Способ управления механическими свойствами среднеуглеродистых легированных конструкционных сталей


C21D1/78 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2608116:

федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) (RU)

Изобретение относится к области обработки черных металлов, в частности к обработке изделий из среднеуглеродистых легированных конструкционных сталей. Техническим результатом изобретения является повышение значений показателей ударной вязкости и пластичности без снижения показателей прочности. Для достижения технического результата проводят закалку и низкий отпуск изделий, а затем воздействуют на неё пульсирующим дозвуковым воздушным потоком при комнатной температуре с частотой колебаний от 550 до 1000 Гц в течение 15-35 мин, что способствует повышению подвижности дислокаций в сталях и релаксации остаточных микронапряжений.

 

Изобретение относится к области обработки черных металлов, в частности к обработке изделий из среднеуглеродистых легированных конструкционных сталей.

В качестве высокопрочных материалов (предел прочности более 1600 МПа) часто используются среднеуглеродистые легированные конструкционные стали, в том числе сталь 40Х. Термообработка таких сталей заключается в закалке на мартенсит с последующим низким отпуском при температуре 150-250°С. В результате подобной обработки структура стали состоит из мартенсита отпуска и вторичных карбидов. Подобная структура не обеспечивает высоких значений показателей ударной вязкости, что делает сталь склонной к разрушению под действием динамических нагрузок. Кроме того, невысокая температура нагрева при низком отпуске не обеспечивает достаточного снижения уровня остаточных напряжений, что негативно сказывается на работоспособности материала.

Актуальной является задача повышения значений ударной вязкости без снижения показателей прочности среднеуглеродистых легированных конструкционных сталей, при решении которой целесообразно использовать пульсирующий дозвуковой низкочастотный газовый поток как эффективное, недорогое и экологически чистое средство воздействия на структуру, напряженное состояние и механические свойства металлических изделий.

Известен способ термической обработки, которому подвергают изделия или заготовки из двухфазных титановых сплавов (см. патент РФ 2255137 С1, 27.06.2005 г. Бюл. №18). Образцы из сплава ВТ14 в исходном состоянии, предварительно подвергнутые отжигу, закалке с температуры 850-880°С в воде или закалке и старению при температуре 480-500°С в течение 12 часов после выдержки помещают в камеру газоструйного генератора звука, где они охлаждаются под действием нестационарного воздушного потока и акустического поля звукового диапазона частот с уровнем звукового давления 140-160 дБ в течение 4÷5 минут. В результате данного способа обеспечивается повышение прочности до 1,3 раза без снижения пластичности.

Основным недостатком данного известного способа является незначительное повышение пластичности титановых сплавов.

Наиболее близким аналогом и принятым за прототип является способ обработки изделий из конструкционных сталей на высокопрочное состояние (Патент РФ №2506320 C1, C21D 1/78, опубл. 10.12.2014). Стальное изделие закаливается в воде, после чего размещается на выходе из резонатора установки и подвергается воздействию при комнатной температуре пульсирующего дозвукового воздушного потока с частотой 1130-2100 Гц и звуковым давлением 120÷140 дБ в течение 10-15 минут. Такая обработка позволяет сохранить высокие значения показателей твердости и прочности.

Недостатком прототипа является получение недостаточно высокой пластичности и ударной вязкости конструкционной стали в высокопрочном состоянии.

Перед заявляемым изобретением поставлена задача повышения работоспособности изделий из среднеуглеродистых легированных конструкционных сталей в высокопрочном состоянии за счет достижения технического результата, заключающегося в повышении значений показателей ударной вязкости и пластичности без снижения показателей прочности.

Данный технический результат достигается тем, что способ, включающий закалку изделий из среднеуглеродистых легированных конструкционных сталей с обеспечением его высокопрочного состояния и воздействие на изделие пульсирующим дозвуковым воздушным потоком при комнатной температуре, отличается тем, что после закалки проводят низкий отпуск, а последующее воздействие пульсирующим дозвуковым воздушным потоком осуществляют с частотой колебаний от 550 до 1000 Гц в течение 15-35 мин.

