Усилитель мощных свч сигналов

Изобретение относится к радиотехнике и электронике сверхвысоких частот и может быть использовано в установках ускорителей заряженных частиц, в СВЧ устройствах, а именно установках СВЧ нагрева, радиолокационных станциях, СВЧ фильтрации радиосигналов, для увеличения функциональных возможностей усилителей СВЧ сигнала с электронными потоками. Усилитель содержит электронную пушку в виде цилиндрического вакуумного диода со взрывоэмиссионным катодом, формирующую сплошной цилиндрический релятивистский электронный поток с током, на 5-20% меньшим второго критического и на 50-80% большим первого критического, анодную сетку, располагающуюся на границе пушки, два электромагнитно несвязанных резонатора, которые размещены за анодной сеткой, алюминиевую фольгу, расположенную в стенке второго резонатора, элемент ввода сигнала в виде коаксиального волновода с внутренним проводником, проникающим внутрь первого резонатора, и вывод мощности в виде волновода, подключенного ко второму резонатору. Технический результат - повышение эффективности усилителя мощных СВЧ сигналов без внешнего магнитного поля. 3 ил.

 

Изобретение относится к радиотехнике и электронике сверхвысоких частот и может быть использовано в установках ускорителей заряженных частиц, в СВЧ устройствах, а именно установках СВЧ нагрева, радиолокационных станциях, СВЧ фильтрации радиосигналов, для увеличения функциональных возможностей усилителей СВЧ сигнала с электронными потоками.

В электронике сверхвысоких частот известно большое количество приборов и устройств, предназначенных для генерации и усиления СВЧ сигналов (см., например, монографии: Трубецков Д.И., Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков, в 2-х томах. М.: Физматлит. 2003, 2004; Короновский А.А., Трубецков Д.И., Храмов А.Е. Методы нелинейной динамики и хаоса в задачах электроники сверхвысоких частот. Т. 2. Нестационарные и хаотические процессы. М.: Физматлит. 2009; Benford J., Swegle J.A., Schamiloglu E. High Power Microwaves. CRC Press, Taylor and Francis. 2007). Среди них большое распространение получили устройства виркаторного типа, принципиальными преимуществами которых по сравнению с известными аналогами являются возможность генерации и усиления узкополосных и широкополосных СВЧ сигналов высокого уровня мощности, простота конструкции (в частности, возможность работы без внешнего фокусирующего магнитного поля), низкая требовательность к качеству электронного потока (патенты RU на изобретения №2260870, №2288519, №2325724, №2390871, №2395132, №2431901, №2444805, №2488909, заявка RU на изобретение №2013113488,). Среди них наиболее перспективными являются двухзазорные устройства на виртуальном катоде (ВК) с дополнительной электромагнитной обратной связью - двухзазорные виртоды (Гадецкий Н.Н.. Магда И.И., Найстетер С.И., Прокопенко Ю.В., Чумаков В.И. Генератор на сверхкритическом токе РЭП с управляемой обратной связью - виртод, Физика плазмы. Т. 19, №4. С. 530, 1993; Ефремов A.M., Жерлицын А.А., Кицанов С.А., Климов А.И., Коровин С.Д., Ковальчук Б.М., Куркан И.К., Кутенков О.П., Логинов С.В., Пегель И.В., Полевин С.Д. Виркатор дециметрового диапазона с предмодуляцией электронного пучка на основе компактного генератора с индуктивным накопителем энергии, ПЖТФ. Т. 27, №7. С. 57, 2001; Kitsanov S.A., Klimov A.I., Korovin S.D., Kurkan I.K., Pegel I.V., Polevin S.D., A vircator with electron beam premodulation based on high-current repetitively pulsed accelerator, IEEE Trans. Plasma Sci. T. 30, №1. C. 274, 2002). Они используются преимущественно для генерации мощного СВЧ излучения, в то время как для усиления сигналов они использованы быть не могут в силу имеющихся конструктивных особенностей.

