Хладостойкая аустенитная высокопрочная сталь

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионностойкой и хладостойкой аустенитной высокопрочной стали, используемой в машиностроении, в частности, для изготовления высокопрочных конструкций, работающих в условиях пониженных климатических температур, в том числе – в морской воде в климатических условиях Арктики и Антарктики. Сталь содержит, в мас.%: углерод 0,06–0,07, хром 20–22, никель 9–12, марганец 5–7, молибден 1–2, азот 0,3–0,4, кремний не более 1, сера не более 0,005, фосфор не более 0,009, кальций 0,001-0,01, селен 0,005-0,01, железо и неизбежные примеси остальное. Сталь обладает требуемым комплексом свойств в условиях пониженных климатических температур. 2 ил., 1 пр.

 

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионностойкой и хладостойкой аустенитной высокопрочной стали, которая может быть использована в машиностроении, в том числе - для изготовления высокопрочных конструкций, работающих в условиях пониженных климатических температур, в т.ч. в морской воде (в климатических условиях Арктики и Антарктики).

Основные требования к таким материалам – высокий уровень прочности и ударной вязкости при пониженных температурах и стойкость против коррозии. С учетом этого сталь должна содержать:

- для обеспечения коррозионной стойкости – хром, молибден, азот;

- для обеспечения высокой прочности– азот;

-для стабилизации аустенита - азот, никель, марганец;

- для повышения уровня ударной вязкости при низких температурах – никель (основной легирующий элемент, эффективно влияющий на характеристики сталей в области пониженных климатических температур);

- для повышения растворимости азота в железе – марганец.

Хром и молибден также повышают растворимость азота в твердых растворах на основе железа. По данным Британской ассоциации коррозионностойких сталей (BRITISH STAINLESS STEELASS OCIATION) наилучший выбор сталей для очень низких температур – это стали, в которых аустенит стабилизирован добавками азота, например 304LN(www.bssa.org.uk).

Известна коррозионностойкая конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения (RU №2545856, опубл. 10.04.2015), содержащая (мас.%): углерод - 0,05-0,07; хром 18,0-20,0; никель 5,0-7,0; марганец 8,0-10,0; молибден 1,4-1,8; кремний 0,25-0,35; азот 0,25-0,28; алюминий 0,0015-0,0035; РЗЭ 0,005-0,008; медь 0,05; сера 0,0025; фосфор 0,010; олово 0,005; свинец 0,005; висмут 0,005; мышьяк 0,005; железо остальное.

Способ получения данной стали включает загрузку в печь шихты, плавку, выпуск полупродукта в ковш, рафинирование расплава от примесей методами внепечной обработки, раскисление расплава и присадку редкоземельных элементов.

Недостатком данной стали является относительно низкое содержание никеля в такой стали, что не позволяет обеспечить значения ударной вязкости при комнатной температуре свыше 259 Дж/см2, а содержание азота не более 0,28% не позволяет обеспечить придел текучести при 20°С более 545 МПа.

Известна сталь с более высоким содержанием никеля – высокопрочная немагнитная коррозионно-стойкая свариваемая сталь(RU №2205889, опубл. 10.06.2003), содержащая компоненты в следующем соотношении (мас. %): углерод 0,04-0,90, кремний 0,10-0,60, марганец 5,0-12,0, хром 19-21, никель 4,5-9,0, молибден 0,5-1,5, ванадий 0,10-0,55, кальций 0,005-0,010, ниобий 0,03-0,30, азот 0,40-0,70, неизбежные примеси и железо - остальное. Для значений концентраций легирующих элементов должно выполняться условие: [Ni]+0,1[Mn] -0,01[Mn]2+18[N]+30[C]/[Cr]+1,5[Mo]+0,48[Si]+2,3[V]+1,75[Nb]=0,70-0,90. Соотношение содержания углерода к содержанию азота должно быть равно 0,05-0,15.

Недостатком данной стали является большой интервал по содержанию основных легирующих элементов, содержание аустенитообразующих элементов на нижнем уровне, а ферритообразующих на верхнем уровне в структуре стали приводит к образованию феррита. Кроме того, при выплавке стали с максимальным содержанием ниобия и ванадия, сталь будет иметь недостаточно высокие характеристики пластичности и вязкости стали из-за выделения крупноразмерных как карбидов, так и нитридов ниобия и ванадия, в т.ч. по границам аустенитного зерна, что приведет к падению ударной вязкости при пониженных температурах.