Способ обработки реализуется следующим образом. Изделие из среднеуглеродистой легированной конструкционной стали после закалки в воде и низкого отпуска с обеспечением высокопрочного состояния помещают на выходе из резонатора установки, где подвергают воздействию при комнатной температуре пульсирующим дозвуковым воздушным потоком с частотой колебаний от 550 до 1000 Гц в течение 15-35 минут.

Проведение низкого отпуска и обработки пульсирующим газовым потоком способствует повышению подвижности дислокаций в сталях, а также релаксации остаточных микронапряжений, что обеспечивает рост ударной вязкости и пластичности без снижения прочности.

Для стали 40Х после закалки и низкого отпуска при температуре 200°С с дополнительной обработкой при комнатной температуре пульсирующим дозвуковым воздушным потоком в течение 35 минут обеспечивается повышение на 30% значений ударной вязкости KCU и на 10% значений относительного удлинения без снижения величин предела прочности и условного предела текучести.

Способ обработки изделий из среднеуглеродистых легированных конструкционных сталей, включающий закалку с обеспечением высокопрочного состояния и воздействие на изделие пульсирующим дозвуковым воздушным потоком при комнатной температуре, отличающийся тем, что после закалки проводят низкий отпуск, а последующее воздействие пульсирующим дозвуковым воздушным потоком осуществляют с частотой колебаний от 550 до 1000 Гц в течение 15-35 мин.



 

Похожие патенты:
Изобретение относится к области обработки черных металлов, а более конкретно к обработке металлорежущего инструмента из быстрорежущей стали. Для повышения стойкости инструмента рабочую часть стандартно термоупрочненного инструмента из быстрорежущей стали подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 мин.

Изобретение относится к получению дисперсно-упрочненных ультрамелкозернистых материалов путем обработки высокоскоростным потоком порошковых частиц. Способ включает обработку заготовки из металла или сплава потоком порошковых частиц, разогнанных энергией взрыва заряда взрывчатого вещества, в режиме сверхглубокого проникания частиц.

Изобретение относится к области металлургии. Для повышения поверхностной твердости деталей без нарушения качества поверхности деталь подвергают ультразвуковому воздействию в емкости с жидкой средой с помещенным в ней источником акустического излучения с частотой акустических колебаний fрц 20-30 кГц в течение τ=30-45 минут с амплитудой колебательных смещений ξ=7-40 мкм.

Изобретение относится к ножницам для резки длинномерного проката. Ножницы содержат по меньшей мере одно лезвие, изготовленное из стали, химическая композиция которой, выраженная в массовых процентах, состоит из 0,45-0,55% углерода, 0,10-0,30% кремния, 0,20-0,50% марганца, 4,00-5,50% хрома, 2,00-3,00% молибдена, 0,45-0,65% ванадия, остальное - железо и неизбежные примеси и микроструктура которой состоит из отпущенного мартенсита.

Изобретение относится к способу нанесения наноалмазного материала комбинированной электромеханической обработкой и может быть использовано в машиностроительной, авиационной, автомобильной и других отраслях промышленности.
Изобретение относится к области черной металлургии, конкретнее к способам обработки высокопрочных аустенитных сталей, и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении.

Изобретение относится к области обработки металлов давлением. .
Изобретение относится к черной металлургии, конкретнее к эксплуатации оборудования доменной печи. .

Изобретение относится к упрочнению металлических деталей и может быть использовано для повышения долговечности и ресурса деталей. .

Изобретение относится к области металлургии, в частности к термической обработке рельсов, в том числе железнодорожных. Для равномерного распределения охлаждающей среды на поверхности рельса устройство содержит трубопроводы газа и воды, систему импульсной квазинепрерывной и/или непрерывной инжекции воды в газовый поток с импульсными инжекторами, охлаждающие модули, каждый из которых содержит коллектор с рассекателем для подачи охлаждающей среды одновременно на головку и подошву рельса, при этом трубопровод подачи газа сопряжен с каждым коллектором посредством переходного фланца с встроенным инжектором, выпускные отверстия которых направлены в трубопровод газа для формирования охлаждающей среды.

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание, термообработку и термомагнитную обработку.

Изобретение относится к области металлургии и машиностроения. Для повышения хладостойкости (ударной вязкости) стальных литых деталей железнодорожных вагонов осуществляют последовательно: нагрев детали до 860÷940°C с выдержкой, ускоренное охлаждение со скоростью 1÷25°C/сек до 400÷450°C в воздушном потоке и изотермический самоотпуск при комнатной температуре.