Конструктивно наиболее близким к заявляемому изобретению является двухзазорный виртод, предложенный в (Shlapakovski A.S., Queller Т., Bliokh Yu.P., Krasik Ya.E., Investigations of a Double-Gap Vircator at Sub-Microsecond Pulse Durations, IEEE Trans. Plasma Sci., 40, №6. C. 1607, 2012). Он содержит следующие основные конструктивные элементы: электронную пушку в виде цилиндрического вакуумного диода со взрывоэмиссионным катодом, анодную сетку, двухзазорный резонатор с окном связи между зазорами, металлическую фольгу в стенке между зазорами и вывод мощности в виде волновода с рупорной антенной, подключенный ко второму зазору резонатора. Данное устройство предназначено для генерации импульсов мощного СВЧ излучения и имеет следующий принцип работы. В цилиндрическом вакуумном диоде со взрывоэмиссионным катодом без внешнего фокусирующего магнитного поля формируется сплошной цилиндрический релятивистский электронный пучок с током, превышающим второй критический (Воронин B.C., Лебедев А.Н., Зозуля Ю.Т. Самосогласованные стационарные состояния потока релятивистских электронов в пролетном пространстве. ЖТФ. Т. 42, №3. С. 546, 1972), и затем транспортируется через анодную сетку в двухзазорный резонатор в направлении, перпендикулярном к его наибольшей стенке. Зазоры резонатора представляют собой отрезки электродинамически связанных друг с другом прямоугольных волноводов. Электронный пучок попадает из первого зазора во второй, пролетая сквозь металлическую фольгу, которая располагается в стенке, разделяющей зазоры. Фактически, первый зазор выполняет роль модулятора, реализующего воздействие обратной связи, а второй - камеры взаимодействия, предназначенной для формирования в ней ВК и последующего энергоотбора. При образовании виртуального катода во втором зазоре резонатора возбуждается одна из его низших мод, которая излучается в свободное пространство посредством рупорной антенны, подключенной через волновод к верхней границе второго зазора. Дополнительная электромагнитная обратная связь реализуется за счет электромагнитной волны, проникающей через окно обратной связи из второго зазора резонатора в первый, и позволяет увеличить КПД и стабильность частоты излучения виртода.

Указанное изобретение является генератором, а, следовательно, оказывается непригодным для усиления СВЧ сигналов.

Задачей настоящего изобретения является разработка эффективного усилителя мощных СВЧ сигналов без внешнего магнитного поля с низкими требованиями к качеству релятивистского электронного потока.

Поставленная задача решается тем, что в устройство содержит электронную пушку в виде цилиндрического вакуумного диода со взрывоэмиссионным катодом, формирующую сплошной цилиндрический релятивистский электронный поток с током, на 5-20% меньшим второго критического и на 50-80% большим первого критического, анодную сетку, располагающуюся на границе пушки, два электромагнитно несвязанных резонатора, которые размещены за анодной сеткой, алюминиевую фольгу, расположенную в стенке второго резонатора, элемент ввода сигнала в виде коаксиального волновода с внутренним проводником, проникающим внутрь первого резонатора, и вывод мощности в виде волновода, подключенного ко второму резонатору.

Техническим результатом изобретения по сравнению с прототипом является возможность усиления мощных входных СВЧ сигналов за счет наличия за анодной сеткой двух электромагнитно несвязанных резонаторов, алюминиевой фольги в стенке между резонаторами, элемента ввода сигнала в виде коаксиального волновода с внутренним проводником, проникающим внутрь первого резонатора, и вывода мощности в виде волновода, подключенного ко второму резонатору.

Изобретение поясняется Фиг. 1-3, где

на Фиг. 1 - типичная схема усилителя мощных СВЧ сигналов,

на Фиг. 2 - график зависимости коэффициента усиления по мощности от частоты внешнего сигнала для заявляемого усилителя на виртуальном катоде, при амплитуде входного сигнала - 0.5 кВ,

на Фиг. 3 - график зависимости коэффициента усиления по мощности от амплитуды входного сигнала для заявляемого усилителя на виртуальном катоде, при частоте входного сигнала - 1.14 ГГц,

на которых позициями 1-11 обозначены:

1 - электронная пушка,

2 - первый резонатор,

3 - второй резонатор,

4 - взрывоэмиссионный катод,

5 - анодная сетка,

6 - генератор напряжения,

7 - алюминиевая фольга,

8 - элемент ввода сигнала в виде коаксиального волновода

9 - внутренний проводник,

10 - вывод мощности в виде волновода,

11 - электронный поток (не является элементом конструкции).

