искусственном спутнике Земли (ИСЗ), он соединен с блоком управления системой наведения, который обеспечивает построение системы наведения секундных световых пучков корреспондентов друг на друга, при котором в процессе связи выдается пеленг с точностью более 10 угл. с, а блок управления системой наведения в свою очередь соединен с приводом с датчиками, электрооптическим координатором, лазерным маяком, оптической антенной, которая используется как на прием, так и на передачу информации, а также с блоком упреждений, при этом информационный приемник своим выходом соединен с оконечной аппаратурой, установленной на ИСЗ, а входом соединен с разделителем, который соединен с электрооптическим координатором и светоделительным блоком, а последний соединен с блоком упреждений и через блок скоростного оптического дефлектора и опорно-поворотного устройства с оптической антенной, причем в качестве антенны используется телескопическая зеркальная система - главное зеркало, которое выполнено асферическим на облегченной ситалловой подложке, а для передачи через опорно-поворотное устройство светового сигнала используется зеркальный световой шарнир, причем оптический передатчик соединен с передающей аппаратурой, находящейся на ИСЗ, и блоком упреждений.

На фиг. 1 представлена блок-схема автоматизированного аппаратурного комплекса спутниковой открытой оптической связи.

На ИСЗ 1 установлен комплекс спутниковой открытой оптической связи, который выполнен в виде двух модулей.

В I первый модуль входит:

блок управления комплексом 2, блок телеметрии 3, блок управления системой наведения 4, информационный приемник 5, оптический передатчик 6.

Во второй II модуль входит: привод с датчиками 7, электрооптический координатор 8, разделитель 9, лазерный маяк 10, оптическая антенна 11, опорно-поворотное устройство 12, скоростной оптический дефлектор 13, светоделительный блок 14 и блок упреждений 15.

На фиг. 2 представлена функциональная схема оптического передатчика 6, которая содержит:

16 - модуль управления и модуляции;

17 - систему контроля и управления передатчиком;

18 - телеметрию;

19 - оптический модуль;

20 - термостабилизированную систему теплового режима мощных лазерных излучателей;

21 - вторичный источник питания.

На фиг. 3 изображен бортовой приемопередатчик оптического диапазона для спутника на геостационарной орбите (на одно направления).

В него входит:

22 - контейнер; 23 - антенна; 24 - привод; 25 - маяк; 26 - опорная плоскость; 27 - зеркало.

Принцип работы комплекса заключается в том, что передаваемый поток данных от аппаратуры пользователя поступает на интерфейсный модуль и затем на модулятор излучателя. Затем сигнал преобразуется высокоэффективным лазером в оптическое излучение, оптикой формируется в узкий пучок (2-4 мрад) и передается через атмосферу к приемнику. На противоположном пункте принимаемое оптическое излучение фокусируется приемным объективом на площадку высокочувствительного быстродействующего фотоприемника (лавинным или p-i-n - фотодиоды), где детектируются. После дальнейшего усиления и обработки сигнал поступает на интерфейс приемника, а оттуда на аппаратуру пользователя.

Работа автоматизированного аппаратурного комплекса спутниковой открытой оптической связи осуществляется следующим образом.

Сигналы ИСЗ 1, принятые антенной 11, ослаблены потерями из-за поглощения оптических волн на трассе распространения, и для их приема требуется высокая чувствительность входных приемных устройств. С помощью скоростного оптического дефлектора 13 сигналы преобразуются из одного вида поляризации поля в другой (линейная в круговую, и наоборот), с помощью фильтров разделения сигналов 9 приема и передачи, а также полосовых фильтров обеспечивается требуемая развязка трактов приема и передачи. Особое значение имеет проблема развязки фотоприемника от сигналов собственного передатчика. Необходимый уровень развязки -70…80 дБ. Излучение передатчика на основе одномодовых полупроводниковых лазеров, используемых в заявляемом комплексе - плоскополяризованное, поэтому для развязки предложено использовать кроме спектральной фильтрации, еще расфильтровку по поляризации. В терминалах корреспондентов ориентация плоскости поляризации излучения передатчиков относительно основания выбирается взаимно ортогональной. Излучение передатчиков проходит через оптический тракт, в котором установлена фазовая пластинка, преобразующая плоскую поляризацию в круговую. В эфире встречные сигналы от корреспондентов будут иметь круговую поляризацию с противоположными направлениями. После антенны 11 принятый сигнал круговой поляризации преобразуется в сигнал плоской поляризации, но перпендикулярный относительно сигнала передатчика корреспондента. Опорно-поворотное устройство 12 имеет в своем составе неподвижное основание, вращающуюся платформу, механизм вращения платформы вокруг вертикальной оси и подъема антенны относительно горизонтальной оси с помощью электропривода. Механизм вращения и подъема антенны выполнен в виде системы соединенных последовательно планетарной и волновой дифференциальной передачи. Он обеспечивает наведения оптической антенны 11 на корреспондента.