Изобретение относится к изготовлению холоднокатаного стального листа с прочностью более 1000 МПа, распределенным удлинением более 12% и V-изгибом более 90°, состав которого включает, мас.%: 0,15≤С≤0,25, 1,8≤Mn≤3,0, 1,2≤Si≤2, 0≤A1≤0,10, 0%≤Cr≤0,50%, 0≤Cu≤1, 0≤Ni≤1, 0≤S≤0,005, 0≤P≤0,020, Nb≤0,015, Ti≤0,020, V≤0,015, Co≤1, N≤0,008, B≤0,001, причем Mn+Ni+Cu≤3, остальное - железо и неизбежные примеси, образующиеся при изготовлении.

Изобретение относится к области обработки металлов давлением, в частности к способу горячей обработки давлением и закалки под давлением пластинчатых оцинкованных заготовок из стального листа.

Изобретение относится к области индукционного нагрева. Для равномерного нагрева металлического листа по его ширине и обеспечения возможности устанавливать устройство в линии прокатки, имеющей узкое пространство, раскрыто устройство для нагрева и содержащий его аппарат для нагрева непрерывного металлического листа.

Изобретение относится к области металлургии. Для повышения магнитных характеристик листа текстурованной электротехнической стали и исключения серповидной деформации способ включает: процесс лазерной обработки, в котором формируют обработанный лазером участок облучением области на одной концевой стороне стального листа по направлению ширины, после подвергания обработке в процессе холодной прокатки, лазерным пучком вдоль направления прокатки стального листа; и процесс заключительного отжига, в котором стальной лист со сформированным на нем обработанным лазером участком наматывают в форме рулона и выполняют заключительный отжиг на намотанном в форме рулона стальном листе.

Изобретение относится к изготовлению листа из текстурированной электротехнической стали. Для повышения производительности процесса при изготовлении листа поверхность листа толщиной t облучают электронным пучком в направлении, пересекающем направление прокатки, и регулируют энергию E(t) облучения при выполнении следующего соотношения: Ewmin (0.23) x (1,61- 2,83 x t (мм))≤ E(t) ≤ Ewmin (0.23) x (1,78 - 3,12 x t (мм)), где Ewmin (0.23) - энергия облучения, при которой минимальны потери в железе для материала с толщиной листа t 0.23мм.

Изобретение относится к области индукционного нагрева стального листа. Для предотвращения коробления независимо от наличия или отсутствия фиксирующих роликов стального листа способ нагрева стального листа включает предварительный нагрев центральной части по ширине стального листа электромагнитной катушкой индукционного нагрева, имеющей выпуклую форму, проецируемую на поверхность стального листа в сторону ввода быстро нагреваемого непрерывно перемещающегося стального листа, в результате чего изотерма стального листа при нагреве имеет выпуклую форму в сторону ввода, так что формируется большая складка на стальном листе, и также предлагает устройство нагрева, используемое в этом способе.

Изобретение относится к области поверхностного упрочнения деталей машин и механизмов с помощью лазерной обработки и может быть применено в машиностроении, в частности, для упрочнения резьбовых соединений труб и соединительных муфт.

Изобретение относится к области металлургии, а именно к рельсу из низколегированной стали. Рельс из низколегированной стали, в котором структура стали в головке содержит 5-15% по объему феррита и многофазный бейнит, состоящий из верхнего и нижнего бейнита. В способе изготовления рельса из низколегированной стали из горячекатаного профиля головку рельса в горячекатаном профиле непосредственно после выхода из клети прокатного стана подвергают регулируемому охлаждению. На первой стадии осуществляют ускоренное охлаждение от температуры 740-850°C до достижения первой температуры, обеспечивающей ферритное превращение. На второй стадии осуществляют выдержку при первой температуре. На третьей стадии осуществляют дальнейшее охлаждение до второй температуры с обеспечением образования многофазного бейнита. На четвертой стадии осуществляют выдержку при второй температуре. Рельс характеризуется повышенной износостойкость, свариваемостью. По всей длине рельса обеспечиваются постоянные свойства. 3 н. и 25 з.п. ф-лы, 3 ил., 2 пр.
Наверх