Аббревиатурой «ВК» схематически обозначена область виртуального катода.

Принцип работы заявляемого изобретения следующий. Электронная пушка 1, выполненная в виде цилиндрического вакуумного диода радиуса rg со взрывоэмиссионным катодом 4 радиуса rc без внешнего фокусирующего магнитного поля, формирует сплошной цилиндрический релятивистский электронный поток 11 с током, на 5-20% меньшим второго критического (при котором в системе начинается генерация), но на 50-80% большим первого критического (при котором в системе формируется виртуальный катод, и появляются отраженные частицы), который ускоряется в зазоре между катодом 4 и анодной сеткой 5 за счет действия разности потенциалов, формируемой генератором напряжения 6. Выбор такого околокритического значения тока пучка осуществляется заданием соответствующего расстояния между катодом и анодом dak и обусловлен двумя причинами. Во-первых, в данном случае в системе отсутствует автогенерация, а во-вторых, электронный поток с околокритическим током представляет собой активную среду с большим запасом энергии, что позволяет сделать на базовой конструкции виртода регенеративный усилитель. Далее сформированный электронный поток транспортируется через анодную сетку 5 в первый резонатор 2 длиной L1 и высотой h1, а затем - во второй резонатор 3 длиной L2 и высотой h2 в направлении, перпендикулярном к их наибольшей стенке. Резонаторы имеют общую стенку с алюминиевой фольгой 7, через которую поток пролетает из первого резонатора 2 во второй резонатор 3. В левой части первого резонатора 2 расположен элемент ввода сигнала 8 в виде коаксиального волновода с внутренним проводником 9, через который в систему подается усиливаемый СВЧ сигнал, причем внутренний проводник 9 данного волновода проникает внутрь первого резонатора 2. Положение Lin элемента ввода сигнала 8, внешний rin и внутренний rout радиусы коаксиального волновода, а также длина hin части внутреннего проводника 9 коаксиального волновода, проникающей в первый резонатор 2, определяются в процессе оптимизации системы из условия минимизации мощности, отражаемой обратно в коаксиальный волновод, и максимизации эффективности взаимодействия электронного потока с входным сигналом, что, в свою очередь, обеспечивает наибольшую эффективность усиления. Длина L1 первого резонатора 2 выбиралась из условия, чтобы в нем укладывалось 3 полуволны на рабочей частоте. Соотношения основных геометрических размеров заявляемого изобретения следующие: радиус взрывоэмиссионного катода 4 к радиусу электронной пушки 1 rc/rg=0.9; расстояние между взрывоэмиссионным катодом 4 и анодом к высоте первого резонатора 2 dak/h1=0.7; высота первого резонатора 2 к высоте второго резонатора 3 h1/h2=0.25; расстояние от левой границы прибора до внутреннего проводника 9 коаксиального волновода к длине первого резонатора 2 Lin/L1=0.06; длине первого резонатора 2 к длине второго резонатора 3 L1/L2=0.7; длина части внутреннего проводника коаксиального волновода, проникающей в первый резонатор к высоте первого резонатора 2 hin/h1=0.93; внутренний радиус вывода мощности коаксиального волновода к внешнему rin/rout=0.2. Таким образом, в первом резонаторе происходит взаимодействие релятивистского электронного потока с модой резонатора, которая возбуждается входным сигналом. Результатом данного взаимодействия является то, что пучок попадает во второй резонатор, пролетая сквозь алюминиевую фольгу, которая располагается в стенке между резонаторами, будучи промоделированным по плотности, причем частота следования сгустков определяется частотой входного сигнала. Это приводит к установлению в системе режима с развитым нестационарным виртуальным катодом во втором резонаторе и возбуждению в нем усиленного электромагнитного поля, которое выводится через вывод мощности 10 во второй секции. Таким образом, на выходе системы появляется усиленный входной сигнал.