В связи с применением скоростного оптического дефлектора 13, в котором происходит скоростная обработка цифровых кодовых сигналов, которые передаются по оптической линии связи, используется симплексный метод передачи информации. В этом случае вход приемника 5 корреспондента открывается в промежутках между передачей пакетов своим передатчиком. Это существенно снижает требования к развязке приемного и передающего каналов и позволяет упростить оптический тракт аппаратуры. Светоделительный блок 14 выполнен с возможностью создания узкого лазерного луча, размещенного между скоростным оптическим дефлектором и блоком упреждений. Разделитель 9 представляет собой трапециевидную призму BP-180 с двумя приклеенными к отражающим граням АР-90, который обеспечивает разделение оптического излучения. А блок упреждений 15, основываясь на бесконтактном принципе действия, обеспечивает практически неограниченное количество циклов включения-выключения оптического излучения.

Полупроводниковый лазерный излучатель является одним из основных элементов передающего тракта связанного канала комплекса аппаратуры спутниковой открытой оптической связи. Именно в лазерном излучателе информационный сигнал, поступающий на его вход через драйвер, преобразуется из электрического в оптический. Затем этот световой пучок, несущий информацию, попадает на передающую антенну 11 и далее через космическое пространство на приемное устройство корреспондента 5, расположенное на другом пункте управления. Поэтому характеристики лазерного излучателя в основном определяют выходные параметры излучения передатчика 6 в целом и облик передающей аппаратуры. Блок управления комплексом 2 выполнен в виде пульта с ЭВМ и предназначен для управления работой всего комплекса в целом, взаимодействия с отдельными устройствами и блоками, а также их контроль. Осуществляет группировку пакетов информации и синхронизацию работы комплекса.

Оптимальным оптическим диапазоном для построения комплекса аппаратуры спутниковой открытой оптической связи является 0,9 мкм, поскольку в этой области разработаны одномодовые полупроводниковые источники лазерного излучения на основе GaAls-GaAs, а также высокоэффективные широкополосные фотоприемники на основе кремниевых и GaAs- лавинных, p-i-n фотодиодов. Полупроводниковые лазеры по сравнению с другими типами лазеров имеют ряд преимуществ. Они малогабаритные, имеют КПД более 30%, позволяют напрямую осуществлять модуляцию светового пучка током накачки в полосе до единиц ГГц, излучают плоскополяризованную волну в одной поперечной моде, имеют значительную долговечность. Оптический передатчик 6 одноканальный (один лазер). В состав оптического передатчика входит оптический модулятор 19, который преобразует световое излучение лазерного излучателя в осесимметричный квазипараллельный пучок, термостабилизирующая система теплового режима мощных лазерных излучателей 20, модуль управления и модуляции 16, включающий драйвер, обеспечивающий информационную модуляцию тока лазера, оператор тока смещения, система контроля и управления передатчиком 17, блок телеметрии 18 и вторичный источник питания 21, предназначенный для электропитания оптического передатчика, осуществляемого от бортовых спутниковых линий с частотой сети 50 Гц с параметрами согласно ГОСТ В23394-78. Управление параметрами оптического передатчика 6 осуществляется через ЭВМ. Согласование модулятора 19 с лазером осуществляется вводом на стыке лазера с драйвером согласующего контура, что позволило устойчиво повысить скорость передачи до 300 Мбит/с с ошибкой на бит 10-9.