Наиболее близким техническим решением к предложенной стали является аустенитная коррозионно-стойкая высокопрочная сталь (RU №2218446, опубл. 10.12.2003) следующего химического состава (мас.%): углерод – 0,02-0,06; хром 20,0-24,0; марганец 4,0 -8,0; никель 7,0-12,0; Молибден 2,0-4,0; ниобий 0,10-0,30; азот 0,40-0,70; бор 0,001-0,003; церий 0,001-0,050. Железо и неизбежные примеси остальное, при выполнении соотношения (Cr+Mn+Mo)=28,5-32,5.

Недостатком этой стали является низкий уровень механических свойств при пониженных температурах. Содержание молибдена выше 2% при выплавке на нижнем пределе по содержанию марганца и азота может привести к образованию дельта–феррита, что снизит характеристики пластичности и ударной вязкости и может вызвать образование трещин при горячей прокатке стали. Несколько завышенное содержание азота, при предельной растворимости его в твердом растворе до 0,4% может привести к образованию пористости из-за образования газообразного азота при выплавке и сварке. Отсутствие регламентированного содержания примесных элементов может привести к ухудшению пластичности и ударной вязкости.

Задачей предлагаемого изобретения является получение хладостойкой аустенитной высокопрочной стали, используемой в условиях пониженных климатических температур.

Поставленная задача достигается за счет того, что хладостойкая аустенитная высокопрочная сталь, содержащая углерод, марганец, хром, никель, молибден, азот, дополнительно содержит кремний, кальций, селен, фосфор и серу при следующем соотношении компонентов (мас.%):

Углерод 0,06 – 0,7

Хром 20– 22

Никель 9 – 12

Марганец 5 – 7

Молибден 1 – 2

Азот 0,3 – 0,4

Кремний не более 1

Сера не более 0,005

Фосфор не более – 0,009

Кальций 0,001- 0,01%

Селен 0,005-0,01

Железо и неизбежные примеси - остальное

Между компонентами выполняются следующие соотношения:

Ni+30C+30N+0,5Mn+0,8Cr+0,8Mo+1.2Si+0,4Nb>28

1,4Cr+1,4Mo+2,1Si+0,7Nb-Ni-30C-30N+0,5Mo<12,

где Ni, C, N, Mn, Cr, Mo, Si, Nb - содержание химических элементов, %.

Технический результат заключается в получении хладостойкой аустенитной высокопрочной стали, обладающей высоким уровнем прочности и ударной вязкости при пониженных температурах и стойкости против коррозии.

Введение в сталь хрома в количестве 20 – 22% необходимо для обеспечения требуемого уровня коррозионной стойкости и растворимости азота в указанных пределах. При содержании хрома более 22%, а никеля менее 9% и марганца менее 5% сталь будет иметь пониженную пластичность из-за образования феррита и сигма-фазы. С увеличением содержания никеля более 12% невозможно получить сталь с заданным количеством азота. Содержание молибдена более 2% будет способствовать образованию в металле в ферромагнитной фазы (дельта -феррита) и охрупчивающей сталь сигма-фазы. Содержание молибдена менее 1% недостаточно для обеспечения коррозионной стойкости стали и растворимости азота. Содержание азота (0,3-0,4%) обусловлено его предельной растворимостью в твердом растворе, превышение содержания азота может привести к образованию пористости из-за образования газообразного азота при выплавке и сварке. Содержание кремния более 1% ускоряет формирование окручивающих фаз, таких как сигма-фаза, и снижает растворимость азота в твердом растворе. В сплаве необходим контроль примесных элементов – сера не более 0,005, фосфор не более 0,009, отсутствие регламентированного содержания примесных элементов может привести к ухудшению пластичности и ударной вязкости. Для очищения стали от серы и фосфора и связывания остатков этих элементов в высокотемпературные соединения необходимо вводить при выплавке кальций (0,001- 0,01%) и селен (0,005-0,01%). Очищение границ зерен от серы и фосфора с помощью кальция и селена приводит к повышению высокотемпературной пластичности и длительной прочности. Высокие прочностные свойства и коррозионные характеристики также достигаются за счет того, что в стали отсутствую карбидо- и нитридообразующие элементы, таких как Nb и B в результате чего азот и углерод остаются в твердом растворе. При этом состав химических элементов должен удовлетворять требованиям Ni эквивалента и Cr эквивалент в соответствии с диаграммой Schaeffler(G.George, H. Shaikh, in: H.S. Khatak, B. Raj (Eds.), CorrosionofAusteniticStainlessSteels. Mechanism Mitigationand Monitoring, WoodheadPublishing, 2002, pp. 1–36.), в результате чего сталь будет находиться в аустенитной области.