В качестве примера реализации заявляемого устройства рассмотрим усилитель со следующими параметрами, полученными в процессе оптимизации системы и удовлетворяющими вышеуказанным соотношениям. Радиус катода rc=49 мм, радиус электронной пушки rg=54 мм, расстояние (вдоль оси y) между осью симметрии пушечной части и левой границей системы Ls=227 мм, расстояние (вдоль оси z) между катодом и анодной сеткой dak=21.5 мм, ширина электродинамической структуры (вдоль оси x) - 140 мм, длина (вдоль оси y) первого резонатора L1=347 мм, высота (вдоль оси z) первого резонатора h1=30 мм, высота (вдоль оси z) второго резонатора h2=119 мм, длина (вдоль оси y) второго резонатора L2=494 мм, расстояние от левой границы прибора до внутреннего проводника коаксиального волновода Lin=21 мм, внутренний и внешний радиусы входного волновода rin=1 мм и rout=5 мм соответственно, длина части внутреннего проводника коаксиального волновода, проникающей в первую секцию hin=28 мм. На Фиг. 2 представлена зависимость коэффициента усиления по мощности от частоты внешнего сигнала для заявляемого усилителя на виртуальном катоде с вышеуказанными параметрами, которая показывает, что данный усилитель является узкополосным с шириной полосы порядка 0.6%. Рабочая частота заявляемого усилителя (~1.14 ГГц), на которой коэффициент усиления достигает максимального значения, определяется частотой рабочей моды первой секции. Второй невысокий пик на зависимости на Фиг. 2 соответствует возбуждению моды более высокого порядка первой секции, однако, эффективность взаимодействия пучка с ней невысока.

На Фиг. 3 представлена зависимость коэффициента усиления по мощности от амплитуды входного сигнала для заявляемого усилителя на виртуальном катоде, демонстрирующая наличие оптимального значения амплитуды входного сигнала (~0.5 кВ), при которой коэффициент усиления достигает максимального значения (К~19.3 дБ). При отстройке амплитуды от оптимальной коэффициент усиления монотонно уменьшается, причем когда амплитуда входного сигнала начинает превышать 4 кВ, коэффициент усиления начинает изменяться медленнее, стремясь к значению Кс~11 дБ.

Таким образом, заявляемое изобретение позволяет усиливать относительно мощные входные СВЧ сигналы.

Усилитель мощных СВЧ сигналов, характеризующийся тем, что содержит электронную пушку в виде цилиндрического вакуумного диода со взрывоэмиссионным катодом, формирующую сплошной цилиндрический релятивистский электронный поток с током, на 5-20% меньшим второго критического и на 50-80% большим первого критического, анодную сетку, располагающуюся на границе пушки, два электромагнитно несвязанных резонатора, которые размещены за анодной сеткой, алюминиевую фольгу, расположенную в стенке второго резонатора, элемент ввода сигнала в виде коаксиального волновода с внутренним проводником, проникающим внутрь первого резонатора, и вывод мощности в виде волновода, подключенного ко второму резонатору.



 

Похожие патенты:

Изобретение относится к радиоэлектронике, в частности к электровакуумным приборам СВЧ, и может быть использовано, например, в радиолокации, радиопротиводействии и в других областях техники.

Изобретение относится к электронной технике и может быть использовано в электровакуумных приборах, в частности в магнетронах непрерывного или импульсного действия, работающих в широком диапазоне длин волн.

Изобретение относится к технологии производства электровакуумных приборов, а именно к изготовлению высокочастотного пакета замедляющих систем спирального типа для ламп бегущей волны.

Изобретение относится к области электронный СВЧ техники. Электронный СВЧ прибор большой мощности пролетного типа, использующий магнитную систему для формирования и транспортировки электронного пучка, содержит вакуумный корпус, выполненный из материала с низкой электропроводностью.