В алгоритм блока управления 4 системой наведения положено: единая длина волны для поиска, захвата корреспондента и слежения за ним; использование информационного сигнала для слежения за корреспондентом в процессе исполнительных устройств для отработки вибрации в диапазоне от 3 до 1000 Гц. Отличительной особенностью этих устройств является наличие в них датчика угла, определяющего направление на корреспондента с точностью до 9 угл. с. Эти принципы позволяют минимизировать массу, габаритные размеры, энергопотребление и стоимость бортовой аппаратуры, а также повысить ее надежность. Для реализации этих принципов были установлены скоростные оптические дефлекторы («виброзеркала») со встроенными датчиками углов по двум осям. Зеркало дефлектора 13 установлено в пружинном подвесе, исключающем узлы трения и обеспечивающем тем самым большой срок службы в космических условиях. Лазерный маяк 10 определяет направление прихода светового сигнала от корреспондента в поле зрения от 10 до 20 угл. мин и в полосе приема до 1 кГц. В качестве оптической антенны 11 используется телескопическая зеркальная система. Главное зеркало - асферическое на облегченной ситалловой подложке. Для передачи через опорно-поворотное устройство 12 светового сигнала используется зеркальный световой шарнир.

Таким образом, отличительной особенностью заявляемого комплекса является применение единой антенны на прием и передачу информации. Что способствует минимизировать габаритные размеры и массу аппаратуры. Применение мощных одномодовых полупроводниковых лазерных излучателей мощностью 200 МВт, которые способны обеспечить скорость передачи до 1 Гбит/с.

Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи, отличающийся тем, что комплекс выполнен в виде двух модулей, соединенных между собой посредством линий связи, при этом в первый модуль входят блоки управления комплексом, телеметрии, системой наведения, а также информационный приемник и оптический передатчик, во второй модуль входят привод с датчиками, электрооптический координатор, разделитель, лазерный маяк, оптическая антенна, опорно-поворотное устройство, скоростной оптический дефлектор, светоделительный блок и блок упреждений, причем блок управления комплексом получает информацию и данные от оконечной аппаратуры, установленной на искусственном спутнике Земли (ИСЗ), он соединен с блоком управления системой наведения, который обеспечивает построение системы наведения секундных световых пучков корреспондентов друг на друга, при котором в процессе связи выдается пеленг с точностью более 10 угл. с, а блок управления системой наведения в свою очередь соединен приводом с датчиками, электрооптическим координатором, лазерным маяком, оптической антенной, которая используется как на прием, так и на передачу информации, а также с блоком упреждений, при этом информационный приемник своим выходом соединен с оконечной аппаратурой, установленной на ИСЗ, а входом соединен с разделителем, который соединен с электрооптическим координатором и светоделительным блоком, а последний соединен с блоком упреждений и через блок скоростного оптического дефлектора и опорно-поворотного устройства с оптической антенной, причем в качестве антенны используется телескопическая зеркальная система - главное зеркало, которое выполнено асферическим на облегченной ситалловой подложке, а для передачи через опорно-поворотное устройство светового сигнала используется зеркальный световой шарнир, причем оптический передатчик соединен с передающей аппаратурой, находящейся на ИСЗ, и блоком упреждений.



 

Похожие патенты:

Волновое мультиплексирующее устройство (100) соединено с одной или более системами волоконно-оптических линий и с одной или более системами оптических приемопередатчиков и расположено между волоконно-оптическими линиями и оптическими приемопередатчиками (21-23) для того, чтобы вводить и выводить оптические сигналы.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит повышении надежности связи.

Изобретение относится к области волоконной оптики и касается способа контроля спектральных параметров волоконной брэгговской решетки (ВБР). Способ включает в себя облучение ВБР излучением перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором (VCSEL), измерение отраженного от ВБР излучения, преобразование измеренного излучения в спектр ВБР.