Примеры осуществления

Пример 1. Были отлиты два сплава предлагаемого химического состава (табл.1). Стали предложенного химического состава были отлиты в индукционной печи. После чего стали были подвергнуты гомогенизационному отжигу и ковке.

Химический состав предлагаемого сплава и прототипа представлен на фиг. 1 в Таблице 1, где:1 – Прототип, 2 – Предлагаемый сплав, 3 – Предлагаемый сплав.

Прототип выплавляли в 50-кг индукционной печи и разливали в изложницы для слитков массой 25 кг. Слитки ковали и прокатывали на прутки диаметром 16-20 мм.

Результаты механических испытаний на растяжение по ГОСТ 1497-84 представлены на фиг. 2 в Таблице 2, где σ0,2 - предел текучести условный; σв - предел прочности; δ - относительное удлинение после разрыва, KCV - ударная вязкость.

Механические испытания на растяжение проводились по ГОСТ 1497-84, на определение ударной вязкости − по ГОСТ 9454-78, тип образца KCV.

Как видно из таблицы 2, механические свойства предлагаемого сплава существенно выше свойств прототипа даже при более низкой температуре (-100°С), чем указано для стали прототипа (-60°С), что позволяет полученную конструкционную коррозионностойкую и хладостойкую аустенитную высокопрочную сталь применять в машиностроении, в том числе - для изготовления высокопрочных конструкций, работающих при более низких температурах, а также в морской воде в климатических условиях Арктики и Антарктики.


Хладостойкая аустенитная высокопрочная сталь, содержащая углерод, хром, никель, марганец, молибден, азот, кремний, кальций, селен, фосфор, серу, железо и неизбежные примеси, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:

углерод 0,06-0,07

хром 20-22

никель 9-12

марганец 5-7

молибден 1-2

азот 0,3-0,4

кремний не более 1

сера не более 0,005

фосфор не более - 0,009

кальций 0,001-0,01

селен 0,005-0,01

железо и неизбежные примеси остальное.



 

Похожие патенты:

Изобретение относится к производству текстурированного листа из электротехнической стали. Для повышения магнитных свойств стали осуществляют необязательно отжиг, горячую прокатку стального сляба, содержащего, в мас.% или ч./млн.

Изобретение относится к области металлургии. Для снижения потерь и отклонений значений потерь в электротехнической текстурированной стали способ изготовления листа включает горячую прокатку сляба из стали, содержащей, мас.%: С: 0,002-0,10, Si 2,0-8,0 и Mn 0,005-1,0 для получения горячекатаного листа, при необходимости отжиг в зоне горячих состояний, однократную, двукратную или многократную холодную прокатку горячекатаного стального листа с промежуточным отжигом между ними с получением листа конечной толщины, обезуглероживающий отжиг холоднокатаного листа в сочетании с отжигом первичной рекристаллизации, нанесение отжигового сепаратора на поверхность стального листа и окончательный отжиг, причем в процессе нагрева под обезуглероживающий отжиг проводят быстрый нагрев со скоростью не менее 50°C/с в диапазоне 200-700°C с выдержкой при температуре 250-600°C в течение 1-10 с.

Изобретение относится к области металлургии. Для обеспечения высокой плотности магнитного потока и отличной производительности при низких затратах получают сляб в машине непрерывного литья из стали, содержащей, в мас.

Изобретение относится к области металлургии. Для сокращения потерь W17/50 Вт/кг в сердечнике используют сляб, имеющий заданный состав, содержащий Sn от 0,02 до 0,20 мас.% и Р от 0,010 до 0,080 мас.%.

Изобретение относится к горячекатаной стальной полосе с высокой ударной вязкостью и способу ее производства. Стальная полоса для производства транспортных трубопроводов с низким отношением предела текучести к пределу прочности и высокой ударной вязкостью имеет следующий химический состав, вес.

Изобретение относится к оцинкованным стальным листам. Высокопрочный гальванизированный погружением стальной лист включает слой гальванического покрытия, сформированный на поверхности основного стального листа.

Изобретение относится к области металлургии, а именно к получению конструкционных аустенитных сталей для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов.

Изобретение относится к области металлургии, а именно к составам жаропрочных сплавов, используемых для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 800-1080°С при давлении до 46 атм.