Изобретение относится к области электротехники, а конкретно к способу электропитания многолучевых клистронов горизонтального исполнения. Соединительный модуль содержит разделительный трансформатор коаксиального типа с незамкнутым магнитопроводом, на первичную обмотку (1) которого снаружи и со стороны крепления ее к корпусу СМ (3) установлены медные магнитные экраны (10), вторичную обмотку (2), закрепленную на высоковольтный разъем (4), который в свою очередь установлен на заднюю стенку корпуса СМ, трансформатор тока (5), высоковольтный делитель напряжения (7), верхнее плечо которого выполнено в виде конструктивной емкости, водяную систему охлаждения (6), расположенную в расширительном объеме корпуса СМ, блок датчиков контроля (8) и узел наполнения и слива масла (9).

Изобретение относится к электронной технике, а именно к электровакуумным приборам клистронного типа, содержащим один двухзазорный резонатор, и предназначено для генерации большой мощности СВЧ.

Изобретение относится к области плазменной релятивистской СВЧ-электроники и может найти применение при создании источников широкополосного электромагнитного СВЧ-излучения, используемого в импульсной СВЧ-энергетике, радиофизических исследованиях, экспериментальной физике, в технологических процессах обработки материалов.

Магнетрон // 2572347
Изобретение относится к магнетронам. Катод магнетрона, содержащего радиальное удлинение для размещения клемм 6, 7 катода, опирается на значительно более короткие опорные держатели 3, 4, поскольку данные держатели закреплены в концевой стенке 18 радиального удлинения, которая расположена ближе к катодному концу радиального удлинения, чем к другому концу.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей.

Способ генерации электромагнитного излучения СВЧ диапазона относится к технике СВЧ и может быть использован при разработке генераторов мощных широкополосных электромагнитных импульсов в сантиметровом, миллиметровом и субмиллиметровом диапазонах длин волн. На электроды фотодиода подают импульс напряжения, фотокатод наклонно облучают импульсным лазерным излучением, в результате чего с катода эмитируются электроны, которые ускоряются в вакуумированном межэлектродном промежутке, изменяют спектр электромагнитного излучения и снижают потери электронов, размещая экранирующий электрод вне разрядного промежутка. Технический результат - расширение спектра электромагнитного излучения. 1 з.п. ф-лы, 10 ил.

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное группирование электронов. Основная особенность предлагаемого прибора заключается в том, что оба зазора первого резонатора имеют протяженное пространство взаимодействия (ППВ) электронов с СВЧ полем. Изобретение предназначено для генерации большой мощности СВЧ. Технический результат - увеличение КПД благодаря использованию ППВ и больших амплитуд СВЧ напряжений в пределах (1,1-1,3)U0 в первом резонаторе. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В генераторе в цепи питания между источником высоковольтного напряжения и высоковольтным фотодиодом установлен управляемый ключ, состоящий из импульсно-периодического источника света, фотокатода ключа и анода ключа, причем расстояние между фотокатодом ключа и анодом ключа исключает возможность электрического пробоя управляемого ключа при максимальном напряжении, приложенном к высоковольтному фотодиоду. Технический результат - повышение надежности работы за счет обеспечения работы СШП генератора ЭМИ с высокой частотой следования импульсов без катастрофического разрушения сетчатого анода при пробое высоковольтного фотодиода. 2 ил.