Изобретение относится к приемникам оптических сигналов и может быть использовано для восстановления кодовой комбинации из зашумленных оптических сигналов. Способ восстановления кодовой комбинации из зашумленных цифровых оптических сигналов, заключающийся в их приеме, преобразовании в электрические сигналы, усилении и фильтрации, отличается тем, что при аналого-цифровом преобразовании формируют и запоминают выборку цифровых отсчетов Yi объемом Н, с помощью арифметического логического устройства вычисляют среднее выборочное значение по формуле: и среднее энергетическое значение по формуле: , которое принимают за нулевую линию, далее определяют и запоминают все точки пересечения цифровых отсчетов выборки с нулевой линией, далее вычисляют средние значения амплитуды выборки положительной +Аср и отрицательной -Аср полярности по формуле: где j - номер интервала от точки пересечения цифровых отсчетов с нулевой линией до следующего пересечения, a Aj - средние значения амплитуды в пределах j-того интервала, которое определяют по формуле: , где h - количество отсчетов в пределах j-того интервала, полученное значение амплитуды Aj в j-том интервале сравнивают со средним значением амплитуды выборки Аср и при условии |Aj|<|Аср| принимают, что переход перед этим интервалом ложный, далее на каждом j-том интервале вычисляют энергию Фj по формуле: , значения полученных энергий соседних интервалов сравнивают, если |Фj-Фj-1|≥4Y2 срh, переход считают истинным, если |Фj-Фj-1|<4Y2 срh, переход считают ложным, в соответствии с правилами кодирования информации арифметическое логическое устройство формирует цифровую последовательность логических нулей и единиц..

Изобретение относится к способам обнаружения активных волокон, направления и длины волны передаваемого сигнала и ввода-вывода оптического излучения через боковую поверхность оптического волокна (ОВ) с помощью изгиба и может быть использовано для ввода (вывода) оптического сигнала в ОВ в системах мониторинга волоконно-оптических линий передачи (ВОЛП) и мультиплексорах ввода-вывода сигналов (OADM).

Автоматизированный корабельный комплекс светосигнальной связи содержит прибор оптической связи направленного действия, прибор оптической связи всенаправленного действия, блок электропитания, автоматизированное рабочее место оператора, общекорабельную систему стабилизации качки корабля, автоматизированную систему управления кораблем.
Изобретение относится к техническим средствам охраны периметров объектов и может быть использовано для сигнализационного блокирования периметров объектов и протяженных рубежей на равнинной и пересеченной местности.

Изобретение относится к техническим средствам охраны периметров объектов и может быть использовано для сигнализационного блокирования периметров объектов и протяженных рубежей на равниной и пересеченной местности.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к технике связи и может использоваться в оптической транспортной сети. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в повышении пропускной способности каналов связи. Для этого система передачи данных (PD) включает полезную нагрузку, спутник (20) на низкой околоземной орбите, оптический земной терминал (30), причем спутник (20) на низкой околоземной орбите связан с оптическим земным терминалом (30) через оптический канал (DL) связи ЛА - Земля, а оптический земной терминал (30) связан со спутником (20) на низкой околоземной орбите через канал (UC) связи Земля - ЛА; причем указанный канал (UC) связи Земля - ЛА представляет собой канал обнаружения и сопровождения при помощи наземного радиомаяка (GB), управляемого при помощи подсистемы (PAT) наведения, обнаружения и сопровождения, при этом наземный радиомаяк (GB) содержит широкоугольный луч (W) для обнаружения и луч (G) наведения для сопровождения; причем наземный радиомаяк (GB) для канала (UC) связи Земля - ЛА представляет собой канал фазоимпульсной модуляции (ФИМ). 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к технике связи и может использоваться для обеспечения информационной безопасности при защите акустической речевой информации (АРИ) от сопутствующей передачи по линиям связи, в том числе оптическим линиям связи (ОЛС). Технический результат состоит в исключении наводимой в ОЛС АРИ с заданным качеством за счет нарушения условия восстановления сигнала, определяемого теоремой Котельникова. При регистрации утечки АРИ в ВП изменяется режим работы источника оптического излучения - лазера, который задает период включения лазера Т, удовлетворяющий условию Т>1/2fн, где fн - нижняя частота акустического речевого сигнала, распространяющегося в ВП, при этом период Т включает в себя время отключения лазера ΔT - скважность и время работы лазера Δt, удовлетворяющее условию Δt<1/2ƒв, где ƒв - верхняя частота акустического речевого сигнала, распространяющегося в ВП, в которое период следования его импульсов τ соответствует штатному режиму. При отсутствии утечки акустической речевой информации в ВП задается штатный режим работы лазера. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении пропускной способности передачи. Для этого предлагается пассивный волоконно-оптический модуль, содержащий внутри модуля: а) один или более волоконно-оптических функциональных блоков телекоммуникационной сети связи, имеющих возможность оптического подключения, посредством оптического волокна, к центральному узлу сети связи, для приема телекоммуникационных сигналов, предназначенных для одного или более абонентов, по оптическому волокну, от центрального узла сети связи, и характеризующийся тем, что модуль дополнительно содержит, внутри модуля, b) приемопередающее устройство, имеющее возможность формировать первые оптические сигналы, используя электрическую энергию, и имеющее возможность принимать ответные оптические сигналы от центрального узла сети связи, имеющее возможность оптического подключения к оптическому волокну таким образом, что первые оптические сигналы могут быть переданы по оптическому волокну на центральный узел сети связи, и таким образом, что ответные оптические сигналы могут быть переданы по оптическому волокну от центрального узла сети связи на приемопередающее устройство. 9 з.п. ф-лы, 2 ил.