Изобретение относится к области металлургии, а именно составам жаропрочных сплавов, используемых для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре от плюс 700°С до плюс 980°С, при давлении до 46 атм.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение относится к области металлургии и может быть использовано для изготовления крупногабаритных изделий атомного и энергетического машиностроения. Для получения проката толщиной от 80 до 150 мм с гарантией стандартных свойств после нормализации с отпуском из непрерывнолитых заготовок толщиной не менее 315 мм аустенизацию заготовок проводят при температуре 1200-1215°C, черновую прокатку начинают при температуре не ниже 950°С и осуществляют до толщины раската не менее 1,3 толщины готового листа с относительными обжатиями за проход не менее 10%, чистовую прокатку начинают при температуре на 115±25°C выше точки Ar3 и завершают на 5-15°C выше температуры начала чистовой прокатки, после чего листы подвергают замедленному охлаждению на воздухе в стопе.

Изобретение относится к высокопрочной стальной трубе с низким отношением предела текучести к пределу прочности, сваренной электрической контактной сваркой, с отношением предела текучести к пределу прочности 80% или менее и TS 655 МПа или более и способ ее изготовления.

Изобретение относится к области черной металлургии, а именно к конструкционным горячекатаным сталям, предназначенным для изготовления высокопрочных стальных деталей сложной формы способом горячей штамповки, в том числе элементов конструкции автомобиля.

Изобретение относится к области металлургии, а именно к плакирующему материалу для стального листа, используемого в морских конструкциях, устройствах опреснения морской воды.

Изобретение относится к области металлургии. Для повышения пластичности и прочности с обеспечением равномерного относительного удлинения и пригодности для отбортовки отверстий получают лист из двухфазной стали, содержащей, мас.

Изобретение относится к области металлургии, а именно к аустенитной нержавеющей стали. Сталь содержит, мас.%: от 16,00 до 30,00 хрома, от 8,00 до 27,00 никеля, не более 7,00 молибдена, от 0,40 до 0,70 азота, от 1,0 до 4,00 марганца, менее 0,10 углерода, не более 1,0 ниобия, не более 0,070 кислорода, не более 2,00 кремния, железо и неизбежные примеси - остальное.

Изобретение относится к черной металлургии, а именно к производству толстолистового проката из высокопрочной низколегированной стали, предназначенного для кранового производства и легкой транспортной техники.

Изобретение относится к сварке, а именно к составу сварочной проволоки для сварки разнородных сталей, эксплуатируемых при повышенных температурах и знакопеременных нагрузках, в том числе в агрессивных средах, в частности в условиях эксплуатации оборудования атомного и энергетического машиностроения.

Изобретение относится к области металлургии, а именно к присадочным материалам для электродуговой и лазерной сварки, и может быть использовано для соединения деталей из аустенитной и ферритной сталей.

Изобретение относится к области металлургии, а именно получению горячекатаной конструкционной стали в виде листа толщиной 2-12 мм, Сталь имеет состав, в мас.%: С: 0,07-0,12, Si: 0,1-0,7, Mn: 0,5-2,0, Ni: 1,5-4,5, Cu: 0,25-3,0, Cr: 0,5-1,6, Mo:0,1-0,8, Ti: 0,005-0,04, V: менее 0,1, при необходимости, один или более компонентов из: В: менее 0,0003 или 0,0005-0,003 при условии, что содержание титана составляет 0,02-0,04 или удовлетворяет условию 3*N(%)<Ti≤0,04%, Nb: 0,008-0,08 или менее 0,008, Са: 0,0005-0,005, Al: 0,01-0,15, остальное - железо (Fe) и неизбежные примеси, в частности N: ≤0,01, Р: <0,02, S<0,04.

Изобретение относится к области металлургии, а именно к получению аустенитной нержавеющей нанодвойникованной TWIP стали. Выплавляют аустенитную нержавеющую сталь, содержащую, мас.%: не более чем 0,018 C, 0,25-0,75 Si, 1,5-2 Mn, 17,80-19,60 Cr, 24,00-25,25 Ni, 3,75-4,85 Mo, 1,26-2,78 Cu, 0,04-0,15 N, остальное – Fe и неизбежные примеси. Доводят сталь до температуры ниже 0°C и подвергают воздействию пластической деформации со степенью деформации по меньшей мере 30% для образования нанодвойников со средним расстоянием между ними менее 1000 нм и плотностью более 35%. Обеспечивается получение стали, обладающей высокой прочностью. 2 н. и 11 з.п. ф-лы, 9 ил., 5 табл.
Наверх