Изобретение относится к области плазменной техники и может быть использовано для выделения пучков электронов из плазмы рабочей среды, создания электрических генераторов на основе энергии электронных пучков, электрореактивных двигателей, электронно-лучевых и ионно-лучевых приборов. Усилитель-концентратор пучка электронов (УКЭ) содержит корпус (1) с внутренней осевой суживающейся полостью, имеющей форму усеченного конуса, на поверхность которой нанесена кремниевая решетка (2) с верхним алмазным слоем (3). В большем отверстии осевой полости установлена многослойная электронная мембрана, основой которой является динамически устойчивая высокотемпературная вольфрамовая пластина (4), имеющая сложную форму: внешняя высокотемпературная поверхность выполнена плоской, а внутренняя низкотемпературная поверхность имеет вогнутую полусферическую форму для фокусирования электронов в пучок. Пластина (4) изготовлена из сплава с пористостью до 85% и диаметром пор 10-3-10-4 мкм. На внешнюю высокотемпературную поверхность вольфрамовой пластины (4) нанесен слой из нанокомпозитного графена (5) с нанопорами (11), а на внутреннюю низкотемпературную - слой из оксида алюминия (7) с нанопорами (8). Корпус снабжен аксиальными анодами (12), (13), установленными со стороны входного и выходного отверстий и служащими для подачи ускоряющих потенциалов, обеспечивающих, соответственно, электрический вывод электронов из потока плазмы и управление энергией электронов и их концентрацией в пучке, входящем в УКЭ, и управление концентрацией, силой тока и энергией электронов пучка, выходящего из УКЭ. Технический результат - обеспечение температурной и динамической устойчивости, повышение эффективности и КПД преобразования энергии потока плазмы в электрическую мощность. 1 ил.

Оротрон // 2634304
Изобретение относится к радиоэлектронике, в частности к конструкции источника высокочастотных электромагнитных колебаний коротковолновой части миллиметрового и субмиллиметрового диапазона волн. Технический результат - увеличение КПД открытого резонатора оротрона и, как следствие, увеличение КПД оротрона нагрузке. В оротроне, содержащем электронную пушку, коллектор, открытый резонатор, образованный двумя зеркалами, одно из которых выполнено плоским и закреплено неподвижно, а другое зеркало выполнено фокусирующим и установлено с возможностью перемещения в направлении, перпендикулярном плоскому зеркалу, периодическую структуру, расположенную на плоском зеркале и покрывающую всю его поверхность, вывод энергии электромагнитных колебаний, ввести дополнительно прямоугольную плоскопараллельную металлическую пластину, на одной из поверхностей которой выполнен продольный выступ в виде прямоугольного параллелепипеда с плоскостью симметрии, общей с пластиной, а его поверхность, параллельная поверхности пластины, выполнена полированной, и металлический швеллер, между полками которого расположен упомянутый выступ. Стенка выступа выполнена в виде периодической структуры, а полки имеют высоту, равную высоте выступа и плотно прилегают к его боковым поверхностям, а на концах переходят в плоские участки, параллельные стенке швеллера. Рассмотрены различные варианты выполнения оротрона как с однорядной периодической структурой, так и с двухрядной периодической структурой, как пример возможности использования в предложенной конструкции и многорядной периодической структуры. 3 н.п. ф-лы, 9 ил.

Изобретение относится к области электронных приборов СВЧ, в частности к лампам бегущей волны. Лампа бегущей волны с вводом и выводом энергии, содержащими передающие линии волноводного типа, с пространством взаимодействия в виде замедляющей системы, содержащей спираль, опорные диэлектрические стержни и металлический экран, с локальным поглотителем, выполненным на основе резистивной пленки, размещенной на опорных диэлектрических стержнях. Резистивная пленка поглотителя наносится так, что отсутствует на поверхности диэлектрических стержней, касающейся спирали, и на части поверхности боковых сторон и присутствует на оставшейся части боковых сторон диэлектрических стержней. Таким способом достигается то, что затухание, вносимое поглотителем на нижних частотах, больше, чем на верхних частотах. Перепад затухания определяется, прежде всего, зазором между резистивной пленкой и спиралью. Подобрав величину зазора, можно добиться того, что уменьшение КПД за счет введения поглотителя будет минимальным, а вносимое затухание - достаточным для обеспечения устойчивости к самовозбуждению. Оптимальный зазор составляет от 0,3 до 0,6 высоты диэлектрического стержня для разных конструкций ЛБВ. Технический результат - улучшение выходных характеристик ЛБВ при обеспечении устойчивости к самовозбуждению, в том числе на частоте отсечки волноводов.1 з.п. ф-лы, 7 ил.
Наверх