Изобретение относится к технике связи и может использоваться для контроля волоконно-оптических линий (ВОЛП) методами интегральной рефлектометрии и прямого детектирования . Технический результат состоит в повышении качества контроля и обеспечении работы устройства в широком динамическом диапазоне коэффициента передачи между полюсами ВОЛП без использования регулировок в зависимости от потерь в ВОЛП. Для этого устройство комплексного контроля волоконно-оптических линий содержит оптический передатчик, оптический коммутатор, оптический выход которого является выходом устройства в волоконно-оптическую линию, а вход управления соединен с выходом управления микроконтроллера, выход сигнализации которого соединен со входом устройства сигнализации, оптический демультиплексор и последовательно соединенные оптический мультиплексор, циркулятор, первый фотодиод и первый логарифмический усилитель. 1ил.

Группа изобретений относится к оптронным системам передачи сигналов и может быть использована для управления передачей сигналов через оптронную среду передачи. Техническим результатом является предотвращение одновременного осуществления связи двух устройств через оптронную среду. Устройство содержит оптрон и контроллер, соединенный с оптроном и сконфигурированный с возможностью приема попытки передачи от первого устройства, определения, передает ли уже второе устройство через оптрон, определения, находится ли прием попытки передачи вне периода мертвой зоны после возникновения включения питания, и передачи от первого устройства через оптрон, если второе устройство не осуществляет передачу и если период мертвой зоны уже истек. 2 н. и 8 з.п. ф-лы, 11 ил.

Изобретение относится к осветительному устройству для встраивания символов данных информационного сигнала в выходной сигнал яркости осветительного устройства. Устройство включает в себя светоизлучающий диод (LED), содержащий по меньшей мере два сегмента, которые имеют общий электрод и выполнены с возможностью индивидуального управления. LED сконфигурирован с возможностью генерировать выходной сигнал яркости по сигналу возбуждения. Устройство дополнительно включает в себя контроллер, сконфигурированный для включения или выключения одного из сегментов по информационному сигналу, чтобы встраивать символы данных информационного сигнала в выходной световой сигнал устройства. Технический результат - упрощение встраивания данных в выходной световой сигнал. 3 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к технике связи и может быть использовано для волоконно-оптической связи. Технический результат состоит в уменьшении дифференциальной модовой задержки многомодовой волоконно-оптической линии в маломодовом режиме передачи. Для этого последовательно многомодовому оптическому волокну линии передачи включают отрезок оптического волокна, разделяют на участки и на каждом участке изгибают оптическое волокно, при этом отрезок оптического волокна включают на дальнем конце волоконно-оптической линии передачи, а количество участков, количество изгибов или витков оптического волокна на каждом участке и радиусы изгибов оптического волокна на каждом участке подбираются из условия минимального значения дифференциальной модовой задержки на выходе волоконно-оптической линии передачи. 1 ил.

Изобретение относится к технике связи и может использоваться в оптических линиях связи. Технический результат состоит в повышении пропускной способности передачи каналов связи. Для этого волоконно-оптическая сеть содержит приемопередатчик тестовых сигналов, предназначенный для излучения запросных сигналов и приема сигналов отклика, первую пассивную оптическую сеть (ПОС) и вторую ПОС. Каждая ПОС содержит источник оптического излучения, предназначенный для формирования телекоммуникационных сигналов, и волоконно-оптический датчик. Каждая ПОС может передавать телекоммуникационные сигналы ко множеству абонентов и оптически подключена к приемопередатчику тестовых сигналов таким образом, что запросные сигналы могут быть введены в соответствующую ПОС и распространяться по ПОС к волоконно-оптическому датчику, и таким образом, что приемопередатчик тестовых сигналов может принимать сигналы отклика от волоконно-оптического датчика, поступающие по ПОС. Волоконно-оптическая сеть дополнительно содержит сплиттер запросного сигнала, оптически подключенный к приемопередатчику тестовых сигналов и к обеим ПОС таким образом, что он может вводить запросный сигнал в обе ПОС одновременно, и таким образом, что он может подводить сигналы отклика из обеих ПОС к приемопередатчику тестовых сигналов. 12 з.п. ф-лы, 6 ил.
Изобретение относится к области оптической связи и предназначено для использования в сетях передачи данных. Технический результат состоит в повышении качества связи за счет повышения надежности соединений между абонентами и базовыми приемниками и в оптимизации использования возможностей базовых приемников, путем определения и использования в реальном масштабе времени для каждого абонента максимально возможного количества базовых приемников оптического излучения. Для этого способ организации абонентского доступа к сетям передачи данных заключается в том, что организуют пункты доступа к сети по территориальному признаку и передают информацию от абонентов каждой зоны обслуживания к соответствующему пункту доступа при помощи модулированных узконаправленных пучков электромагнитного излучения оптического диапазона, излучаемых абонентскими передатчиками в направлении обслуживающих соответствующую зону базовых приемников пункта доступа, устанавливают независимые оптические соединения между абонентскими передатчиками и соответствующими им базовыми приемниками, причем для установления упомянутого оптического соединения для каждой зоны обслуживания формируют уменьшенное пространственное изображение расположенных в данной зоне обслуживания абонентских источников электромагнитного излучения. В качестве базовых приемников используют матрицу оптоэлектронных преобразователей с шагом между центрами элементов матрицы не более 1,2 мм, при этом, в реальном масштабе времени, определяют элементы матриц, на которых наблюдается прием сигналов не выше шумового уровня или более, чем от одного абонента, исключают сигналы от этих элементов из дальнейшей обработки, а сигналы от остальных элементов матрицы объединяют в группы таким образом, что сигналы, принимаемые каждой группой элементов матрицы, соответствуют одному абоненту, и далее обрабатывают сигналы от каждой группы элементов матрицы как один сигнал.

Изобретение относится к контроллерам защиты многопролетных волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве технического средства защиты информации (ТСЗИ) ограниченного доступа в многопролетных волоконно-оптических линиях передачи с оптическими усилителями. Логарифмический контроллер защиты многопролетных волоконно-оптических линий содержит коммутатор, вход которого соединен с первым выходом микроконтроллера, второй выход которого соединен с входом устройства сигнализации, оптический выход коммутатора является выходом контроллера в волоконно-оптическую линию, оптический разветвитель, вход которого является входом контроллера с линии, а первый выход является выходом контроллера, последовательно соединенные фотодиод и логарифмический усилитель, выход которого соединен с входом микроконтроллера, а вход фотодиода соединен со вторым выходом оптического разветвитель, при этом оптический вход коммутатора является входом контроллера. Достигаемым техническим результатом является распространение контроля средней оптической мощности сигналов с последнего пролета на всю многопролетную волоконно-оптическую линию передачи. 2 ил.
Наверх